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Coefficient Bounds for a Family of Analytic Functions Linked
with a Petal-Shaped Domain and Applications to Borel

Distribution

Trailokya Panigrahi1, Gangadharan Murugusundaramoorthy2∗ and Eureka
Pattnayak3

Abstract. In this paper, by employing sine hyperbolic inverse
functions, we introduced the generalized subfamily RKsinh(β) of
analytic functions defined on the open unit disk ∆ := {ξ : ξ ∈
C and |ξ| < 1} associated with the petal-shaped domain. The
bounds of the first three Taylor-Maclaurin’s coefficients, Fekete-
Szegö functional and the second Hankel determinants are investi-
gated for f ∈ RKsinh(β). We considered Borel distribution as an
application to our main results. Consequently, a number of corol-
laries have been made based on our results, generalizing previous
studies in this direction.

1. Introduction and Motivation

Let A represent the family of holomorphic functions f(ξ) defined in
the domain of an open unit disk ∆ := {ξ ∈ C : |ξ| < 1}. Then the
function f(ξ) can have a Taylor-Maclaurin’s series as:

(1.1) f(ξ) = ξ +

∞∑
n=2

anξ
n, (ξ ∈ ∆).

The subclass of A consists of all normalized univalent functions in ∆ is
denoted by S. Let f, g ∈ A. We say the function f is subordinate to g
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or g is superordinate to f , written as f ≺ g (see [17]) if there exists a
Schwarz function ω(ξ) with ω(0) = 0 and |w(z)| < 1 such that

f(ξ) = g(ω(ξ)), (ξ ∈ ∆).

The subfamilies of the class S that play a dominant role in geomet-
ric function theory are the families of starlike functions (S∗), convex
functions (K) and bounded turning functions (R) defined in terms of
subordination as:

S∗ =

{
f ∈ A :

ξf ′(ξ)

f(ξ)
≺ ϕ(ξ), (ξ ∈ ∆)

}
,

K :=

{
f ∈ A : 1 +

ξf ′′(ξ)

f ′(ξ)
≺ ϕ(ξ), (ξ ∈ ∆)

}
,

and
R :=

{
f ∈ A : f ′(ξ) ≺ ϕ(ξ), (ξ ∈ ∆)

}
,

where

ϕ(ξ) = 1 + 2

∞∑
n=2

ξn

=
1 + ξ

1− ξ
, (ξ ∈ ∆).

Some subclasses of the set S can be generated by varying the function
ϕ. For instance:

• If we take ϕ(ξ) = 1+Lξ
1+Mξ , (−1 ≤ M < L ≤ 1), we get the class

S∗(L,M) = S∗
(

1+Lξ
1+Mξ

)
, the function of Janowski starlike class

studied by Janowski (see [9]).
• Letting L = 1 − 2α and M = −1, we get the class S∗(α) =
S∗(1− 2α,−1), the familiar starlike functions of order α, (0 ≤
α < 1).

• For ϕ(ξ) =
√
1 + ξ, the family S∗

L = S∗(ϕ) was studied by Sokòl
and Stankiewicz [30]. The function ϕ(ξ) maps the region ∆ onto
the image domain which is bounded by |ω2 − 1| < 1.

• For ϕ(ξ) = 1 + 4
3ξ +

2
3ξ

2, the class S∗
c = S∗(ϕ) was introduced

in [27] and further studied by [28].
• By choosing ϕ(ξ) = eξ, the class S∗

e = S∗(ϕ) was studied in [16]
(also, see [29]).

• Taking ϕ(ξ) = cos ξ, we get the families S∗
cos = S∗(ϕ) investi-

gated by Bano and Raza [3].
• Taking ϕ(ξ) = coshξ, we get the class S∗(ϕ) studied by Alotaibi

et al. [1]
• The family S∗

sin = S∗(ϕ) = S∗(1 + sin ξ) was investigated in [6].
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• Kumar and Arora [13] introduced the class S∗
ϕ = S∗(ϕ) where

ϕ(ξ) = 1 + sinh−1 ξ.
Note that, the function ϕ(ξ) = 1 + sinh−1 ξ is a multivalued function
and has the branch cuts about the line segments (−i∞,−i) ∪ (i, i∞)
on the imaginary axis and hence it is analytical in ∆. Geometrically,
the function ϕ(ξ) maps the unit disk ∆ onto a petal-shaped domain Ωϕ

where
Ωϕ = {w ∈ C : | sinhw − 1| < 1} .

