Coefficient Bounds for a Family of Analytic Functions Linked with a Petal-Shaped Domain and Applications to Borel Distribution

Trailokya Panigrahi, Gangadharan Murugusundaramoorthy and Eureka Pattnayak

Sahand Communications in
Mathematical Analysis
Print ISSN: 2322-5807
Online ISSN: 2423-3900
Volume: 20
Number: 3
Pages: 33-50
Sahand Commun. Math. Anal.
DOI: 10.22130/scma.2022.557374.1143

SCMA, P. O. Box 55181-83111, Maragheh, Iran http://scma.maragheh.ac.ir

Coefficient Bounds for a Family of Analytic Functions Linked with a Petal-Shaped Domain and Applications to Borel Distribution

Trailokya Panigrahi ${ }^{1}$, Gangadharan Murugusundaramoorthy ${ }^{2 *}$ and Eureka Pattnayak ${ }^{3}$

Abstract

In this paper, by employing sine hyperbolic inverse functions, we introduced the generalized subfamily $\mathcal{R} \mathcal{K}_{\sinh }(\beta)$ of analytic functions defined on the open unit disk $\Delta:=\{\xi: \xi \in$ \mathbb{C} and $|\xi|<1\}$ associated with the petal-shaped domain. The bounds of the first three Taylor-Maclaurin's coefficients, FeketeSzegö functional and the second Hankel determinants are investigated for $f \in \mathcal{R} \mathcal{K}_{\sinh }(\beta)$. We considered Borel distribution as an application to our main results. Consequently, a number of corollaries have been made based on our results, generalizing previous studies in this direction.

1. Introduction and Motivation

Let \mathcal{A} represent the family of holomorphic functions $f(\xi)$ defined in the domain of an open unit disk $\Delta:=\{\xi \in \mathbb{C}:|\xi|<1\}$. Then the function $f(\xi)$ can have a Taylor-Maclaurin's series as:

$$
\begin{equation*}
f(\xi)=\xi+\sum_{n=2}^{\infty} a_{n} \xi^{n}, \quad(\xi \in \Delta) \tag{1.1}
\end{equation*}
$$

The subclass of \mathcal{A} consists of all normalized univalent functions in Δ is denoted by \mathcal{S}. Let $f, g \in \mathcal{A}$. We say the function f is subordinate to g

[^0]or g is superordinate to f, written as $f \prec g$ (see [17]) if there exists a Schwarz function $\omega(\xi)$ with $\omega(0)=0$ and $|w(z)|<1$ such that
$$
f(\xi)=g(\omega(\xi)), \quad(\xi \in \Delta)
$$

The subfamilies of the class \mathcal{S} that play a dominant role in geometric function theory are the families of starlike functions $\left(\mathcal{S}^{*}\right)$, convex functions (\mathcal{K}) and bounded turning functions (\mathcal{R}) defined in terms of subordination as:

$$
\begin{aligned}
\mathcal{S}^{*} & =\left\{f \in \mathcal{A}: \frac{\xi f^{\prime}(\xi)}{f(\xi)} \prec \phi(\xi),(\xi \in \Delta)\right\} \\
\mathcal{K} & :=\left\{f \in \mathcal{A}: 1+\frac{\xi f^{\prime \prime}(\xi)}{f^{\prime}(\xi)} \prec \phi(\xi),(\xi \in \Delta)\right\}
\end{aligned}
$$

and

$$
\mathcal{R}:=\left\{f \in \mathcal{A}: f^{\prime}(\xi) \prec \phi(\xi),(\xi \in \Delta)\right\}
$$

where

$$
\begin{aligned}
\phi(\xi) & =1+2 \sum_{n=2}^{\infty} \xi^{n} \\
& =\frac{1+\xi}{1-\xi}, \quad(\xi \in \Delta)
\end{aligned}
$$

Some subclasses of the set \mathcal{S} can be generated by varying the function ϕ. For instance:

- If we take $\phi(\xi)=\frac{1+L \xi}{1+M \xi},(-1 \leq M<L \leq 1)$, we get the class $\mathcal{S}^{*}(L, M)=\mathcal{S}^{*}\left(\frac{1+L \xi}{1+M \xi}\right)$, the function of Janowski starlike class studied by Janowski (see [9]).
- Letting $L=1-2 \alpha$ and $M=-1$, we get the class $\mathcal{S}^{*}(\alpha)=$ $\mathcal{S}^{*}(1-2 \alpha,-1)$, the familiar starlike functions of order $\alpha,(0 \leq$ $\alpha<1)$.
- For $\phi(\xi)=\sqrt{1+\xi}$, the family $\mathcal{S}_{L}^{*}=\mathcal{S}^{*}(\phi)$ was studied by Sokòl and Stankiewicz [30]. The function $\phi(\xi)$ maps the region Δ onto the image domain which is bounded by $\left|\omega^{2}-1\right|<1$.
- For $\phi(\xi)=1+\frac{4}{3} \xi+\frac{2}{3} \xi^{2}$, the class $\mathcal{S}_{c}^{*}=\mathcal{S}^{*}(\phi)$ was introduced in [27] and further studied by [28].
- By choosing $\phi(\xi)=e^{\xi}$, the class $\mathcal{S}_{e}^{*}=\mathcal{S}^{*}(\phi)$ was studied in 16 (also, see [29]).
- Taking $\phi(\xi)=\cos \xi$, we get the families $\mathcal{S}_{\cos }^{*}=\mathcal{S}^{*}(\phi)$ investigated by Bano and Raza [3].
- Taking $\phi(\xi)=\cosh \xi$, we get the class $\mathcal{S}^{*}(\phi)$ studied by Alotaibi et al. [1]
- The family $\mathcal{S}_{\text {sin }}^{*}=\mathcal{S}^{*}(\phi)=\mathcal{S}^{*}(1+\sin \xi)$ was investigated in [6].
- Kumar and Arora [13] introduced the class $\mathcal{S}_{\phi}^{*}=\mathcal{S}^{*}(\phi)$ where $\phi(\xi)=1+\sinh ^{-1} \xi$.
Note that, the function $\phi(\xi)=1+\sinh ^{-1} \xi$ is a multivalued function and has the branch cuts about the line segments $(-i \infty,-i) \cup(i, i \infty)$ on the imaginary axis and hence it is analytical in Δ. Geometrically, the function $\phi(\xi)$ maps the unit disk Δ onto a petal-shaped domain Ω_{ϕ} where

$$
\Omega_{\phi}=\{w \in \mathbb{C}:|\sinh w-1|<1\}
$$

Further, recently Barukab et al. [5] obtained the sharp bounds of the Hankel determinant of order three for the function class

$$
\mathcal{B} \mathcal{T}_{s}:=\left\{f \in \mathcal{A}: f^{\prime}(\xi) \prec 1+\sinh ^{-1} \xi,(\xi \in \Delta)\right\}
$$

