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The Category of S-Fuzzy Posets

Leila Shahbaz

Abstract. In this paper, we define and consider, the category
FPos-S of all S-fuzzy posets and action-preserving monotone maps
between them. S-fuzzy poset congruences which play an important
role in studying the categorical properties of S-fuzzy posets are in-
troduced. More precisely, the correspondence between the S-fuzzy
poset congruences and the fuzzy action and order preserving maps
is discussed. We characterize S-fuzzy poset congruences on the S-
fuzzy posets in terms of the fuzzy pseudo orders. Some categorical
properties of the category FPos-S of all S-fuzzy posets is consid-
ered. In particular, we characterize products, coproducts, equaliz-
ers, coequalizers, pullbacks and pushouts in this category. Also, we
consider all forgetful functors between the category FPos-S and the
categories FPos of fuzzy posets, Pos-S of S-posets, Pos of posets,
Act-S of S-acts and Set of sets and study the existence of their
left and right adjoints. Finally, epimorphisms, monomorphisms and
order embeddings in FPos and FPos-S are studied.

1. Introduction and Preliminaries

They have been appeared many kinds of ordered algebras in the lit-
erature so far, for example, pogroups, posemigroups, rings and fields
equipped with an order and etc. Recently, Fakhruddin in [16, 17] has
been studied the category of posets acted on by a pomonoid S (the cat-
egory of S-posets), absolute flatness and amalgams of S-posets. After
then the properties of S-posets have been studied in many papers, for
example see [6–11, 25–29]. Historically, fuzzy ordering, which is a gen-
eralization of the concept of ordering, has been investigated in the fuzzy
context at the beginning by Zadeh, [31] and since then, very researchers,
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were motivated not only by theoretical reasons, but also because of their
applicability, to work on this concept and its applications to logic, set
theory, algebra, analysis, topology, computer science, control problems,
information science, rule based systems and solving relational equations.
Recent important results concerning fuzzy orders and their representa-
tions are related to De Baets, Bodenhofer at al. [3–5]. In most of these
investigations, what is fuzzified is the ordering relation, while the un-
derlying set is crisp. In addition, the authors use T-norms, or more gen-
erally, residuated lattices and corresponding operations. Several impor-
tant algebras are special residuated lattices: Boolean algebras (algebraic
counterpart of classical logic), Heyting algebras (intuitionisctic logic),
BL-algebras (logic of continuous t-norms), MV-algebras (Lukasiewicz
logic), Girard monoids (linear logic) and others (for more information
see [20, 22] and references therein). Motivated by the classical approach
to S-posets, we investigate S-fuzzy posets by fuzzification of an ordering
relation. The aim of the present paper is to introduce the notion of the
actions of a fuzzy ordered semigroup on a fuzzy ordered set (S-fuzzy
poset) and study some categorical and algebraic ingredients of this cat-
egory. Similar to the theory of order congruences on fuzzy posets, fuzzy
order congruences on S-fuzzy posets play an important role in studying
the structures of S-fuzzy posets. We introduce the concept of pseudo or-
ders on S-fuzzy posets to characterize the S-fuzzy poset congruences on
S-fuzzy posets where the pseudo order is a preorder containing the fuzzy
order which is compatible with the S-action. Some categorical proper-
ties of the category FPos-S of all S-fuzzy posets and action-preserving
monotone maps between them is considered. In particular, we describe
products, coproducts, equalizers, coequalizers, pullbacks and pushouts
in this category and consider epimorphisms, monomorphisms and order
embeddings. Also, the existence of the free and cofree objects in the
categories FPos-S are studied. More precisely, we consider all forget-
ful functors between the category FPos-S and the categories FPos of
fuzzy posets, Pos of posets, Act-S of S-acts and Set of sets, and study
the existence of their left and right adjoints. Finally, we characterize
epimorphisms and monomorphisms from the perspective of set theory
and we give a categorical characterization of order embeddings in the
categories FPos and FPos-S.

In rest of this section, we briefly recall the preliminary notions about
the actions of a pomonoid on a set and on a poset. For more information,
see [10, 24].

Let S be a monoid with 1 as its identity. A (right) S-act is a set
A equipped with an action λ : A × S → A, (λ(a, s) is denoted by as)
such that a1 = a and a(st) = (as)t, for all a ∈ A and s, t ∈ S. An
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S-map f : A → B between S-acts is an action preserving map, that is
f(as) = f(a)s for each a ∈ A, s ∈ S. The category of all S-acts and
S-maps between them is denoted by Act-S.

Recall that a monoid (semigroup) S is said to be a pomonoid (posemi-
group) if it is also a poset whose partial order ≤ is compatible with its
binary operation (that is, s ≤ t, s′ ≤ t′ imply ss′ ≤ tt′).

A (right) S-poset is a poset A which is also an S-act whose action
λ : A × S → A is order preserving, where A × S is considered as a
poset with componentwise order. An S-poset map (or morphism) is an
action preserving monotone map between S-posets. Moreover, regu-
lar monomorphisms (equalizers) are exactly order embeddings; that is,
(mono)morphisms f : A → B for which f(a) ≤ f(a′) if and only if
a ≤ a′, for all a, a′ ∈ A. The category of all S-posets and S-poset maps
between them is denoted by Pos-S.

We recall the following from [21]. A residuated lattice (see also [1, 2,
30])
(L, ∗,→,∨,∧, 0, 1) is an algebra with four binary operators ∗,→,∨,∧
on L such that:

(1) (L,∨,∧, 0, 1) is a bounded lattice with the greatest element 1
and the least element 0,

(2) (L, ∗, 1) is a commutative monoid and ∗ is isotonic at both ar-
guments,

(3) (∗,→) is an adjoint pair, i.e. x ∗ y ≤ z if and only if x ≤ y → z
for all x, y, z ∈ L.

A residuated lattice is said to be complete if the underlying lattice is
complete.

In this paper, L denotes a complete residuated lattice except otherwise
specified.