Further, recently Barukab et al. [5] obtained the sharp bounds of the
Hankel determinant of order three for the function class

BT s :=
{
f ∈ A : f ′(ξ) ≺ 1 + sinh−1 ξ, (ξ ∈ ∆)

}
.

Motivated by the above researchers, we introduce the following subclass
of A as follows:
Definition 1.1. Let 0 ≤ β ≤ 1. A function f ∈ A is said to be in the
class RKsinh(β) if it satisfies the following subordination condition:

(1.2)
[
f ′(ξ)

]β [(ξf ′(ξ))′

f ′(ξ)

]1−β

≺ 1 + sinh−1 ξ, (ξ ∈ ∆).

Note that
RKsinh(0) = Ksinh

=

{
f ∈ A :

(ξf ′(ξ))′

f ′(ξ)
≺ 1 + sinh−1 ξ, (ξ ∈ ∆)

}
,

and
RKsinh(1) = BT s

=
{
f ∈ A : f ′(ξ) ≺ 1 + sinh−1 ξ, (ξ ∈ ∆)

}
.

Definition 1.2. For a function f ∈ A given by (1.1), Pommerenke
[24, 25] stated the kth Hankel determinant as:

Hk,n(f) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+k−1

an+1 an+2 · · · an+k
...

...
...

...
an+k−1 an+k · · · an+2k−2

∣∣∣∣∣∣∣∣∣ , (k, n ∈ N, a1 = 1).

In particular, for k = 2, n = 1 and k = 2, n = 2 , respectively, we
have

H2,1(f) =

∣∣∣∣a1 a2
a2 a2

∣∣∣∣
= a3 − a22,
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and

H2,2(f) =

∣∣∣∣a2 a3
a3 a4

∣∣∣∣
= a2a4 − a23.

It may be noted that H2,1(f) is popularly known as Fekete-Szegö func-
tional (see [7, 12, 18, 21, 22, 26]).

A significant amount of research papers have been devoted to de-
termining the upper bounds for the second-order Hankel determinant
H2,2(f) for different subclasses of A in the literature. For recent exposi-
tory works on the second Hankel determinant, see ([4, 10, 11, 14, 19, 20]).

Specifically, we investigate the upper bounds of the coefficient in-
equality, Fekete-Szegö functional and Hankel determinant of order two
for the function class RKsinh(β) associated with sine hyperbolic inverse
function defined in Definition 1.1.

2. A Set of Preliminaries

Let P denote the class of functions q(ξ) which are holomorphic with
a positive real part in the open unit disk ∆ and have the following form:

(2.1) q(ξ) = 1 +
∞∑
n=1

qnξ
n, (ξ ∈ ∆).

We require the following lemmas for our investigation.
Lemma 2.1 ([23]). If q ∈ P and has the form (2.1), then
(2.2) |qn| ≤ 2, for n ≥ 1,

|qn+k − δqnqk| ≤
{

2,
2|2δ − 1|,

0 ≤ δ ≤ 1,
elsewhere.

|qnqm − qlqk| ≤ 4 for n+m = l + k(2.3) ∣∣qn+2k − µqnq
2
k

∣∣ ≤ 2(1 + 2µ) for µ ∈ R,
and ∣∣∣∣q2 − q21

2

∣∣∣∣ ≤ 2− |q1|2

2
.