Motivated by the above researchers, we introduce the following subclass of \mathcal{A} as follows:

Definition 1.1. Let $0 \leq \beta \leq 1$. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{R} \mathcal{K}_{\text {sinh }}(\beta)$ if it satisfies the following subordination condition:

$$
\begin{equation*}
\left[f^{\prime}(\xi)\right]^{\beta}\left[\frac{\left(\xi f^{\prime}(\xi)\right)^{\prime}}{f^{\prime}(\xi)}\right]^{1-\beta} \prec 1+\sinh ^{-1} \xi, \quad(\xi \in \Delta) \tag{1.2}
\end{equation*}
$$

Note that

$$
\begin{aligned}
R K_{\mathrm{sinh}}(0) & =K_{\mathrm{sinh}} \\
& =\left\{f \in \mathcal{A}: \frac{\left(\xi f^{\prime}(\xi)\right)^{\prime}}{f^{\prime}(\xi)} \prec 1+\sinh ^{-1} \xi,(\xi \in \Delta)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
R K_{\sinh }(1) & =\mathcal{B} \mathcal{T}_{s} \\
& =\left\{f \in \mathcal{A}: f^{\prime}(\xi) \prec 1+\sinh ^{-1} \xi,(\xi \in \Delta)\right\} .
\end{aligned}
$$

Definition 1.2. For a function $f \in \mathcal{A}$ given by (1.1), Pommerenke [24, 25] stated the kth Hankel determinant as:

$$
H_{k, n}(f)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+k-1} \\
a_{n+1} & a_{n+2} & \cdots & a_{n+k} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+k-1} & a_{n+k} & \cdots & a_{n+2 k-2}
\end{array}\right|, \quad\left(k, n \in \mathbb{N}, a_{1}=1\right)
$$

In particular, for $k=2, n=1$ and $k=2, n=2$, respectively, we have

$$
\begin{aligned}
H_{2,1}(f) & =\left|\begin{array}{ll}
a_{1} & a_{2} \\
a_{2} & a_{2}
\end{array}\right| \\
& =a_{3}-a_{2}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
H_{2,2}(f) & =\left|\begin{array}{ll}
a_{2} & a_{3} \\
a_{3} & a_{4}
\end{array}\right| \\
& =a_{2} a_{4}-a_{3}^{2}
\end{aligned}
$$

It may be noted that $H_{2,1}(f)$ is popularly known as Fekete-Szegö functional (see [7, 12, 18, 21, 22, 26]).

A significant amount of research papers have been devoted to determining the upper bounds for the second-order Hankel determinant $H_{2,2}(f)$ for different subclasses of \mathcal{A} in the literature. For recent expository works on the second Hankel determinant, see ([4, 10, 11, 14, 19, 20]).

Specifically, we investigate the upper bounds of the coefficient inequality, Fekete-Szeg \ddot{o} functional and Hankel determinant of order two for the function class $\mathcal{R} \mathcal{K}_{\sinh }(\beta)$ associated with sine hyperbolic inverse function defined in Definition 1.1.

2. A Set of Preliminaries

Let \mathcal{P} denote the class of functions $q(\xi)$ which are holomorphic with a positive real part in the open unit disk Δ and have the following form:

$$
\begin{equation*}
q(\xi)=1+\sum_{n=1}^{\infty} q_{n} \xi^{n}, \quad(\xi \in \Delta) \tag{2.1}
\end{equation*}
$$

We require the following lemmas for our investigation.
Lemma 2.1 ([23]). If $q \in \mathcal{P}$ and has the form (2.1), then

$$
\begin{gather*}
\left|q_{n}\right| \leq 2, \quad \text { for } n \geq 1 \tag{2.2}\\
\left|q_{n+k}-\delta q_{n} q_{k}\right| \leq \begin{cases}2, & 0 \leq \delta \leq 1 \\
2|2 \delta-1|, & \text { elsewhere }\end{cases} \\
\left|q_{n} q_{m}-q_{l} q_{k}\right| \leq 4 \quad \text { for } n+m=l+k \tag{2.3}\\
\left|q_{n+2 k}-\mu q_{n} q_{k}^{2}\right| \leq 2(1+2 \mu) \quad \text { for } \mu \in \mathbb{R}
\end{gather*}
$$

and

$$
\left|q_{2}-\frac{q_{1}^{2}}{2}\right| \leq 2-\frac{\left|q_{1}\right|^{2}}{2}
$$

Lemma 2.2 (see 15]). If $q \in \mathcal{P}$ and has the form (2.1), then for any complex number μ, we have

$$
\left|q_{2}-\mu q_{1}^{2}\right| \leq 2 \max \{1,|2 \mu-1|\}
$$

Lemma 2.3 (see [2]). Let $q \in \mathcal{P}$ and has of the form (2.1). Then

$$
\begin{equation*}
\left|J q_{1}^{3}-K q_{1} q_{2}+L q_{3}\right| \leq 2|J|+2|K-2 J|+2|J-K+L| \tag{2.4}
\end{equation*}
$$

where $J, K, L \in \mathbb{C}$.

Lemma 2.4 (15]). If $q \in \mathcal{P}$ is of the form (2.1), then there exists some x, z with $|x| \leq 1,|z| \leq 1$ such that

$$
\begin{aligned}
& 2 q_{2}=q_{1}^{2}+x\left(4-q_{1}^{2}\right) \\
& 4 q_{3}=q_{1}^{3}+2 q_{1} x\left(4-q_{1}^{2}\right)-\left(4-q_{1}^{2}\right) q_{1} x^{2}+2\left(4-q_{1}^{2}\right)\left(1-|x|^{2}\right) z
\end{aligned}
$$

Lemma 2.5 (15]). If $q \in \mathcal{P}$ is of the form (2.1), then

$$
\left|q_{2}-\nu q_{1}^{2}\right| \leq \begin{cases}-4 \nu+2 & \nu \leq 0 \\ 2 & 0 \leq \nu \leq 1 \\ 4 \nu-2 & \nu \geq 1\end{cases}
$$