As a generalization of Zadeh’s fuzzy set, Goguen introduced L-fuzzy
set with L being a complete residuated lattice (see [18]).

An L-fuzzy set (briefly, fuzzy set) A on U is a map A : U → L and
all the L-fuzzy sets on U are denoted by LU .

An L-fuzzy relation (briefly, fuzzy relation) R on U is a map R :
U × U → L.

(1) R is reflexive if R(x, x) = 1 for all x ∈ U ,
(2) R is transitive if

∨
y∈U R(x, y)∗R(y, z) ≤ R(x, z) for all x, z ∈ U ,

(3) R is symmetric if R(x, y) = R(y, x) for all x, y ∈ U ,
(4) R is antisymmetric if for all x, y ∈ L,R(x, y) = R(y, x) = 1

implies x = y.
Let X be a set and eX : X ×X → L be a fuzzy relation. eX is called a
fuzzy partial order on X if it is reflexive, antisymmetric and transitive.
The pair (X, eX) is called a fuzzy partially ordered set, or briefly fuzzy
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poset. Let (X, eX), (Y, eY ) be two fuzzy posets. A map f : (X, eX) →
(Y, eY ) is said to be fuzzy order preserving if eX(x, y) ≤ eY (f(x), f(y))
for all x, y ∈ X. The category of all fuzzy posets with fuzzy order
preserving maps between them is denoted by FPos.

Recall that if eX is a fuzzy partial order on X then the inverse fuzzy
relation e−1 ∈ LX×X defined by e−1(x, y) = e(y, x) of e, for all x, y ∈ X,
is also a fuzzy partial order on X. Moreover, the symmetrization es =
e ∧ e−1 of e is a fuzzy partial order on X.

A fuzzy equivalence relation R on a set X is a reflexive, symmetric and
transitive fuzzy relation on a set X. Fuzzy equivalence relations are in-
troduced by Zadeh (see [32]) as a generalization of equivalence relations.
After then much effort have been devoted to study fuzzy equivalence re-
lations in order to measure the degree of indistinguishability or similarity
between the objects of a given set (see [13–15]). Also fuzzy equivalence
relations have been applied to different contexts such as fuzzy control,
approximate reasoning, fuzzy cluster analysis, etc. Various properties of
equivalence classes of fuzzy equivalence relations over a complete resid-
uated lattice are investigated in [12]. The set of all fuzzy equivalence
relations on a given set X forms a complete lattice. The meet of two
fuzzy equivalence relations coincides with the fuzzy sets intersection of
the fuzzy relations, but the join of two fuzzy equivalence relations does
not coincide with the ordinary fuzzy sets union.

Let R be a fuzzy equivalence relation on a set X. Ra, for every a ∈ X,
is called a fuzzy equivalence class determined by R, where Ra(x) =
R(a, x) for every x ∈ X. The set X/R = {Ra|a ∈ X} is called the factor
set of X with respect to R.

Lemma 1.1 ([12]). Let R be a fuzzy equivalence relation on a set X.
Then for every x, y ∈ X, the following are true:

(i) R(x, y) =
∨

z∈X R(x, z) ∗R(z, y).
(ii) R(x, y) = 1 if and only if Rx = Ry.

Let (X, e) be a fuzzy poset and R be a fuzzy equivalence relation on
X. For all x, y ∈ X, define Re(x, y) = e◦R(x, y) =

∨
z∈X e(x, z)∗R(z, y).

Re is reflexive but it is not transitive in general. RT
e =

∨∞
n=1R

n
e , where

Rn
e = Rn−1

e ◦Re, n ≥ 2, is the transitive closure of Re (see [19]).

Remark 1.2. It is easily checked that the following properties hold:
(i) e(x, y) ≤ RT

e (x, y);
(ii) R(x, y) ≤ RT

e (x, y) ∧ (RT
e )

−1(x, y).

Let (X, eX) be a fuzzy poset and R be a fuzzy equivalence relation
on X. R is called a fuzzy order congruence if R(x, y) = RT

e (x, y) ∧
(RT

e )
−1(x, y), for all x, y ∈ X.
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2. S-Fuzzy Posets

In the following, we introduce the category FPos-S of S-fuzzy posets
and some non trivial examples of S-fuzzy posets are given.

Definition 2.1. Let S be a semigroup. By a fuzzy ordered semigroup
we mean a semigroup (S, .) with the fuzzy partial order eS : S × S →
L such that for all (s1, s2), (s

′
1, s

′
2) ∈ S × S, eS(s1, s2) ∧ eS(s

′
1, s

′
2) ≤

eS(s1s
′
1, s2s

′
2).

Definition 2.2. Let (S, ., eS) be a fuzzy ordered semigroup and X be
a fuzzy poset with the fuzzy partial order eX : X ×X → L which is an
S-act, too. Then we call X an S-fuzzy poset if
(1) eS(s1, s2) ≤ eX(s1x, s2x) for all (s1, s2) ∈ S × S and x ∈ X;
(2) eX(x1, x2) ≤ eX(sx1, sx2) for all (x1, x2) ∈ X ×X and s ∈ S.

Note that since S and X are fuzzy posets, S×X is also a fuzzy poset
with the fuzzy partial order eS ∧ eX : (S ×X)× (S ×X) → L given by
(eS ∧ eX)((s1, x1), (s2, x2)) = eS(s1, s2) ∧ eX(x1, x2).

Example 2.3. Let the residuated lattice L = {0, 0.5, 1} and S =
{1, a, b, c} be a fuzzy ordered monoid with the binary operation and
the order given as follows,

1 a b c

1 1 a b c
a a a a a
b b b b b
c c c c c

and eS : S × S → L where

(2.1) eS = (eij)S =


1 0 0 0
1 1 0.5 0
1 0.5 1 0
1 1 1 1

 .