Lemma 2.2 (see [15]). If q ∈ P and has the form (2.1), then for any
complex number µ, we have∣∣q2 − µq21

∣∣ ≤ 2max{1, |2µ− 1|}.
Lemma 2.3 (see [2]). Let q ∈ P and has of the form (2.1). Then
(2.4)

∣∣Jq31 −Kq1q2 + Lq3
∣∣ ≤ 2|J |+ 2|K − 2J |+ 2|J −K + L|,

where J, K, L ∈ C.
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Lemma 2.4 ([15]). If q ∈ P is of the form (2.1), then there exists some
x, z with |x| ≤ 1, |z| ≤ 1 such that

2q2 = q21 + x
(
4− q21

)
,

4q3 = q31 + 2q1x
(
4− q21

)
−
(
4− q21

)
q1x

2 + 2
(
4− q21

) (
1− |x|2

)
z.

Lemma 2.5 ([15]). If q ∈ P is of the form (2.1), then

|q2 − νq21| ≤


−4ν + 2 ν ≤ 0,

2 0 ≤ ν ≤ 1,

4ν − 2 ν ≥ 1.

3. Coefficient Estimates and Fekete-Szegö Functional

In the first theorem, we determine the bounds of the first three Taylor-
Maclaurin’s coefficients for the function class RKsinh(β).
Theorem 3.1. Let the function f ∈ A of the form (1.1) be in the class
RKsinh(β). Then

|a2| ≤
1

2
,(3.1)

|a3| ≤
1

3(2− β)
,

|a4| ≤
1

96(2− β)(3− 2β)

[∣∣12β2 − 5β − 2
∣∣

+
∣∣24β2 − 22β − 16

∣∣+ (12β2 − 41β + 34
)]

.

Proof. Let the function f given by (1.1) be in the class RKsinh(β). Ac-
cording to Definition 1.1, there exists an analytical function ω(ξ) satis-
fying the condition of the Schwarz lemma such that

(3.2) [f ′(ξ)]β
[
(ξf ′(ξ))′

f ′(ξ)

]1−β

= 1 + sinh−1(ω(ξ)), (ξ ∈ ∆).

Let q ∈ P. Then, in terms of the Schwarz function ω(ξ), we can write

(3.3) q(ξ) =
1 + ω(ξ)

1− ω(ξ)
= 1 + q1ξ + q2ξ

2 + q3ξ
3 + · · · ,

which implies

ω(ξ) =
q(ξ)− 1

q(ξ) + 1
(3.4)

=
q1ξ + q2ξ

2 + q3ξ
3 + · · ·

2 + q1ξ + q2ξ2 + · · ·

=
1

2

(
q1ξ + q2ξ + q3ξ

3 + · · ·
)(

1 +
q1ξ + q2ξ

2 + · · ·
2

)−1
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=
q1
2
ξ +

(
q2
2

− q21
4

)
ξ2 +

(
q21
8

− 1

2
q1q2 +

q3
2

)
ξ3 + · · · .

Using relation (3.4) in the series expansion of sinh−1(ω(ξ)), we get

1 + sinh−1(ω(ξ)) = 1 + ω(ξ)− (ω(ξ))3

3!
+

3

40
(ω(ξ))5 − · · ·(3.5)

= 1 +
q1
2
ξ +

(
q2
2

− q21
4

)
ξ2

+

(
q3
2

+
5

48
q31 −

q1q2
2

)
ξ3 + · · · .

From (1.1), it can be easily derived that

[f ′(ξ)]β
[
(ξf ′(ξ))′

f ′(ξ)

]1−β

(3.6)

= 1 + 2a2ξ +
[
3(2− β)a3 − 4(1− β)a22

]
ξ2

+
[
4(3− 2β)a4 − 18(1− β)a2a3 + 8(1− β)a32

]
ξ3 + · · · .

Using (3.5) and (3.6) in (3.2) and then comparing the coefficients of
ξ, ξ2 and ξ3 on both sides, we get

a2 =
q1
4
,(3.7)

3(2− β)a3 − 4(1− β)a22 =
q2
2

− q21
4
,(3.8)

then

a3 =
1

3(2− β)

(
q2
2

− β

4
q21

)
=

1

6(2− β)

(
q2 −

β

2
q1q1

)
,

and

4(3− 2β)a4 − 18(1− β)a2a3 + 8(1− β)a32 =
q3
2

+
5

48
q31 −

q1q2
2

,

then

(3.9) a4 =
1

4(3− 2β)

[
q3
2

+
12β2 − 5β − 2

48(2− β)
q31 −

1 + β

4(2− β)
q1q2

]
.