3. Coefficient Estimates and Fekete-Szeqö Functional

In the first theorem, we determine the bounds of the first three TaylorMaclaurin's coefficients for the function class $\mathcal{R} \mathcal{K}_{\sinh }(\beta)$.
Theorem 3.1. Let the function $f \in \mathcal{A}$ of the form (1.1) be in the class $\mathcal{R} \mathcal{K}_{\text {sinh }}(\beta)$. Then

$$
\begin{align*}
\left|a_{2}\right| & \leq \frac{1}{2} \tag{3.1}\\
\left|a_{3}\right| \leq & \leq \frac{1}{3(2-\beta)} \\
\left|a_{4}\right| \leq & \frac{1}{96(2-\beta)(3-2 \beta)}\left[\left|12 \beta^{2}-5 \beta-2\right|\right. \\
& \left.+\left|24 \beta^{2}-22 \beta-16\right|+\left(12 \beta^{2}-41 \beta+34\right)\right]
\end{align*}
$$

Proof. Let the function f given by (1.1) be in the class $\mathcal{R} \mathcal{K}_{\sinh }(\beta)$. According to Definition 1.1, there exists an analytical function $\omega(\xi)$ satisfying the condition of the Schwarz lemma such that

$$
\begin{equation*}
\left[f^{\prime}(\xi)\right]^{\beta}\left[\frac{\left(\xi f^{\prime}(\xi)\right)^{\prime}}{f^{\prime}(\xi)}\right]^{1-\beta}=1+\sinh ^{-1}(\omega(\xi)), \quad(\xi \in \Delta) \tag{3.2}
\end{equation*}
$$

Let $q \in \mathcal{P}$. Then, in terms of the Schwarz function $\omega(\xi)$, we can write

$$
\begin{equation*}
q(\xi)=\frac{1+\omega(\xi)}{1-\omega(\xi)}=1+q_{1} \xi+q_{2} \xi^{2}+q_{3} \xi^{3}+\cdots \tag{3.3}
\end{equation*}
$$

which implies

$$
\begin{align*}
\omega(\xi) & =\frac{q(\xi)-1}{q(\xi)+1} \tag{3.4}\\
& =\frac{q_{1} \xi+q_{2} \xi^{2}+q_{3} \xi^{3}+\cdots}{2+q_{1} \xi+q_{2} \xi^{2}+\cdots} \\
& =\frac{1}{2}\left(q_{1} \xi+q_{2} \xi+q_{3} \xi^{3}+\cdots\right)\left(1+\frac{q_{1} \xi+q_{2} \xi^{2}+\cdots}{2}\right)^{-1}
\end{align*}
$$

$$
=\frac{q_{1}}{2} \xi+\left(\frac{q_{2}}{2}-\frac{q_{1}^{2}}{4}\right) \xi^{2}+\left(\frac{q_{1}^{2}}{8}-\frac{1}{2} q_{1} q_{2}+\frac{q_{3}}{2}\right) \xi^{3}+\cdots
$$

Using relation (3.4) in the series expansion of $\sinh ^{-1}(\omega(\xi))$, we get

$$
\begin{align*}
1+\sinh ^{-1}(\omega(\xi))= & 1+\omega(\xi)-\frac{(\omega(\xi))^{3}}{3!}+\frac{3}{40}(\omega(\xi))^{5}-\cdots \tag{3.5}\\
= & 1+\frac{q_{1}}{2} \xi+\left(\frac{q_{2}}{2}-\frac{q_{1}^{2}}{4}\right) \xi^{2} \\
& +\left(\frac{q_{3}}{2}+\frac{5}{48} q_{1}^{3}-\frac{q_{1} q_{2}}{2}\right) \xi^{3}+\cdots
\end{align*}
$$

From (1.1), it can be easily derived that

$$
\begin{align*}
& {\left[f^{\prime}(\xi)\right]^{\beta}\left[\frac{\left(\xi f^{\prime}(\xi)\right)^{\prime}}{f^{\prime}(\xi)}\right]^{1-\beta}} \tag{3.6}\\
& \quad=1+2 a_{2} \xi+\left[3(2-\beta) a_{3}-4(1-\beta) a_{2}^{2}\right] \xi^{2} \\
& \quad+\left[4(3-2 \beta) a_{4}-18(1-\beta) a_{2} a_{3}+8(1-\beta) a_{2}^{3}\right] \xi^{3}+\cdots .
\end{align*}
$$

Using (3.5) and (3.6) in (3.2) and then comparing the coefficients of ξ, ξ^{2} and ξ^{3} on both sides, we get

$$
\begin{align*}
& a_{2}=\frac{q_{1}}{4} \tag{3.7}\\
& 3(2-\beta) a_{3}-4(1-\beta) a_{2}^{2}=\frac{q_{2}}{2}-\frac{q_{1}^{2}}{4} \tag{3.8}
\end{align*}
$$

then

$$
\begin{aligned}
a_{3} & =\frac{1}{3(2-\beta)}\left(\frac{q_{2}}{2}-\frac{\beta}{4} q_{1}^{2}\right) \\
& =\frac{1}{6(2-\beta)}\left(q_{2}-\frac{\beta}{2} q_{1} q_{1}\right)
\end{aligned}
$$

and

$$
4(3-2 \beta) a_{4}-18(1-\beta) a_{2} a_{3}+8(1-\beta) a_{2}^{3}=\frac{q_{3}}{2}+\frac{5}{48} q_{1}^{3}-\frac{q_{1} q_{2}}{2}
$$

then

$$
\begin{equation*}
a_{4}=\frac{1}{4(3-2 \beta)}\left[\frac{q_{3}}{2}+\frac{12 \beta^{2}-5 \beta-2}{48(2-\beta)} q_{1}^{3}-\frac{1+\beta}{4(2-\beta)} q_{1} q_{2}\right] \tag{3.9}
\end{equation*}
$$

For a_{2}, utilizing (2.2) in (3.7), we obtain

$$
\left|a_{2}\right| \leq \frac{1}{2}
$$

For a_{3}, applying (1.2) of Lemma 2.1 one will get

$$
\left|a_{3}\right| \leq \frac{1}{3(2-\beta)}
$$

Taking the modulus on both sides of (3.9) and the application of (2.4) of Lemma 2.3, we get

$$
\begin{aligned}
\left|a_{4}\right| \leq & \frac{1}{2(3-2 \beta)}\left[\left|\frac{12 \beta^{2}-5 \beta-2}{48(2-\beta)}\right|+\left|\frac{1+\beta}{4(2-\beta)}-\frac{12 \beta^{2}-5 \beta-2}{24(2-\beta)}\right|\right. \\
& \left.+\left|\frac{12 \beta^{2}-5 \beta-2}{48(2-\beta)}-\frac{1+\beta}{4(2-\beta)}+\frac{1}{2}\right|\right] \\
= & \frac{1}{96(2-\beta)(3-2 \beta)}\left[\left|12 \beta^{2}-5 \beta-2\right|+\left|24 \beta^{2}-22 \beta-16\right|\right. \\
& \left.+\left(12 \beta^{2}-41 \beta+34\right)\right] .
\end{aligned}
$$