Then A = {a1, b1, a2, b2, a3, b3} with the action and fuzzy order given as
follows is an S-fuzzy poset,

1 a b c

a1 a1 b1 b1 b1
b1 b1 b1 b1 b1
a2 b2 b2 b2 b2
b2 b2 b2 b2 b2
a3 a3 b3 b3 b3
b3 b3 b3 b3 b3



162 L. SHAHBAZ

and eA : A×A→ L where

(2.2) eA = (eij)A =


1 0 0 0 0 0
1 1 0.5 1 0 0
1 0.5 1 0 0 0
1 0 1 1 0 0
1 0 0 1 1 0
1 1 1 1 1 1

 .

Definition 2.4. (1) Let S be a fuzzy ordered semigroup, X be an
S-fuzzy poset and X1 be a sub act of X. Then eX1 : X1×X1 →
L defined by eX1(x, y) = eX(x, y), for all x, y ∈ X1, is a fuzzy
partial order on X1 and (X1, eX1) becomes an S-fuzzy poset
and is called a sub S-fuzzy poset of (X, eX).

(2) Let (X, e) be an S-fuzzy poset. Define ≤= {(x, y)|e(x, y) = 1}.
Then ≤ is a classical partial order on X and (X,≤) is called
the underlying S-fuzzy poset of (X, e).

Note 2.5. Note that, if {(X, eiX)i∈I} is a family of S-fuzzy posets and
define eX(x, y) =

∧
eiX(x, y) for every (x, y) ∈ X ×X, then it is a fuzzy

partial order on X and (X, eX) becomes an S-fuzzy poset.
Remark 2.6. Let L = {0, 1} be the truth values. Then the fuzzy
orders on a set X are just the classical partial orders on X. So the
fuzzy posets based on L are classical posets and hence S-fuzzy posets
are generalizations of S-posets. For a classical partial order ≤, a fuzzy
partial order eX : X ×X → L is given by

eX(x, y) =

{
1 if x ≤ y
0 otherwise.

Definition 2.7. Let (X, eX) and (Y, eY ) be two S-fuzzy posets. A map
f : (X, eX) → (Y, eY ) is said to be S-fuzzy poset map if it is fuzzy
order preserving (eX(x, y) ≤ eY (f(x), f(y)) for all x, y ∈ X) and action
preserving (f(sx) = sf(x) for all x ∈ X and s ∈ S).

The category of all S-fuzzy posets with S-fuzzy poset maps between
them is denoted by FPos-S.
Definition 2.8. Let (X, eX) and (Y, eY ) be two S-fuzzy posets. An
action preserving map f : (X, eX) → (Y, eY ) is said to be

(1) S-fuzzy poset order embedding if eX(x, y) = eY (f(x), f(y)) for
all x, y ∈ X.

(2) S-fuzzy poset order isomorphism if it is a surjective fuzzy order
embedding.

Example 2.9. S-fuzzy poset order embedding is injective but the con-
verse is not true in general. Take (1⊔1 = {0, 1}, e1⊔1) where e1⊔1(0, 0) =
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e1⊔1(1, 1) = 1, e1⊔1(1, 0) = e1⊔1(0, 1) = 0 and (2 = {0, 1}, e2) where
e2(0, 0) = e2(1, 1) = 1 = e2(0, 1), e2(1, 0) = 0 both considered as S-
fuzzy posets over a one-element fuzzy ordered pomonoid (S, eS). Let
i : (1⊔1 = {0, 1}, e1⊔1) → (2 = {0, 1}, e2) be the identity S-fuzzy poset
map. It is clear that i is injective but it is not an order embedding.

Now, recalling the definition of fuzzy S-poset from [23] one can easily
show that the notion of S-fuzzy poset implies the notion of fuzzy S-
poset.

Definition 2.10. A posemigroup (S,≤) together with a function ν :
S → L is called a fuzzy posemigroup if

(1) x ≤ y implies ν(x) ≤ ν(y), for all x, y ∈ S;
(2) ν(s)∧ν(r) ≤ ν(rs), for every r, s ∈ S, that the following diagram

is a fuzzy triangle:

S × S

λS

��

ν∧ν // L

S

ν

77ooooooooooooooo

which λS((s, r)) = sr, for every s, r ∈ S.

Remark 2.11. If (S, eS) is a fuzzy ordered semigroup then it is a fuzzy
posemigroup. For, define ≤= {(x, y) ∈ S × S|eS(x, y) = 1}. Then ≤ is
a classical partial order on S. For, if s1 ≤ s2, s

′
1 ≤ s′2 then eS(s1, s2) =

1, eS(s
′
1, s

′
2) = 1. Hence eS(s1, s2) ∧ eS(s

′
1, s

′
2) ≤ eS(s1s

′
1, s2s

′
2) which

means that eS(s1s′1, s2s′2) = 1 and so s1s
′
1 ≤ s2s

′
2. Thus (S,≤) is a

posemigroup. Define ν : S → L given by ν(s) = eS(s, s) and let s1 ≤
s2. Then ν(s1) = eS(s1, s1) = 1 ≤ ν(s2) = eS(s2, s2) = 1. Also,
ν(s) ∧ ν(r) = eS(s, s) ∧ eS(r, r) ≤ ν(rs) = eS(rs, rs) = 1. Therefore,
each fuzzy ordered semigroup is a fuzzy posemigroup.

Proposition 2.12. Each S-fuzzy poset is a fuzzy S-poset.

Proof. If A is an S-fuzzy poset, similar to the above remark, one can
define ≤S , νS ,≤A and νA and then show that A is a fuzzy S-poset. □

3. Representations of Fuzzy Ordered Semigroups and
Monoids by Transformations of a Fuzzy Poset

As S-posets correspond to representations of pomonoids or posemi-
groups by transformations on posets, S-fuzzy posets are representations
of fuzzy ordered semigroups and monoids by transformations of a fuzzy
poset.