For a2, utilizing (2.2) in (3.7), we obtain

|a2| ≤
1

2
.

For a3, applying (1.2) of Lemma 2.1 one will get

|a3| ≤
1

3(2− β)
.
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Taking the modulus on both sides of (3.9) and the application of (2.4)
of Lemma 2.3, we get

|a4| ≤
1

2(3− 2β)

[∣∣∣∣12β2 − 5β − 2

48(2− β)

∣∣∣∣+ ∣∣∣∣ 1 + β

4(2− β)
− 12β2 − 5β − 2

24(2− β)

∣∣∣∣
+

∣∣∣∣12β2 − 5β − 2

48(2− β)
− 1 + β

4(2− β)
+

1

2

∣∣∣∣]
=

1

96(2− β)(3− 2β)

[
|12β2 − 5β − 2|+ |24β2 − 22β − 16|

+ (12β2 − 41β + 34)
]
.

The proof of Theorem 3.1 is thus completed. □
Taking β = 1 in Theorem 3.1 we get the following result as a corollary

for the class BT s due to Barukab (see [5])
Corollary 3.2 ([5, Theorem 4]). Let the function f ∈ A be in the class
BT s. Then

|a2| ≤
1

2
, |a3| ≤

1

3
, |a4| ≤

1

4
.

Putting β = 0 we get the result for the class of Ksinh

Corollary 3.3. Let f ∈ Ksinh. Then

|a2| ≤
1

2
, |a3| ≤

1

3
, |a4| ≤

13

144
.

The next theorem gives a bound for Fekete-Szegö inequality when µ
is complex.
Theorem 3.4. Let the function f ∈ A belongs to the class RKsinh(β).
Then, for any complex number ν, we have

|a3 − νa22| ≤
1

3(2− β)
max

{
1,

∣∣∣∣3(2− β)ν − 4(1− β)

4

∣∣∣∣} .

Proof. Relations (3.7) and (3.8) yield

|a3 − νa22| =
∣∣∣∣ q2
6(2− β)

− β

12(2− β)
q21 − ν

q21
16

∣∣∣∣(3.10)

=
1

6(2− β)
|q2 − µq21|

where
µ =

4β + 3(2− β)µ

8
.

An application of Lemma 2.2 to relation (3.10) gives

|a3 − νa22| ≤
1

3(2− β)
max

{
1,

∣∣∣∣3(2− β)ν − 4(1− β)

4

∣∣∣∣} .
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This completes the proof of Theorem 3.4. □

Taking β = 1 in the above theorem, we get the result of Barukab et
al.(see [5]) as

Corollary 3.5. Let f ∈ BT s. Then for any complex number ν, we have

|a3 − νa22| ≤
1

3
max

{
1,

3

4
|ν|
}
.

Letting β = 0 in Theorem 3.4 we get Fekete-Szegö functional for the
class Ksinh.

Corollary 3.6. If f ∈ Ksinh, then for ν ∈ C, we have

|a3 − νa22| ≤
1

6
max

{
1,

∣∣∣∣3ν − 2

2

∣∣∣∣} .

Remark 3.7. Letting ν = 1 in Theorem 3.4 we get |a3 − a22| ≤ 1
3(2−β) .

Now, we discuss the result based on Fekete-Szegö functional |a3−νa22|
when ν is real.

Theorem 3.8. If the function f ∈ A belongs to the function class
RKsinh(β), then any real number ν, we have

|a3 − νa22| ≤



4(1−β)−3(2−β)ν
12(2−β) ,

1
3(2−β) ,

3(2−β)ν−4(1−β)
12(2−β) ,

ν ≤ −4β
3(2−β) ,

− 4β
3(2−β) ≤ ν ≤ 4

3 ,

ν ≥ 4
3 .