The proof of Theorem 3.1 is thus completed.
Taking $\beta=1$ in Theorem 3.1 we get the following result as a corollary for the class $\mathcal{B} \mathcal{T}_{s}$ due to Barukab (see [5])
Corollary 3.2 ([5, Theorem 4]). Let the function $f \in \mathcal{A}$ be in the class $\mathcal{B T}_{\text {s }}$. Then

$$
\left|a_{2}\right| \leq \frac{1}{2}, \quad\left|a_{3}\right| \leq \frac{1}{3}, \quad\left|a_{4}\right| \leq \frac{1}{4}
$$

Putting $\beta=0$ we get the result for the class of $K_{\sinh }$
Corollary 3.3. Let $f \in K_{\text {sinh }}$. Then

$$
\left|a_{2}\right| \leq \frac{1}{2}, \quad\left|a_{3}\right| \leq \frac{1}{3}, \quad\left|a_{4}\right| \leq \frac{13}{144}
$$

The next theorem gives a bound for Fekete-Szegö inequality when μ is complex.
Theorem 3.4. Let the function $f \in \mathcal{A}$ belongs to the class $\mathcal{R} \mathcal{K}_{\sinh }(\beta)$. Then, for any complex number ν, we have

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq \frac{1}{3(2-\beta)} \max \left\{1,\left|\frac{3(2-\beta) \nu-4(1-\beta)}{4}\right|\right\}
$$

Proof. Relations (3.7) and (3.8) yield

$$
\begin{align*}
\left|a_{3}-\nu a_{2}^{2}\right| & =\left|\frac{q_{2}}{6(2-\beta)}-\frac{\beta}{12(2-\beta)} q_{1}^{2}-\nu \frac{q_{1}^{2}}{16}\right| \tag{3.10}\\
& =\frac{1}{6(2-\beta)}\left|q_{2}-\mu q_{1}^{2}\right|
\end{align*}
$$

where

$$
\mu=\frac{4 \beta+3(2-\beta) \mu}{8}
$$

An application of Lemma 2.2 to relation (3.10) gives

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq \frac{1}{3(2-\beta)} \max \left\{1,\left|\frac{3(2-\beta) \nu-4(1-\beta)}{4}\right|\right\}
$$

This completes the proof of Theorem 3.4.
Taking $\beta=1$ in the above theorem, we get the result of Barukab et al.(see [5]) as

Corollary 3.5. Let $f \in \mathcal{B} \mathcal{T}_{s}$. Then for any complex number ν, we have

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq \frac{1}{3} \max \left\{1, \frac{3}{4}|\nu|\right\} .
$$

Letting $\beta=0$ in Theorem 3.4 we get Fekete-Szegö functional for the class $K_{\text {sinh }}$.

Corollary 3.6. If $f \in K_{\sinh }$, then for $\nu \in \mathbb{C}$, we have

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq \frac{1}{6} \max \left\{1,\left|\frac{3 \nu-2}{2}\right|\right\} .
$$

Remark 3.7. Letting $\nu=1$ in Theorem 3.4 we get $\left|a_{3}-a_{2}^{2}\right| \leq \frac{1}{3(2-\beta)}$.
Now, we discuss the result based on Fekete-Szegö functional $\left|a_{3}-\nu a_{2}^{2}\right|$ when ν is real.

Theorem 3.8. If the function $f \in \mathcal{A}$ belongs to the function class $\mathcal{R} \mathcal{K}_{\text {sinh }}(\beta)$, then any real number ν, we have

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq \begin{cases}\frac{4(1-\beta)-3(2-\beta) \nu}{12(2-\beta)}, & \nu \leq \frac{-4 \beta}{3(2-\beta)}, \\ \frac{1}{3(2-\beta)}, & -\frac{4 \beta}{3(2-\beta)} \leq \nu \leq \frac{4}{3}, \\ \frac{3(2-\beta) \nu-4(1-\beta)}{12(2-\beta)}, & \nu \geq \frac{4}{3} .\end{cases}
$$

Proof. From (3.10), we obtain

$$
\left|a_{3}-\nu a_{2}^{2}\right|=\frac{1}{6(2-\beta)}\left|q_{2}-\mu q_{1}^{2}\right|,
$$

where $\mu=\frac{4 \beta+3(2-\beta) \nu}{8}$. The result was followed by of Lemma 2.5. This proves the result of Theorem 3.8.

4. Coefficient Inequalities for the Function f^{-1}

Theorem 4.1. If the function $f \in \mathcal{R} \mathcal{K}_{\text {sinh }}(\beta)$ given by (1.1) and $f^{-1}(w)=$ $w+\sum_{n=2}^{\infty} l_{n} w^{n}$ is the analytic continuation to Δ of the inverse function of f with $|w|<r_{0}$ where $r_{0}>\frac{1}{4}$, the radius of the Koebe domain, then for any complex number ν, we have

$$
\left|l_{2}\right| \leq \frac{1}{2}
$$

$$
\left|l_{3}\right| \leq \frac{4-\beta}{6(2-\beta)}
$$

and

$$
\left|l_{3}-\nu l_{2}^{2}\right| \leq \frac{1}{3(2-\beta)} \max \left\{1,\left|\frac{2(4-\beta)-3(2-\beta) \nu}{4}\right|\right\}
$$

Proof. Since

$$
\begin{equation*}
f^{-1}(w)=w+\sum_{n=2}^{\infty} l_{n} w^{n} \tag{4.1}
\end{equation*}
$$

is the inverse of f, we have

$$
\begin{equation*}
f^{-1}(f(\xi))=f\left(f^{-1}(\xi)\right)=\xi \tag{4.2}
\end{equation*}
$$

From (4.2), we have

$$
\begin{equation*}
f^{-1}\left(\xi+\sum_{n=2}^{\infty} a_{n} \xi^{n}\right)=\xi \tag{4.3}
\end{equation*}
$$

From (4.1) and (4.3), we have

$$
\begin{equation*}
\xi+\left(a_{2}+l_{2}\right) \xi^{2}+\left(a_{3}+2 a_{2} l_{2}+l_{3}\right) \xi^{3}+\cdots=\xi \tag{4.4}
\end{equation*}
$$

Equating the coefficients of ξ^{2} and ξ^{3} on both sides of (4.4), we get

$$
\begin{equation*}
l_{2}=-a_{2}, \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
l_{3}=-a_{3}-2 a_{2} l_{2}=2 a_{2}^{2}-a_{3} . \tag{4.6}
\end{equation*}
$$