The set T (A) of all transformations of a fuzzy poset (A, eA) forms a
fuzzy ordered monoid under the composition of mappings and the order
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e : T (A) × T (A) → L given by e(f, g) =
∧

a∈A eA(f(a), g(a)). If we
write the mappings on the left, the fuzzy ordered monoid T (A) will be
denoted by T l(A) and if we write the mappings on the right, the fuzzy
ordered monoid T (A) will be denoted by T r(A).

Definition 3.1. Let (S, eS) be a fuzzy ordered semigroup and (A, eA) be
a fuzzy poset. A fuzzy ordered semigroup homomorphism ψ : (S, eS) →
(T r(A), e) is called a representation of (S, eS) by transformations of
(A, eA).

If (S, eS) is a fuzzy ordered monoid and ψ is a fuzzy ordered monoid
homomorphism then ψ is called a unitary representation of (S, eS) by
transformations of (A, eA).

Proposition 3.2. Every unitary representation of a fuzzy ordered monoid
(S, eS) by transformations in T r(A) of a fuzzy poset (A, eA) turns (A, eA)
into a right S-fuzzy poset. Conversely, for every right unitary S-fuzzy
poset (A, eA) there is an associated representation of (S, eS) by transfor-
mations in T r(A).

Every unitary representation of a fuzzy ordered monoid (S, eS) by
transformations in T l(A) of a fuzzy poset (A, eA) turns (A, eA) into a
left S-fuzzy poset. Conversely, for every left S-fuzzy poset (A, eA) there
is an associated representation of (S, eS) by transformations in T l(A).

4. Fuzzy Order Congruences on S-Fuzzy Posets

The aim of this section is to study S-fuzzy poset congruences on an S-
fuzzy poset A and to characterize the S-fuzzy poset congruences by the
concept of fuzzy pseudo orders on A. Some homomorphism theorems
of S-fuzzy posets are given. Finally, some examples of the non-trivial
S-fuzzy poset congruence on an S-fuzzy poset is given.

Definition 4.1. Let (X, eX) be an S-fuzzy poset and R be a fuzzy
equivalence relation on X. R is called an S-fuzzy poset congruence if

(i) R(x, y) = RT
e (x, y) ∧ (RT

e )
−1(x, y),

(ii) RT
e (x, y) ≤ RT

e (sx, sy) for all x, y ∈ X and s ∈ S.

A suitable fuzzy partial order on the fuzzy quotient set X/R is defined
by eX/R(Rx, Ry) = RT

e (x, y) for all x, y ∈ X and a suitable action on
the fuzzy quotient set X/R is defined by sRx(y) = R(sx, y) for all s ∈ S
and x, y ∈ X.

It is easily seen that X/R with the above action is an S-act. Also,
eX/R : X/R ×X/R → L is a map. In the following it is proved that it
is a fuzzy partial order on X/R. First, eX/R(Rx, Rx) = RT

e (x, x) = 1,
so eX/R is reflexive. Also, eX/R(Rx, Ry) = eX/R(Ry, Rx) = 1 implies
RT

e (x, y) = RT
e (y, x) = 1, i.e. R(x, y) = 1. Then by Lemma 1.1, Rx =
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Ry. Thus eX/R is antisymmetric. Finally, eX/R(Rx, Ry)∗eX/R(Ry, Rz) =

RT
e (x, y) ∗RT

e (y, z) ≤ RT
e (x, z) = eX/R(Rx, Rz) which follows that eX/R

is transitive. Now,
eS(s1, s2) ≤ eS(s1x, s2x) ≤ RT

e (s1x, s2x) = eX/R(s1Rx, s2Rx)

for all s1, s2 ∈ S and x ∈ X. Also, eX/R(Rx, Ry) = RT
e (x, y) ≤

RT
e (sx, sy) = eX/R(Rsx, Rsy) = eX/R(sRx, sRy). Therefore, eX/R is a

fuzzy partial order on the S-fuzzy poset X/R.
Proposition 4.2. Let (X, eX) be an S-fuzzy poset and R be an S-
fuzzy poset congruence on (X, eX). Then the fuzzy quotient map πR :
(X, eX) → (X/R, eX/R) given by πR(x) = Rx is an S-fuzzy poset map.

Proof. By Remark 1.2, e(x, y) ≤ RT
e (x, y) = eX/R(Rx, Ry). Also,

πR(sx) = Rsx = sRx = sπR(x). □
Definition 4.3. Let (X, eX) be an S-fuzzy poset and H ∈ LX×X be an
arbitrary reflexive fuzzy relation which is compatible with the S-action.
Then ν(H) = HT

e ∧ (HT
e )

−1, is the least S-fuzzy poset congruence that
contains H. We will call ν(H), the S-fuzzy poset congruence generated
by H.

We now give an example to illustrate that each fuzzy equivalence
relation is not an S-fuzzy poset congruence and an example to illustrate
that there exist S-fuzzy poset congruences.
Example 4.4. Let (S, eS), (A, eA) be defined as in Example 2.3. We de-
fine
R : A×A→ L as follows:

(4.1) R = (Rij) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

 .

We want to show that each fuzzy equivalence relation is not an S-fuzzy
poset congruence.

Through direct computing, one gets

(4.2) Re =


1 0 0 0 0 0
1 1 0.5 1 1 1
1 0.5 1 0 0 0
1 0 1 1 1 1
1 0 0 1 1 1
1 1 1 1 1 1

 .
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It is seen that Re is reflexive, but it is not transitive. Then

(4.3) RT
e =


1 0 0 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

 ,

and so

(4.4) (RT
e ) ∧ (RT

e )
−1 =


1 0 0 0 0 0
0 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1

 ̸= R,

which shows that R is not an S-fuzzy poset congruence.

Example 4.5. Let the residuated lattice L = {0, 0.5, 1}, S = {1, a, b, c}
be a fuzzy ordered monoid with the binary operation and the order given
as follows,

1 a b c

1 1 a b c
a a a a a
b b b b b
c c c c c

and eS : S × S → L where

(4.5) eS = (eij)S =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Let X = {x1, x2, x3, x4} be an S-fuzzy poset with the fuzzy order and
action given as follows.