Proof. From (3.10), we obtain

|a3 − νa22| =
1

6(2− β)
|q2 − µq21|,

where µ = 4β+3(2−β)ν
8 . The result was followed by of Lemma 2.5. This

proves the result of Theorem 3.8. □

4. Coefficient Inequalities for the Function f−1

Theorem 4.1. If the function f ∈ RKsinh(β) given by (1.1) and f−1(w) =
w+

∑∞
n=2 lnw

n is the analytic continuation to ∆ of the inverse function
of f with |w| < r0 where r0 > 1

4 , the radius of the Koebe domain, then
for any complex number ν, we have

|l2| ≤
1

2
,
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|l3| ≤
4− β

6(2− β)
,

and
|l3 − νl22| ≤

1

3(2− β)
max

{
1,

∣∣∣∣2(4− β)− 3(2− β)ν

4

∣∣∣∣} .

Proof. Since

(4.1) f−1(w) = w +

∞∑
n=2

lnw
n,

is the inverse of f , we have
(4.2) f−1(f(ξ)) = f

(
f−1(ξ)

)
= ξ.

From (4.2), we have

(4.3) f−1

(
ξ +

∞∑
n=2

anξ
n

)
= ξ.

From (4.1) and (4.3), we have

(4.4) ξ + (a2 + l2)ξ
2 + (a3 + 2a2l2 + l3)ξ

3 + · · · = ξ.

Equating the coefficients of ξ2 and ξ3 on both sides of (4.4), we get
(4.5) l2 = −a2,

and
(4.6) l3 = −a3 − 2a2l2 = 2a22 − a3.

Using (3.7), (3.8) in (4.5) and (4.6), we obtain

l2 = −q1
4
,

and

l3 =
q21
8

− q2
6(2− β)

+
β

12(2− β)
q21

= − 1

6(2− β)

(
q2 −

6− β

4
q21

)
.

The bound for l2 can be obtained by using (2.2) of Lemma 2.1. Further,
an application of Lemma 2.2 gives

|l3| ≤
1

3(2− β)
max

{
1,

∣∣∣∣4− β

2

∣∣∣∣}
=

4− β

6(2− β)
.
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Moreover, for any complex number ν, we have

|l3 − νl22| =
1

6(2− β)

∣∣∣∣q2 − 2(6− β)− 3(2− β)ν

8
q21

∣∣∣∣ .
When Lemma 2.2 is used,

|l3 − νl22| ≤
1

3(2− β)
max

{
1,

∣∣∣∣2(4− β)− 3(2− β)ν

4

∣∣∣∣} .

The proof of Theorem 4.1 is complete. □

5. Coefficient Functional Associated with ξ
f(ξ)

In this section, we obtain Fekete-Szegö functional estimate related to
the function ξ

f(ξ) defined as

(5.1) N(ξ) =
ξ

f(ξ)
= 1 +

∞∑
n=1

knξ
n, (ξ ∈ ∆),

where the function f belongs to the class RKsinh(β).

Theorem 5.1. Let f ∈ A given by (1.1) be in the class RKsinh(β) and
N(ξ) is given by (5.1). Then for any complex number ν, we have

|k2 − νk21| ≤
1

3(2− β)
max

{
1,

∣∣∣∣(2 + β)− 3(2− β)ν

4

∣∣∣∣} .

Proof. It is straightforward to write

N(ξ) =
ξ

f(ξ)
(5.2)

= 1− a2ξ +
(
a22 − a3

)
ξ2 + · · · .

From (5.1) and (5.2), we obtain
(5.3) k1 = −a2,

and
(5.4) k2 = a22 − a3.

Using (3.7), (3.8) in (5.3) and (5.4), respectively, we get

k1 = −q1
4
,

and

k2 =
q21
16

−
(

q2
6(2− β)

− β

12(2− β)
q21

)
=

6 + β

48(2− β)
q21 −

q2
6(2− β)

.
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Thus, for any complex number ν, we have

(5.5) |k2 − νk21| =
1

6(2− β)

∣∣∣∣q2 − (6 + β)− 3(2− β)ν

8
q21

∣∣∣∣ .
Relation (5.5) gives a desired estimate by Lemma 2.2. The proof of
Theorem 5.1 is complete. □

6. Second Hankel Determinant for the Class RKsinh(β)

Theorem 6.1. Let the function f ∈ A given by (1.1) be in the class
RKsinh(β). Then ∣∣a2a4 − a23

∣∣ ≤ 1

9(2− β)2
.