Using (3.7), (3.8) in (4.5) and (4.6), we obtain

$$
l_{2}=-\frac{q_{1}}{4}
$$

and

$$
\begin{aligned}
l_{3} & =\frac{q_{1}^{2}}{8}-\frac{q_{2}}{6(2-\beta)}+\frac{\beta}{12(2-\beta)} q_{1}^{2} \\
& =-\frac{1}{6(2-\beta)}\left(q_{2}-\frac{6-\beta}{4} q_{1}^{2}\right)
\end{aligned}
$$

The bound for l_{2} can be obtained by using (2.2) of Lemma 2.1. Further, an application of Lemma 2.2 gives

$$
\begin{aligned}
\left|l_{3}\right| & \leq \frac{1}{3(2-\beta)} \max \left\{1,\left|\frac{4-\beta}{2}\right|\right\} \\
& =\frac{4-\beta}{6(2-\beta)}
\end{aligned}
$$

Moreover, for any complex number ν, we have

$$
\left|l_{3}-\nu l_{2}^{2}\right|=\frac{1}{6(2-\beta)}\left|q_{2}-\frac{2(6-\beta)-3(2-\beta) \nu}{8} q_{1}^{2}\right| .
$$

When Lemma 2.2 is used,

$$
\left|l_{3}-\nu l_{2}^{2}\right| \leq \frac{1}{3(2-\beta)} \max \left\{1,\left|\frac{2(4-\beta)-3(2-\beta) \nu}{4}\right|\right\} .
$$

The proof of Theorem 4.1 is complete.
5. Coefficient Functional Associated with $\frac{\xi}{f(\xi)}$

In this section, we obtain Fekete-Szegö functional estimate related to the function $\frac{\xi}{f(\xi)}$ defined as

$$
\begin{equation*}
N(\xi)=\frac{\xi}{f(\xi)}=1+\sum_{n=1}^{\infty} k_{n} \xi^{n}, \quad(\xi \in \Delta), \tag{5.1}
\end{equation*}
$$

where the function f belongs to the class $\mathcal{R} \mathcal{K}_{\text {sinh }}(\beta)$.
Theorem 5.1. Let $f \in \mathcal{A}$ given by (1.1) be in the class $\mathcal{R} \mathcal{K}_{\sinh }(\beta)$ and $N(\xi)$ is given by (5.1). Then for any complex number ν, we have

$$
\left|k_{2}-\nu k_{1}^{2}\right| \leq \frac{1}{3(2-\beta)} \max \left\{1,\left|\frac{(2+\beta)-3(2-\beta) \nu}{4}\right|\right\} .
$$

Proof. It is straightforward to write

$$
\begin{align*}
N(\xi) & =\frac{\xi}{f(\xi)} \tag{5.2}\\
& =1-a_{2} \xi+\left(a_{2}^{2}-a_{3}\right) \xi^{2}+\cdots .
\end{align*}
$$

From (5.1) and (5.2), we obtain

$$
\begin{equation*}
k_{1}=-a_{2}, \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{2}=a_{2}^{2}-a_{3} . \tag{5.4}
\end{equation*}
$$

Using (3.7), (3.8) in (5.3) and (5.4), respectively, we get

$$
k_{1}=-\frac{q_{1}}{4},
$$

and

$$
\begin{aligned}
k_{2} & =\frac{q_{1}^{2}}{16}-\left(\frac{q_{2}}{6(2-\beta)}-\frac{\beta}{12(2-\beta)} q_{1}^{2}\right) \\
& =\frac{6+\beta}{48(2-\beta)} q_{1}^{2}-\frac{q_{2}}{6(2-\beta)} .
\end{aligned}
$$

Thus, for any complex number ν, we have

$$
\begin{equation*}
\left|k_{2}-\nu k_{1}^{2}\right|=\frac{1}{6(2-\beta)}\left|q_{2}-\frac{(6+\beta)-3(2-\beta) \nu}{8} q_{1}^{2}\right| \tag{5.5}
\end{equation*}
$$

Relation (5.5) gives a desired estimate by Lemma 2.2. The proof of Theorem 5.1 is complete.

6. Second Hankel Determinant for the Class $\mathcal{R} \mathcal{K}_{\text {sinh }}(\beta)$

Theorem 6.1. Let the function $f \in \mathcal{A}$ given by (1.1) be in the class $\mathcal{R} \mathcal{K}_{\sinh }(\beta)$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{9(2-\beta)^{2}}
$$

Proof. Using relations (3.7), (3.8) and (3.9) in the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ and after simplification, we get

$$
\begin{align*}
a_{2} a_{4}-a_{3}^{2}= & \frac{1}{32(3-2 \beta)} q_{1} q_{3}-\frac{4 \beta^{3}-39 \beta^{2}+24 \beta+12}{2304(2-\beta)^{2}(3-2 \beta)} q_{1}^{4} \tag{6.1}\\
& -\frac{23 \beta^{2}-39 \beta+18}{576(2-\beta)^{2}(3-2 \beta)} q_{1}^{2} q_{2}-\frac{1}{36(2-\beta)^{2}} q_{2}^{2} .
\end{align*}
$$

Since $q \in \mathcal{P}$, it follows that $q\left(e^{-i \theta} \xi\right) \in \mathcal{P}(\theta \in \mathbb{R})$. Therefore, we may assume without loss of any generality that $q_{1}=q \geq 0$. Substituting the values of q_{2} and q_{3} from Lemma 2.3 in the relation (6.1), we obtain

$$
\begin{aligned}
a_{2} a_{4}-a_{3}^{2}= & -\frac{4 \beta^{3}-11 \beta^{2}-14 \beta+24}{2304(2-\beta)^{2}(3-2 \beta)} q^{4} \\
& +\frac{6-\beta-5 \beta^{2}}{1152(2-\beta)^{2}(3-2 \beta)} q^{2} x\left(4-q^{2}\right) \\
& +\frac{1}{64(3-2 \beta)} q\left(4-q^{2}\right)\left(1-|x|^{2}\right) z \\
& -\frac{1}{128(3-2 \beta)}\left(4-q^{2}\right) q^{2} x^{2}-\frac{\left(4-q^{2}\right)^{2} x^{2}}{144(2-\beta)^{2}} .
\end{aligned}
$$

With the help of triangle inequality and replacing $|z| \leq 1$ and $|x|=\rho \leq$ 1 , we obtain

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq & \frac{4 \beta^{3}-11 \beta^{2}-14 \beta+24}{2304(2-\beta)^{2}(3-2 \beta)} q^{4} \\
& +\frac{6-\beta-5 \beta^{2}}{1152(2-\beta)^{2}(3-2 \beta)} q^{2}\left(4-q^{2}\right) \rho \\
& +\frac{1}{64(3-2 \beta)} q\left(4-q^{2}\right)\left(1-\rho^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{128(3-2 \beta)}\left(4-q^{2}\right) q^{2} \rho^{2}+\frac{\left(4-q^{2}\right)^{2} \rho^{2}}{144(2-\beta)^{2}} \\
= & H(q, \rho)(\text { say })
\end{aligned}
$$