1 a b c

x1 x1 x3 x3 x3
x2 x2 x3 x3 x3
x3 x3 x4 x4 x4
x4 x4 x4 x4 x4



THE CATEGORY OF S-FUZZY POSETS 167

and eX : X ×X → L where

(4.6) eX = (eij)X =


1 0 0 0
1 1 0.5 0
1 0.5 1 0
1 1 1 0

 .

Define R : X ×X → L as follows:

(4.7) R = (Rij) =


1 0 0 0
0 1 0.5 0.5
0 0.5 1 1
0 0.5 1 1

 .

We want to show that R is an S-fuzzy poset congruence.
Through direct computing, we get

(4.8) Re =


1 0 0 0
1 1 0.5 0.5
1 0.5 1 1
1 1 1 1

 .

It is seen that Re is reflexive, but it is not transitive. Then

(4.9) RT
e =


1 0 0 0
1 1 0.5 0.5
1 1 1 1
1 1 1 1

 ,

and so

(4.10) (RT
e ) ∧ (RT

e )
−1 =


1 0 0 0
0 1 0.5 0.5
0 0.5 1 1
0 0.5 1 1

 = R.

So R is an S-fuzzy poset congruence on an S-fuzzy poset (X, eX). The
corresponding fuzzy quotient set is X/R = {Rx1 , Rx2 , Rx3 = Rx4} and
the fuzzy partial order on X/R is defined by

(4.11) eX/R =

1 0 0
1 1 0.5
1 1 1

 .

Definition 4.6. A fuzzy pseudo order σ on an S-fuzzy poset (X, eX) is
a reflexive and transitive order relation on (X, eX) which is compatible
with the S-action (σ(x, y) ≤ σ(sx, sy) for all x, y ∈ X and s ∈ S).
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The following lemma is the characterization of the fuzzy pseudo orders
that contain the fuzzy partial order. This is needed to obtain the rela-
tionship between the S-fuzzy poset congruences and the fuzzy pseudo
order that contains the fuzzy partial order.

Lemma 4.7. Let (X, eX) be an S-fuzzy poset and σ ∈ LX×X . The
following are equivalent:

(1) σ is a fuzzy pseudo order on X.
(2) There exist an S-fuzzy poset (Y, eY ) and an S-fuzzy poset map

φ : (X, eX) → (Y, eY ) such that σ = Hφ, where Hφ(x, y) =∧
a∈Y eY (φ(y), a) → eY (φ(x), a) is called the directed kernel of

φ.

Proof. (1) ⇒ (2) Let σ be a fuzzy pseudo order containing the fuzzy
partial order. Define R = σ ∧ σ−1. Then by Lemma 3.4 of [21], R ≤
RT

e ∧ (RT
e )

−1 ≤ σ ∧σ−1 = R. Also, since σ is action preserving, R is ac-
tion preserving, too, which means that R is an S-fuzzy poset congruence.
Also, by Lemma 3.4 of [21], HπR = σ where πR : (X, eX) → (X/R, eσ)
is the quotient S-fuzzy poset map and eY (f(x), f(y)) = Hφ(x, y), for all
x, y ∈ X. Hφ contains the fuzzy partial order and it is reflexive and tran-
sitive. It remains to prove that Hφ is compatible with the S-action. For,
Hφ(x, y) = eY (f(x), f(y)) ≤ eY (sf(x), sf(y)) ≤ eY (f(sx), f(sy)) =
Hφ(sx, sy), for all x, y ∈ X, s ∈ S, as desired. □
Theorem 4.8. Let (X, eX) be an S-fuzzy poset and R be a fuzzy equiv-
alence relation on (X, eX). Then the following are equivalent:

(1) R is an S-fuzzy poset congruence on (X, eX).
(2) There exists a fuzzy pseudo order σ that contains the fuzzy

partial order such that R = σ ∧ σ−1.
(3) There exist an S-fuzzy poset (Y, eY ) and an S-fuzzy poset map

φ : (X, eX) → (Y, eY ) with R = Hφ ∧ (Hφ)
−1.

Proof. (1) ⇔ (3) is clear by Lemma 4.7.
(1) ⇒ (2) By the proof of Lemma 4.7, HπR is the fuzzy pseudo order

which is needed.
(2) ⇒ (1) Let R = σ ∧ σ−1 where σ is a fuzzy pseudo order that

contains the fuzzy partial order. Then for all x, y ∈ X, e(x, y) ≤ σ(x, y)
and R(x, y) ≤ σ(x, y), and so R ≤ RT

e ∧ (RT
e )

−1 ≤ σ ∧ σ−1 = R.
Therefore, R is an S-fuzzy poset congruence. □

For a given S-fuzzy poset congruence R, the quotient set X/R may
support several different compatible fuzzy orders, it is necessary to spec-
ify which fuzzy order is being considered on the quotient set X/R. A
fuzzy pseudo order ρ ≥ e on an S-fuzzy poset (X, eX) can generate an S-
fuzzy poset congruence ρ̄ = ρ∧ρ−1. The induced fuzzy partial order eX/ρ̄
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on the quotient S-fuzzy poset X/ρ̄ is defined by eX/ρ̄(ρ̄x, ρ̄y) = ρ(x, y),
which is denoted by eρ.

Note that if R is an S-fuzzy poset congruence on an S-fuzzy poset
(X, eX), then the fuzzy pseudo order that contains the fuzzy partial
order eX and R is not unique.
Corollary 4.9. Let (X, eX) be an S-fuzzy poset and R be an S-fuzzy
poset congruence on (X, eX). Then RT

e is the least fuzzy pseudo order
that contains e and R.