Proof. Using relations (3.7), (3.8) and (3.9) in the functional
∣∣a2a4 − a23

∣∣
and after simplification, we get

a2a4 − a23 =
1

32(3− 2β)
q1q3 −

4β3 − 39β2 + 24β + 12

2304(2− β)2(3− 2β)
q41(6.1)

− 23β2 − 39β + 18

576(2− β)2(3− 2β)
q21q2 −

1

36(2− β)2
q22.

Since q ∈ P, it follows that q(e−iθξ) ∈ P (θ ∈ R). Therefore, we may
assume without loss of any generality that q1 = q ≥ 0. Substituting the
values of q2 and q3 from Lemma 2.3 in the relation (6.1), we obtain

a2a4 − a23 = −4β3 − 11β2 − 14β + 24

2304(2− β)2(3− 2β)
q4

+
6− β − 5β2

1152(2− β)2(3− 2β)
q2x

(
4− q2

)
+

1

64(3− 2β)
q
(
4− q2

) (
1− |x|2

)
z

− 1

128(3− 2β)

(
4− q2

)
q2x2 −

(
4− q2

)2
x2

144(2− β)2
.

With the help of triangle inequality and replacing |z| ≤ 1 and |x| = ρ ≤
1, we obtain∣∣a2a4 − a23

∣∣ ≤ 4β3 − 11β2 − 14β + 24

2304(2− β)2(3− 2β)
q4

+
6− β − 5β2

1152(2− β)2(3− 2β)
q2
(
4− q2

)
ρ

+
1

64(3− 2β)
q
(
4− q2

)
(1− ρ2)



44 T. PANIGRAHI, G. MURUGUSUNDARAMOORTHY AND E. PATTNAYAK

+
1

128(3− 2β)

(
4− q2

)
q2ρ2 +

(
4− q2

)2
ρ2

144(2− β)2

= H(q, ρ)(say).

Differentiating H(q, ρ) partially with respect to ρ, we get

∂H

∂ρ
=

6− β − 5β2

1152(2− β)2(3− 2β)
q2
(
4− q2

)
+

{
q2

64(3− 2β)
− q

32(3− 2β)
+

4− q2

72(2− β)2

}(
4− q2

)
ρ

=
6− β − 5β2

1152(2− β)2(3− β)
q2
(
4− q2

)
+

{
9(2− β)2q2 − 18q(2− β)2 + 8(3− 2β)

(
4− q2

)
576(2− β)2(3− 2β)

}(
4− q2

)
ρ

=
6− β − 5β2

1152(2− β)2(3− 2β)
q2
(
4− q2

)
+

(2− q)(−9qβ2 + 20qβ − 32β − 12q + 48)

576(2− β)2(3− 2β)

(
4− q2

)
ρ.

For 0 ≤ ρ ≤ 1 and for any fixed q ∈ [0, 2] we observe that ∂H
∂ρ > 0. Thus

H(q, ρ) is an increasing function of ρ and for q ∈ [0, 2], H(q, ρ) has a
maximum value at ρ = 1. Therefore

max
0≤ρ≤1

H(q, ρ) = H(q, 1)

= G(q)(say),

where

G(q) =
4β3 − 11β2 − 14β + 24

2304(2− β)2(3− 2β)
q4 +

6− β − 5β2

1152(2− β)2(3− 2β)
q2
(
4− q2

)
+

1

128(3− 2β)

(
4− q2

)
q2 +

1

144(2− β)2
(
4− q2

)2
.

Now

G′(q) = q

[
4β3 − 11β2 − 14β + 24

576(2− β)2(3− 2β)
q2 +

6− β − 5β2

288(2− β)2(3− 2β)
(2− q2)

+
2− q2

32(3− 2β)
−
(
4− q2

)
q

36(2− β)2

]

= q

[
4β3 − 11β2 − 14β + 24

576(2− β)2(3− 2β)
q2 +

4β2 − 37β + 42

288(2− β)2(3− 2β)
(2− q2)



COEFFICIENT BOUNDS FOR A FAMILY OF ANALYTIC FUNCTIONS 45

−
(
4− q2

)
36(2− β)2

]
.