Differentiating $H(q, \rho)$ partially with respect to ρ, we get

$$
\begin{aligned}
\frac{\partial H}{\partial \rho}= & \frac{6-\beta-5 \beta^{2}}{1152(2-\beta)^{2}(3-2 \beta)} q^{2}\left(4-q^{2}\right) \\
& +\left\{\frac{q^{2}}{64(3-2 \beta)}-\frac{q}{32(3-2 \beta)}+\frac{4-q^{2}}{72(2-\beta)^{2}}\right\}\left(4-q^{2}\right) \rho \\
= & \frac{6-\beta-5 \beta^{2}}{1152(2-\beta)^{2}(3-\beta)} q^{2}\left(4-q^{2}\right) \\
& +\left\{\frac{9(2-\beta)^{2} q^{2}-18 q(2-\beta)^{2}+8(3-2 \beta)\left(4-q^{2}\right)}{576(2-\beta)^{2}(3-2 \beta)}\right\}\left(4-q^{2}\right) \rho \\
= & \frac{6-\beta-5 \beta^{2}}{1152(2-\beta)^{2}(3-2 \beta)} q^{2}\left(4-q^{2}\right) \\
& +\frac{(2-q)\left(-9 q \beta^{2}+20 q \beta-32 \beta-12 q+48\right)}{576(2-\beta)^{2}(3-2 \beta)}\left(4-q^{2}\right) \rho
\end{aligned}
$$

For $0 \leq \rho \leq 1$ and for any fixed $q \in[0,2]$ we observe that $\frac{\partial H}{\partial \rho}>0$. Thus $H(q, \rho)$ is an increasing function of ρ and for $q \in[0,2], H(q, \rho)$ has a maximum value at $\rho=1$. Therefore

$$
\begin{aligned}
\max _{0 \leq \rho \leq 1} H(q, \rho) & =H(q, 1) \\
& =G(q)(s a y)
\end{aligned}
$$

where

$$
\begin{aligned}
G(q) & =\frac{4 \beta^{3}-11 \beta^{2}-14 \beta+24}{2304(2-\beta)^{2}(3-2 \beta)} q^{4}+\frac{6-\beta-5 \beta^{2}}{1152(2-\beta)^{2}(3-2 \beta)} q^{2}\left(4-q^{2}\right) \\
& +\frac{1}{128(3-2 \beta)}\left(4-q^{2}\right) q^{2}+\frac{1}{144(2-\beta)^{2}}\left(4-q^{2}\right)^{2}
\end{aligned}
$$

Now

$$
\begin{aligned}
G^{\prime}(q)= & q\left[\frac{4 \beta^{3}-11 \beta^{2}-14 \beta+24}{576(2-\beta)^{2}(3-2 \beta)} q^{2}+\frac{6-\beta-5 \beta^{2}}{288(2-\beta)^{2}(3-2 \beta)}\left(2-q^{2}\right)\right. \\
& \left.+\frac{2-q^{2}}{32(3-2 \beta)}-\frac{\left(4-q^{2}\right) q}{36(2-\beta)^{2}}\right] \\
= & q\left[\frac{4 \beta^{3}-11 \beta^{2}-14 \beta+24}{576(2-\beta)^{2}(3-2 \beta)} q^{2}+\frac{4 \beta^{2}-37 \beta+42}{288(2-\beta)^{2}(3-2 \beta)}\left(2-q^{2}\right)\right.
\end{aligned}
$$

$$
\left.-\frac{\left(4-q^{2}\right)}{36(2-\beta)^{2}}\right]
$$

$G^{\prime}(q)=0$ then $q=0$. Also

$$
\begin{aligned}
G^{\prime \prime}(q)= & \frac{4 \beta^{3}-11 \beta^{2}-14 \beta+24}{192(2-\beta)^{2}(3-2 \beta)} q^{2}+\frac{\left(4 \beta^{2}-37 \beta+42\right)\left(2-3 q^{2}\right)}{288(2-\beta)^{2}(3-2 \beta)} \\
& -\frac{4-3 q^{2}}{36(2-\beta)^{2}}
\end{aligned}
$$

Now

$$
\begin{aligned}
{\left[G^{\prime \prime}(q)\right]_{q=0} } & =-\frac{4 \beta+3}{144(2-\beta)(3-2 \beta)} \\
& <0
\end{aligned}
$$

This implies that the function $G(q)$ can take the maximum value at $q=0$. The maximum value is

$$
\begin{aligned}
\max _{q \in[0,2]} G(q) & =G(0) \\
& =\frac{1}{9(2-\beta)^{2}}
\end{aligned}
$$

The proof of Theorem 6.1 is completed.
Letting $\beta=1$ in Theorem 6.1, we get the following result due to Barubak (see [5]).
Corollary 6.2. Let $f \in \mathcal{B} \mathcal{T}_{\text {s }}$. Then

$$
\begin{aligned}
\left|H_{2,2}(f)\right| & =\left|a_{2} a_{4}-a_{3}^{2}\right| \\
& \leq \frac{1}{9}
\end{aligned}
$$

$\beta=0$ in Theorem 6.1 gives the result for class $K_{\text {sinh }}$ as follows:
Corollary 6.3. Let the function $f \in \mathcal{A}$ belongs to the class $K_{\text {sinh }}$. Then

$$
\begin{aligned}
\left|H_{2,2}(f)\right| & =\left|a_{2} a_{4}-a_{3}^{2}\right| \\
& \leq \frac{1}{36}
\end{aligned}
$$

7. Application of Borel Distribution

The distributions such as Binomial, Poisson, Pascal, logarithm, hypergeometric and their applications to the class of univalent functions have been intensively studied by various researchers from a different perspectives. Now, we discuss the application of the Borel distribution to the results obtained for the function class $\mathcal{R} \mathcal{K}_{\sinh }(\beta)$.

A discrete random variable X is said to follow a Borel distribution with parameter μ if its probability mass function $p(x)$ is given by

$$
\begin{equation*}
p(x=r)=\frac{(\mu r)^{r-1} e^{-\mu r}}{r!}, \quad r=1,2,3, \cdots \tag{7.1}
\end{equation*}
$$

Recently, Wanas and Khuttar [32] introduced a power series whose coefficients are the probabilities of the Borel distribution i.e.

$$
M(\mu, \xi)=\xi+\sum_{n=2}^{\infty} \frac{(\mu(n-1))^{n-2} e^{-\mu(n-1)}}{(n-1)!} \xi^{n}, \quad(\xi \in \Delta)
$$

where $0 \leq \mu \leq 1$. By using the ratio test, it can be shown that the radius of convergence of the above series is infinite.