In the following the isomorphism theorems of S-fuzzy posets based
on pseudo orders are given. Congruences have the essential role in iso-
morphism theorems in any category, but in the case of S-fuzzy posets,
pseudo orders play the role congruences which are general than the con-
gruences.
Theorem 4.10 (Homomorphism theorem). Let (X, eX) and (Y, eY )
be two S-fuzzy posets and f : (X, eX) → (Y, eY ) be an S-fuzzy poset
map. Then there exists a unique S-fuzzy poset order embedding g :
(X/Kf , eHf

) → (Y, eY ) such that g ◦πKf
= f , where Kf = Hf ∧ (Hf )

−1.
Proof. For R = Kf , (X/R, eX/R) is the quotient S-fuzzy poset, where
eX/R(Rx, Ry) = Hf (x, y). Defining g : (X/R, eX/R) → (Y, eY ) by
g(Rx) = f(x), it is easily shown that g is a well-defined map. Also,
eX/R(Rx, Ry) = Hf (x, y) = eY (f(x), f(y)) = eY (g(Rx), g(Ry)), which
shows that g is an order embedding. The uniqueness of g with this
property is obvious. □

The following theorem is a generalization of the homomorphism the-
orem.
Theorem 4.11 (Decomposition Theorem). Let (X, eX), (Y, eY ) and
(Z, eZ) be S-fuzzy posets. Let f : (X, eX) → (Y, eY ) be a surjective S-
fuzzy poset map and g : (X, eX) → (Z, eZ) be an S-fuzzy poset map with
Hf ≤ Hg. Then there exists a unique S-fuzzy poset map h : (Y, eY ) →
(Z, eZ) such that h ◦ f = g. Moreover, h is a fuzzy order embedding if
and only if Hf = Hg and h is surjective if and only if g is surjective.

5. Limits and Colimits

In this section, some of the limits and colimits in the category of S-
fuzzy posets are considered.

Limits. Let {(Xi, eXi)i∈I} be a family of S-fuzzy posets. Define eX(x, y) =∧
eXi(xi, yi) for X =

∏
i∈I Xi and every (x, y) = ((xi)i∈I , (yi)i∈I) ∈∏

i∈I Xi ×
∏

i∈I Xi, then it is a fuzzy partial order on the product of
{(Xi, eXi)i∈I} and (X, eX) becomes an S-fuzzy poset.
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The terminal S-fuzzy poset is the singleton S-fuzzy poset and the
initial S-fuzzy poset is empty.

The equalizer of a pair f, g : (X, eX) → (Y, eY ) of S-fuzzy poset maps
is given by (E = {x ∈ X|f(x) = g(x)}, eE) with the action and order
inherited from (X, eX).

The pullback of S-fuzzy poset maps f : (X, eX) → (Z, eZ) and g :
(Y, eY ) → (Z, eZ) is the sub S-fuzzy poset (P = {(x, y) ∈ X ×Y |f(x) =
g(y)}, (eX ∧ eY )|P ) of (X ×Y, eX ∧ eY ) together with the restricted pro-
jection maps.

Colimits. S-fuzzy poset congruences play an essential role in studying
the structure of S-fuzzy posets. Now, using S-fuzzy poset congruences,
we construct some colimits of the category of S-fuzzy posets such as
pushouts and coequalizers.

Let {(Xi, eXi)i∈I} be a family of S-fuzzy posets. Define

eX(x, y) =

{
eXi(x, y) if x, y ∈ Xi

0 otherwise

for X =
⨿

i∈I Xi and every (x, y) ∈
⨿

i∈I Xi ×
⨿

i∈I Xi, then it is a
fuzzy partial order on the coproduct of {(Xi)i∈I} and (X, eX) becomes
an S-fuzzy poset.

Let (X, eX) and (Y, eY ) be S-fuzzy posets and f, g : (X, eX) → (Y, eY )
be S-fuzzy poset maps. The coequalizer of f and g is the quotient S-
fuzzy poset (Y/ν(K), eν(K)) where ν(K) is an S-fuzzy poset congruence
generated by the fuzzy relation K on (Y, eY ) defined by

K(x, y) =

{
1 if x = y or x = f(a), y = g(a) or x = g(a), y = f(a)
0 otherwise

for all a ∈ X and x, y ∈ Y .
Let f : (X, eX) → (Y, eY ) and g : (X, eX) → (Z, eZ) be S-fuzzy poset

maps. Then the pushout of the pair f and g is the quotient S-fuzzy
poset, ((Y ⊔ Z)/ν(K), eν(K)), where Y ⊔ Z is the coproduct of (Y, eY )
and (Z, eZ) and ν(K) is the S-fuzzy poset congruence generated by the
following fuzzy relation on Y ⊔ Z,

K(y, z) =

{
1 if y = z or y = (1, f(x)), z = (2, g(x)) or y = (2, g(x)), z = (1, f(x))
0 otherwise,

for all x ∈ X and y, z ∈ Y ⊔ Z.

6. Adjoint Relations

In this section, we consider all forgetful functors between the category
FPos-S and the categories FPos of fuzzy posets, Pos-S of S-posets,
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Pos of posets, Act-S of S-acts and Set of sets and study the existence
of free and cofree objects.

6.1. Adjoint Relations of S-Fuzzy Posets with Fuzzy Posets.

Definition 6.1. By a free S-fuzzy poset on a fuzzy poset (P, eP ) we
mean an S-fuzzy poset (F, eF ) together with a fuzzy order preserving
map τ : (P, eP ) → (F, eF ) with the universal property that given any
S-fuzzy poset (A, eA) and a fuzzy order preserving map f : (P, eP ) →
(A, eA) there exists a unique S-fuzzy poset map f̄ : (F, eF ) → (A, eA)
such that f̄ ◦ τ = f .

Note that this notion generalizes the notion of a free S-poset on a
poset, defined in [10] and also it gives an adjoint pair between the cate-
gories FPos-S and FPos.

Theorem 6.2. For a given fuzzy poset (P, eP ) and a fuzzy ordered
monoid (S, eS), the free S-fuzzy poset on (P, eP ) is given by P × S,
with the order eP ∧ eS : (P × S) × (P × S) → L given by eP ∧
eS((x1, s1), (x2, s2)) = eP (x1, x2) ∧ eS(s1, s2) and the action (x, s)t =
(x, st) for all x1, x2, x ∈ P and s1, s2, s, t ∈ S.