G′(q) = 0 then q = 0. Also

G′′(q) =
4β3 − 11β2 − 14β + 24

192(2− β)2(3− 2β)
q2 +

(4β2 − 37β + 42)(2− 3q2)

288(2− β)2(3− 2β)

− 4− 3q2

36(2− β)2
.

Now

[G′′(q)]q=0 = − 4β + 3

144(2− β)(3− 2β)

< 0.

This implies that the function G(q) can take the maximum value at
q = 0. The maximum value is

max
q∈[0,2]

G(q) = G(0)

=
1

9(2− β)2
.

The proof of Theorem 6.1 is completed. □

Letting β = 1 in Theorem 6.1, we get the following result due to
Barubak (see [5]).

Corollary 6.2. Let f ∈ BT s. Then
|H2,2(f)| =

∣∣a2a4 − a23
∣∣

≤ 1

9
.

β = 0 in Theorem 6.1 gives the result for class Ksinh as follows:

Corollary 6.3. Let the function f ∈ A belongs to the class Ksinh. Then
|H2,2(f)| =

∣∣a2a4 − a23
∣∣

≤ 1

36
.

7. Application of Borel Distribution

The distributions such as Binomial, Poisson, Pascal, logarithm, hy-
pergeometric and their applications to the class of univalent functions
have been intensively studied by various researchers from a different per-
spectives. Now, we discuss the application of the Borel distribution to
the results obtained for the function class RKsinh(β).
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A discrete random variable X is said to follow a Borel distribution
with parameter µ if its probability mass function p(x) is given by

(7.1) p(x = r) =
(µr)r−1e−µr

r!
, r = 1, 2, 3, · · · .

Recently, Wanas and Khuttar [32] introduced a power series whose co-
efficients are the probabilities of the Borel distribution i.e.

M(µ, ξ) = ξ +
∞∑
n=2

(µ(n− 1))n−2e−µ(n−1)

(n− 1)!
ξn, (ξ ∈ ∆),

where 0 ≤ µ ≤ 1. By using the ratio test, it can be shown that the
radius of convergence of the above series is infinite.

Let us introduce a linear operator Lµ : A −→ A defined by
Lµf(ξ) = M(µ, ξ) ∗ f(ξ)(7.2)

= ξ +

∞∑
n=2

(µ(n− 1))n−2e−µ(n−1)

(n− 1)!
anξ

n

= ξ +
∞∑
n=2

αn(µ)anξ
n

= ξ + α2a2ξ
2 + α3a3ξ

3 + · · · ,

where αn = αn(µ) =
(µ(n−1))n−2e−µ(n−1)

(n−1)! .
We define the class RKµ

sinh as follows:
(7.3) RKµ

sinh(β) = {f ∈ A : Lµf ∈ RKsinh(β)}.
In the same way, as in Theorem 3.4 and Theorem 3.8 we can obtain the
coefficient bounds and Fekete-Szegö functional for the class RKµ

sinh(β)
from the corresponding estimates for the function of the class RKsinh(β).

Theorem 7.1. Let 0 ≤ β ≤ 1 and Lµf given by (7.2). If f ∈ RKµ
sinh(β),

then for any complex number ν, we have

|a3 − νa22| ≤
1

3(2− β)α3
max

{
1,

∣∣∣∣(βα3 − 4α2
2) + 3(2− β)να3

4α2
2

∣∣∣∣} .

Proof. Since f ∈ RKµ
sinh(β), it follows from (7.3) that

(7.4) [Lµf(ξ)]
β

[
(ξ(Lµf(ξ))

′)′

(Lµf(ξ))′

]1−β

= 1 + sinh−1(ω(ξ)).