Let us introduce a linear operator $L_{\mu}: \mathcal{A} \longrightarrow \mathcal{A}$ defined by

$$
\begin{align*}
L_{\mu} f(\xi) & =M(\mu, \xi) * f(\xi) \tag{7.2}\\
& =\xi+\sum_{n=2}^{\infty} \frac{(\mu(n-1))^{n-2} e^{-\mu(n-1)}}{(n-1)!} a_{n} \xi^{n} \\
& =\xi+\sum_{n=2}^{\infty} \alpha_{n}(\mu) a_{n} \xi^{n} \\
& =\xi+\alpha_{2} a_{2} \xi^{2}+\alpha_{3} a_{3} \xi^{3}+\cdots
\end{align*}
$$

where $\alpha_{n}=\alpha_{n}(\mu)=\frac{(\mu(n-1))^{n-2} e^{-\mu(n-1)}}{(n-1)!}$.
We define the class $R K_{\text {sinh }}^{\mu}$ as follows:

$$
\begin{equation*}
R K_{\sinh }^{\mu}(\beta)=\left\{f \in \mathcal{A}: L_{\mu} f \in \mathcal{R}^{\sinh }(\beta)\right\} \tag{7.3}
\end{equation*}
$$

In the same way, as in Theorem 3.4 and Theorem 3.8 we can obtain the coefficient bounds and Fekete-Szeg \ddot{O} functional for the class $R K_{\sinh }^{\mu}(\beta)$ from the corresponding estimates for the function of the class $\mathcal{R} \mathcal{K}_{\sinh }(\beta)$.
Theorem 7.1. Let $0 \leq \beta \leq 1$ and $L_{\mu} f$ given by (7.2). If $f \in R K_{\sinh }^{\mu}(\beta)$, then for any complex number ν, we have

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq \frac{1}{3(2-\beta) \alpha_{3}} \max \left\{1,\left|\frac{\left(\beta \alpha_{3}-4 \alpha_{2}^{2}\right)+3(2-\beta) \nu \alpha_{3}}{4 \alpha_{2}^{2}}\right|\right\}
$$

Proof. Since $f \in R K_{\text {sinh }}^{\mu}(\beta)$, it follows from (7.3) that

$$
\begin{equation*}
\left[L_{\mu} f(\xi)\right]^{\beta}\left[\frac{\left(\xi\left(L_{\mu} f(\xi)\right)^{\prime}\right)^{\prime}}{\left(L_{\mu} f(\xi)\right)^{\prime}}\right]^{1-\beta}=1+\sinh ^{-1}(\omega(\xi)) \tag{7.4}
\end{equation*}
$$

From (7.2), we obtain

$$
\begin{equation*}
\left[L_{\mu} f(\xi)\right]^{\beta}\left[\frac{\left(\xi\left(L_{\mu} f(\xi)\right)^{\prime}\right)^{\prime}}{\left(L_{\mu} f(\xi)\right)^{\prime}}\right]^{1-\beta} \tag{7.5}
\end{equation*}
$$

$$
\begin{aligned}
= & 1+2 \alpha_{2} a_{2} \xi+\left[3(1-\beta) \alpha_{3} a_{3}-4(1-\beta) \alpha_{2}^{2} a_{2}^{2}\right] \xi^{2} \\
& +\left[4(3-2 \beta) \alpha_{4} a_{4}-18(1-\beta) \alpha_{2} \alpha_{3} a_{2} a_{3}+8(1-\beta) \alpha_{2}^{3} a_{2}^{3}\right] \xi^{3}+\cdots
\end{aligned}
$$

Using (3.5) and (7.5) in (7.4) and equating the corresponding coefficients of ξ and ξ^{2}, we get

$$
a_{2}=\frac{q_{1}}{4 \alpha_{2}}
$$

and

$$
a_{3}=\frac{1}{3(2-\beta) \alpha_{3}}\left[\frac{q_{2}}{2}-\frac{\beta}{4} q_{1}^{2}\right] .
$$

Thus, for any complex number ν, we have

$$
\begin{align*}
\left|a_{3}-\nu a_{2}^{2}\right| & =\left|\frac{q_{2}}{6(2-\beta) \alpha_{3}}-\frac{\beta}{12(2-\beta) \alpha_{3}} q_{1}^{2}-\nu \frac{q_{1}^{2}}{16 \alpha_{2}^{2}}\right| \tag{7.6}\\
& =\frac{1}{6(2-\beta) \alpha_{3}}\left[q_{2}-\left(\frac{\beta \alpha_{3}}{2}+\frac{3(2-\beta) \nu \alpha_{3}}{8 \alpha_{2}^{2}}\right) q_{1}^{2}\right]
\end{align*}
$$

An application of Lemma 2.2 to (7.6) yields

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq \frac{1}{3(2-\beta) \alpha_{3}} \max \left\{1,\left|\frac{\left(\beta \alpha_{3}-4 \alpha_{2}^{2}\right)+3(2-\beta) \nu \alpha_{3}}{4 \alpha_{2}^{2}}\right|\right\}
$$

The proof of Theorem 7.1 is thus completed.
The next theorem gives Fekete-Szegö inequality for the class $R K_{\sinh }^{\mu}(\beta)$ when ν is real. We omit the proof as the proof follows the same line as in Theorem 3.8.
Theorem 7.2. Let $0 \leq \beta \leq 1$ and $L_{\mu} f$ given by (7.2). For any real number ν, we have

$$
\left|a_{3}-\nu a_{2}^{2}\right| \leq \begin{cases}\frac{4 \alpha_{2}^{2}\left(1-\alpha_{3}\right)-3(2-\beta) \alpha_{3} \nu}{12 \alpha_{2}^{2}(2-\beta) \alpha_{3}}, & \nu \leq \frac{-4 \beta \alpha_{2}^{2}}{3(2-\beta)} \\ \frac{1}{3(2-\beta) \alpha_{3}}, & -\frac{4 \beta \alpha_{2}^{2}}{3(2-\beta)} \leq \nu \leq \frac{4 \alpha_{2}^{2}\left(2-\beta \alpha_{3}\right)}{3(2-\beta) \alpha_{3}} \\ \frac{3(2-\beta) \nu \alpha_{3}-4 \alpha_{2}^{2}\left(1-\alpha_{3}\right)}{12 \alpha_{2}^{2}(2-\beta) \alpha_{3}}, & \nu \geq \frac{4\left(2-\beta \alpha_{3}\right) \alpha_{2}^{2}}{3(2-\beta) \alpha_{3}}\end{cases}
$$