Proof. With the order and the action defined above, (P × S, eP ∧ eS)
is clearly an S-fuzzy poset and the map τ : (P, eP ) → (P × S, eP ∧ eS)
given by τ(x) = (x, 1) is a universal fuzzy order preserving map. For, if
f : (P, eP ) → (A, eA) is any fuzzy order preserving map to an S-fuzzy
poset (A, eA) then the map f̄ : (P × S, eP ∧ eS) → (A, eA) defined by
f̄(x, s) = f(x)s is the unique S-fuzzy poset map with f̄ ◦ τ = f . □

Corollary 6.3. The free functor F1 : FPos → FPos − S given by
F1(P, eP ) = (P × S, eP ∧ eS) is a left adjoint to the forgetful functor
U1 : FPos− S → FPos.

Definition 6.4. By a cofree S-fuzzy poset on a fuzzy poset (P, eP ) we
mean an S-fuzzy poset (C, eC) together with a fuzzy order preserving
map σ : (C, eC) → (P, eP ) with the universal property that given any
S-fuzzy poset (A, eA) and a fuzzy order preserving map α : (A, eA) →
(P, eP ) there exists a unique S-fuzzy poset map ᾱ : (A, eA) → (C, eC)
such that σ ◦ ᾱ = α.

Theorem 6.5. For a given fuzzy poset (P, eP ) and a fuzzy ordered
monoid (S, eS), the cofree S-fuzzy poset on (P, eP ) is the set ((P, eP )(S,eS), e),
of all fuzzy order preserving maps from (S, eS) to (P, eP ), with the order
e : (P, eP )

(S,eS)×(P, eP )
(S,eS) → L given by e(f, g) =

∧
s∈S eP (f(s), g(s))

and the action (fs)(t) = f(st) for all f, g ∈ (P, eP )
(S,eS) and s, t ∈ S.
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Proof. One can check that with the order and the action defined above,
((P, eP )

(S,eS), e) is an S-fuzzy poset. The cofree map σ : (P, eP )
(S,eS) →

(P, eP ) given by σ(f) = f(1) is monotone, since∧
s∈S

eP (f(s), g(s)) = e(f, g) ≤ eP (σ(f), σ(g)) = eP (f(1), g(1)).

Also, for a given fuzzy order preserving map α : (A, eA) → (P, eP )
from an S-fuzzy poset (A, eA), there exists a unique S-fuzzy poset map
ᾱ : (A, eA) → (P, eP ) given by ᾱ(a)(s) = α(as) such that σ ◦ ᾱ = α. ᾱ
is fuzzy order preserving, since eA(x, y) ≤ eA(xs, ys) ≤ eP (α(xs), α(ys))
for all x, y ∈ A, s ∈ S and hence eA(x, y) ≤

∧
s∈S eP (α(xs), α(ys)) =

e(ᾱ(x), ᾱ(y)). □

Corollary 6.6. The (cofree) functor K1 : FPos → FPos− S given by
K1(P, eP ) = ((P, eP )

(S,eS), e) is a right adjoint to the forgetful functor
U1 : FPos− S → FPos.

6.2. Adjoint relations of (S-)fuzzy posets with (S-)posets. De-
fine H : FPos−S → Pos−S given by H(A, eA) = (A,≤), where (A,≤)
is the underlying S-fuzzy poset of (A, eA). Then H is a functor from
FPos− S to Pos− S. Also, define K : Pos− S → FPos− S given by
K(A,≤) = (A, eA), where

eA(x, y) =

{
1 if x ≤ y
0 otherwise.

Then K is a functor from Pos−S to FPos−S. It is shown that K ⊣ H
and H ⊣ K. Similar functors give an adjoint pair between the category
of fuzzy posets and the category of posets.

6.3. Adjoint relations of S-fuzzy posets with S-acts. The follow-
ing result is immediately obvious.

Theorem 6.7. The (free) functor F2 : Act − S → FPos − S given by
F2(A) = (A, eA), where eA : A×A→ L is given by

eA(a, b) =

{
1 if a = b
0 otherwise,

is a left adjoint to the forgetful functor U2 : FPos− S → Act− S.

Remark 6.8. The forgetful functor U2 : FPos−S → Act−S does not
have a right adjoint. Because, if K ′ : Act− S −→ FPos− S is a right
adjoint of U2 then H ◦K ′ : Act−S K′

−→ FPos−S H−→ Pos−S would be
a right adjoint of the forgetful functor U : Pos−S −→ Act−S. But by
the note after Theorem 17 of [10], the forgetful functor U : Pos−S −→
Act− S does not have a right adjoint.
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6.4. Adjoint relations of S-fuzzy posets with sets.

Definition 6.9. By a free fuzzy poset on a set X we mean a fuzzy poset
(X, eX), where eX : X ×X → L is given by

eX(x, y) =

{
1 if x = y
0 otherwise,

together with the identity map i : X → (X, eX) with the universal
property that given any fuzzy poset (P, eP ) and a map f : X → P
there exists a unique fuzzy poset map f̄ : (X, eX) → (P, eP ) such that
f̄ ◦ i = f .

Lemma 6.10. The free functor F ′ : Set −→ FPos given by F ′(X) =
(X, eX), where eX : X ×X → L is given by

eX(x, y) =

{
1 if x = y
0 otherwise,

is a left adjoint to the forgetful functor U ′ : FPos −→ Set.

By composing the two free functors, one from Set to FPos and the
other from FPos to FPos-S one gets:

Theorem 6.11. The free functor F ′
2 : Set −→ FPos − S given by

F ′
2(X) = F1 ◦F ′(X) = F1(X, eX) is a left adjoint to the forgetful functor
U ′
2 : FPos− S −→ Set. More precisely, the free S-fuzzy poset on a set

X, is (X × S, eX ∧ eS) where the fuzzy order eX : X ×X → L is given
by

eX(x, y) =

{
1 if x = y
0 otherwise,

and the action is given by (x, s)t = (x, st) for x ∈ X, s, t ∈ S.