From (7.2), we obtain

[Lµf(ξ)]
β

[
(ξ(Lµf(ξ))

′)′

(Lµf(ξ))′

]1−β

(7.5)
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= 1 + 2α2a2ξ +
[
3(1− β)α3a3 − 4(1− β)α2

2a
2
2

]
ξ2

+
[
4(3− 2β)α4a4 − 18(1− β)α2α3a2a3 + 8(1− β)α3

2a
3
2

]
ξ3 + · · · .

Using (3.5) and (7.5) in (7.4) and equating the corresponding coefficients
of ξ and ξ2, we get

a2 =
q1
4α2

,

and
a3 =

1

3(2− β)α3

[
q2
2

− β

4
q21

]
.

Thus, for any complex number ν, we have

|a3 − νa22| =
∣∣∣∣ q2
6(2− β)α3

− β

12(2− β)α3
q21 − ν

q21
16α2

2

∣∣∣∣(7.6)

=
1

6(2− β)α3

[
q2 −

(
βα3

2
+

3(2− β)να3

8α2
2

)
q21

]
.

An application of Lemma 2.2 to (7.6) yields

|a3 − νa22| ≤
1

3(2− β)α3
max

{
1,

∣∣∣∣(βα3 − 4α2
2) + 3(2− β)να3

4α2
2

∣∣∣∣} .

The proof of Theorem 7.1 is thus completed. □
The next theorem gives Fekete-Szegö inequality for the class RKµ

sinh(β)
when ν is real. We omit the proof as the proof follows the same line as
in Theorem 3.8.

Theorem 7.2. Let 0 ≤ β ≤ 1 and Lµf given by (7.2). For any real
number ν, we have

|a3 − νa22| ≤



4α2
2(1−α3)−3(2−β)α3ν

12α2
2(2−β)α3

,

1
3(2−β)α3

,

3(2−β)να3−4α2
2(1−α3)

12α2
2(2−β)α3

,

ν ≤ −4βα2
2

3(2−β) ,

− 4βα2
2

3(2−β) ≤ ν ≤ 4α2
2(2−βα3)

3(2−β)α3
,

ν ≥ 4(2−βα3)α2
2

3(2−β)α3
.

Concluding Remarks: In our current paper we investigated the coef-
ficient bounds, Fekete-Szegö functional, second Hankel determinant for
f ∈ RKsinh(β) associated with the petal-shaped domain. Further, we
determined the coefficient estimate and Fekete-Szegö inequalities to the
inverse function class f−1 and ξ

f(ξ) . We also established an application
for Borel distribution to our main results. The class defined in this
paper generalizes the class considered by Barukab et al.. The results
in [5] are a special case of our results (β = 1). In recent years, the
application of (p, q)-calculus or more specifically q−calculus has played
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a dominant role in the theory of geometric function theory of complex
analysis (see [31]). Researchers can make use of q−calculus to modify
the class RKsinh(β) and all the results of this paper can be extended to
the study of analytic or meromorphic functions[8].

Acknowledgment. The author wish to thank the referees for their
valuable suggestions to improve the paper in present form.
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7. M. Fekete and G. Szegö, Eine Benberkung über ungerada Schlichte
funcktionen, J. London Math. Soc. , 8 (1933), pp.85-89.

8. M. H. Golmohammadi, S. Najafzadeh and M.R. Foroutan, Some
Properties of Certain subclass of meromorphic functions associated
with (p, q)-derivative, Sahand Commun. Math. Anal., 17 (4) (2020),
pp. 71-84.

9. W. Janowski, Extremal problems for a family of functions with
positive real part and for some related families, Ann. Polonic Math,
23 (1971), pp. 159-177.

10. A. Janteng, S.A. Halim and M. Darus,Coefficient inequality for a
function whose derivative has a positive real part, J. Inequal. Pure
Appl. Math., 7 (2)(2006), Art. 50, 5 pages.

11. A. Janteng, S.A. Halim and M. Darus, Hankel determinant for
starlike and convex functions, Int. J. Math. Anal., 1 (13) (2007),
pp. 619-625.



COEFFICIENT BOUNDS FOR A FAMILY OF ANALYTIC FUNCTIONS 49
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