Concluding Remarks: In our current paper we investigated the coefficient bounds, Fekete-Szegö functional, second Hankel determinant for $f \in \mathcal{R} \mathcal{K}_{\text {sinh }}(\beta)$ associated with the petal-shaped domain. Further, we determined the coefficient estimate and Fekete-Szegö inequalities to the inverse function class f^{-1} and $\frac{\xi}{f(\xi)}$. We also established an application for Borel distribution to our main results. The class defined in this paper generalizes the class considered by Barukab et al.. The results in [5] are a special case of our results $(\beta=1)$. In recent years, the application of (p, q)-calculus or more specifically q-calculus has played
a dominant role in the theory of geometric function theory of complex analysis (see [31]). Researchers can make use of q-calculus to modify the class $\mathcal{R} \mathcal{K}_{\text {sinh }}(\beta)$ and all the results of this paper can be extended to the study of analytic or meromorphic functions [8].

Acknowledgment. The author wish to thank the referees for their valuable suggestions to improve the paper in present form.

References

1. A. Alotaibi, M. Arif, M.A. Alghamdi and S. Hussain, Starlikeness associated with cosine hypergeometric function, Mathematics, 8, Art. Id: 1118 (2020).
2. M. Arif, M. Raza, H. Tang, S. Hussain and H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open Math., 17 (2019), pp.1615-1630.
3. K. Bano and M. Raza, Starlike functions asscoiated with cosine function, Bull. Iran. Math. Soc., (2020).
4. D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett., 26 (2013), pp.103107.
5. O. Barukab, M. Arif, M. Abbas and S.K. Khan, Sharp bounds of the coefficient results for the family of bounded turning functions associated with petal-shaped domain, J. Funct. Spaces (2021), Art. Id: 5535629 (2021).
6. N.E. Cho, V. Kumar, S.S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with sine functions, Bull. Iran. Math. Soc., 45 (2019), pp.213-232.
7. M. Fekete and G. Szegö, Eine Benberkung über ungerada Schlichte funcktionen, J. London Math. Soc. , 8 (1933), pp.85-89.
8. M. H. Golmohammadi, S. Najafzadeh and M.R. Foroutan, Some Properties of Certain subclass of meromorphic functions associated with (p, q)-derivative, Sahand Commun. Math. Anal., 17 (4) (2020), pp. 71-84.
9. W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polonic Math, 23 (1971), pp. 159-177.
10. A. Janteng, S.A. Halim and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., 7 (2)(2006), Art. 50, 5 pages.
11. A. Janteng, S.A. Halim and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 1 (13) (2007), pp. 619-625.
12. W. Koepf, On the Fekete-Szegö problem for close-to-convex functions , Proc. Amer. Math. Soc., 101 (1987), pp. 89-95.
13. S.S. Kumar and K. Arora, Starlike function associated with a petal shaped domain, arXiv Preprint 2010.10072.
14. S.K. Lee, V. Ravichandran and S. Subramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., 281 (2013), pp.1-17.
15. R.J. Libera and E.J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87 (2) (1983), pp. 251-257.
16. R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential fuction, Bull. Malays. Math. Sci. Soc., 38 (2015), pp. 365-386.
17. S.S. Miller and P.T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, 225, CRC Press, 2000.
18. A.K. Mishra and T. Panigrahi, The Fekete-Szegö problem for a class defined by Hohlov operator, Acta Univ. Apul., 29 (2012), pp. 241-254.
19. R.N. Mohapatra and T. Panigrahi, Second Hankel determinant for a class of analytic functions defined by Komatu integral operator, Rend. Mat. Appl., 41 (1) (2020), pp. 51-58.
20. G. Murugusundaramoorthy and T. Bulboaca, Hankel determinants for new subclasses of analytic functions related to shell shaped region, Mathematics, 8 (2020), 1041.
21. G. Murugusundaramoorthy and K. Vijaya, Certain subclasses of analytic functions associated with generalized telephone numbers, Symmetry, 2022, 14, 1053.
22. K.I. Noor and S.A. Shah, On certain generalized Bazilevic type functions associated with conic regions, Sahand Commun. Math. Anal., 17 (4) (2020), pp. 13-23.
23. C. Pommerenke, Univalent Functions, Studia Mathematica/ Mathematische Lehrbucher, 25, Vandenhoeck and Ruprecht, Gottingen, Germany, (1975).
24. C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., 41 (1966), pp. 111-122.
25. C. Pommerenke, On the Hankel determinant of univalent function ,Mathematika, 14 (1967), pp. 108-112.
26. S.H. Sayedain Boroujeni and S.Najafzadeh, Error function and certain subclasses of analytic univalent functions, Sahand Commun. Math. Anal., 20 (1) (2023), pp. 107-117.
27. K. Sharma, N.K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat., 27 (2016), pp. 923-939.
28. L. Shi, I. Ali, M. Arif, N.E. Cho, S. Hussain and H. Khan, A study of third Hankel determinant problem for certain subfamilies of anlaytic functions involving cardioid domain, Mathematics, 7 (2019), 418.
29. L. Shi, H.M. Srivastava, M. Arif, S.Hussain and H. Khan, An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function, Symmetry, 11 (2019), 598.
30. J. Sokòl and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike function, Zeszyty Naukowei oficyna Wydawnicza al. Powstańcòw Warszawy, 19 (1996), pp.101-105.
31. H.M. Srivastava, Operators of basic (or q-)calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Tran. Sci., 44 (2020), pp. 327-344.
32. A.K. Wanas and J.A. Khuttar, Applications of Borel distribution series on analytic functions, Earthline J. Math. Sci., 4 (1) (2020), pp. 71-82.
[^1]
[^0]: 2020 Mathematics Subject Classification. 30C45,30C50, 30C80.
 Key words and phrases. Analytic function, Bounded turning function, Convex function, Subordination, Fekete-Szego functional, Hankel determinant, Borel distribution

 Received: 08 July 2022, Accepted: 11 October 2022.

 * Corresponding author.

[^1]: ${ }^{1}$ Institute of Mathematics and Applications, Andharua, Bhubaneswar751029 , Odisha, India.

 Email address: trailokyap6@gmail.com
 ${ }^{2}$ School of Advanced Sciences, Vellore Institute of Technology, Vellore632014, Tamilnadu, India.

 Email address: gmsmoorthy@yahoo.com
 ${ }^{3}$ Institute of Mathematics and Applications, Andharua, Bhubaneswar751029 , Odisha, India.

 Email address: pattnayakeureka99@gmail.com