Remark 6.12. The forgetful functor U ′
2 : FPos − S −→ Set does not

have a right adjoint. For, let H ′ : Set −→ FPos− S be a right adjoint
for U ′

2. Then H ◦H ′ : Set −→ FPos− S −→ Pos− S is a right adjoint
for a forgetful functor U : Pos− S −→ Set which is a contradiction by
Remark 16 of [10].

7. Epimorphisms and Monomorphisms

In this section, we give a set theoretic characterization of the epimor-
phisms and monomorphisms in FPos and FPos-S and a categorical
characterization of order embeddings. Note that an epimorphism in
FPos is a morphism that is right cancelable under composition.

Lemma 7.1. Epimorphisms in FPos are exactly surjective fuzzy poset
maps.
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Proof. Assume that f : (P, eP ) → (Q, eQ) is an epimorphism in FPos
but it is not surjective. Take a ∈ Q with a ̸∈ Imf . Define a new fuzzy
poset (R, eR) as follows:
R = (Q− {a}) ∪ {b, c} with the order eR : R×R→ L given by

eR(c, x) =

{
1 if eQ(a, x) = 1
0 otherwise,

eR(x, c) =

{
1 if eQ(a, x) ̸= 1
eQ(x, a) if eQ(a, x) = 1,

eR(y, b) =

{
1 if eQ(y, a) = 1
0 otherwise,

eR(b, y) =

{
1 if eQ(y, a) ̸= 1
eQ(a, y) if eQ(y, a) = 1,

and eR(x, y) = eQ(x, y) for all x, y ∈ Q and x, y ̸= a. Define g :
(Q, eQ) → (R, eR) given by g(x) = x for all x ̸= a and g(a) = b and
h : (Q, eQ) → (R, eR) given by h(x) = x for all x ̸= a and h(a) = c. It
is clear that g ◦ f = h ◦ f but g ̸= h which contradicts the assumption
that f is an epimorphism. The converse is obvious. □
Theorem 7.2. Epimorphisms in FPos-S are exactly surjective S-fuzzy
poset maps.
Proof. Using the adjunction given in Corollary 6.3 and the fact that
left adjoints preserve colimits, and in particular epimorphisms, one gets
that epimorphisms in FPos-S are exactly S-fuzzy poset maps which
are epimorphisms in FPos. Then the result follows by the fact that
epimorphisms in FPos are exactly surjective morphisms by Lemma 7.1.

□
Note that a monomorphism in FPos-S is a morphism that is left

cancelable under composition.
Lemma 7.3. Monomorphisms in FPos are exactly injective fuzzy poset
maps.
Proof. Let f : (P, eP ) → (Q, eQ) be a fuzzy poset monomorphism and
suppose that f is not injective. i.e. f(a) = f(b) for distinct elements
a, b ∈ P . Take S = ({a, b}, eS) with the discrete order, eS : S × S → L
given by eS(a, a) = eS(b, b) = 1, eS(a, b) = eS(b, a) = 0 and define
g : (S, eS) → (P, eP ) given by g(a) = g(b) = a and h : (S, eS) →
(P, eP ) given by h(a) = h(b) = b. Then f ◦ g = f ◦ h but g ̸= h
which contradicts that f is a monomorphism. Hence f is injective. The
converse is clear. □
Theorem 7.4. Monomorphisms in FPos-S are exactly injective S-fuzzy
poset maps.
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Proof. Using the adjunction given in Corollary 6.6 and the fact that
right adjoints preserve limits, and in particular monomorphisms, one
gets that monomorphisms in FPos-S are exactly S-fuzzy poset maps
which are monomorphisms in FPos. Then the result follows by the fact
that monomorphisms in FPos are exactly injective fuzzy poset maps by
Lemma 7.3. □
Theorem 7.5. A morphism f : (P, eP ) → (Q, eQ) in FPos (FPos-S)
is an order embedding if and only if it is a regular monomorphism.

Proof. Let f : (P, eP ) → (Q, eQ) be an order embedding. Then f is
a monomorphism and it is enough to show that it is regular. For, let
g : (T, eT ) → (Q, eQ) be any fuzzy poset map which equalizes every
pair of fuzzy poset maps from (Q, eQ) equalized by f and g(T ) ⊈ f(P ).
Then, by the proof of Lemma 7.3, there exists a fuzzy poset (S, eS) and
u, v : (Q, eQ) → (S, eS) which differ only at one point a in g(T ), not in
f(P ). Hence, u◦f = v◦f whereas u◦g ̸= v◦g, which is a contradiction.
Therefore, g(T ) ⊆ f(P ) and f−1 ◦ g, where f−1 is the inverse of f on
f(P ), provides the factorization.

For the converse, let f : (P, eP ) → (Q, eQ) be a regular monomor-
phism and let a, b ∈ P . Also, let (T, eT ) be the sub fuzzy poset of
(Q, eQ) determined by {f(a), f(b)}, with the fuzzy order eT : T ×
T → L given by eT (f(a), f(a)) = eT (f(b), f(b)) = eT (f(a), f(b)) =
eQ(f(a), f(b)), eT (f(b), f(a)) = eQ(f(b), f(a)) and g : (T, eT ) → (Q, eQ)
be the natural embedding. It is clear that g equalizes any pair u, v :
(Q, eQ) → (S, eS) equalized by f . Hence there exists a fuzzy poset map
h : (T, eT ) → (P, eP ) such that g = f ◦ h. Since g(f(a)) = f(a), one
gets h(f(a)) = a and since g(f(b)) = f(b), one gets h(f(b)) = b and
hence eQ(f(a), f(b)) = eT (f(a), f(b)) ≤ eP (h(f(a)), h(f(b))) = eP (a, b).
Therefore, f is an order embedding. □
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