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Abstract. The search for contractive definitions which do not
compel the mapping to be continuous at fixed points remained an
open problem for a long time. Several solutions to this open prob-
lem have been obtained in last two decades. The current paper, we
aim to provide another new solution direction for the discontinuity
study at fixed points using F -contractive mappings in a complete
metric space. Several consequences of those new results are also
provided. This manuscript consists of three main parts. In the first
part, the notion of F -contractive mappings has been described. In
the second part, discontinuity at the fixed point assuming continu-
ity of the composition has been investigated, whereas in the third
part, discontinuity at a fixed point without assuming continuity of
the composition has been illustrated.

1. Introduction and Preliminaries

The famous Banach contraction principle guarantees the continuity of
the mapping under consideration, whereas the study of fixed points for
discontinuous mappings originated with the 1968-69 papers of Kannan
[18, 19]. However, all the mapping that were known at that point of time
were continuous at their respective fixed points, although they admitted
points of discontinuity within their domains [4–6, 12]. In 1977, Rhoades
[27] presented a comparative study of 250 contractive definitions and
observed that many of those definitions did not imply the continuity of
the mappings in their respective entire domains. Motivated by this, in
1988, Rhoades [28] posed the open problem of searching for contractive
definitions which do not compel the mapping to be continuous at fixed

2020 Mathematics Subject Classification. 47H10; 54H25; 54E50.
Key words and phrases. Discontinuity, Fixed point, F -contraction, Complete met-

ric space.
Received: 13 August 2022, Accepted: 07 March 2023.

21

http://scma.maragheh.ac.ir


22 P. DEBNATH

points. In 1999, Pant [25] provided an affirmative answer to this search
by producing functions that had discontinuities at their fixed points.

Recently, Debnath and Srivastava [14] studied common BPPs for mul-
tivalued contractive pairs of mappings. Debnath and Srivastava [15]
also proved new extensions of Kannan’s and Reich’s theorems. Another
Kannan-type contraction for multivalued asymptotic regular maps was
presented by Debnath et al. [13]. An important application of fixed
points of F (ψ,φ)-contractions to fractional differential equations was
proposed by Srivastava et al. [32]. Srivastava et al. [31] also proposed
the study of implicit functional differential inclusions of arbitrary frac-
tional order. More relevant results, we refer to [1, 16, 29, 30].

Fixed point results for mappings with discontinuity are popular and
interesting for their wide variety of applications in character recognition,
neural networks and the solution of non-negative sparse approximation
problems [9, 17, 20–23, 36]. Recently, several authors have attempted to
provide solutions to the question posed by Rhodes from various points
of view (see Bisht and Rakocević [3], Pant et al. [26], Tas and Ozgur
[33], Ozgur and Tas [24]).

In the current paper, we aim to provide another new solution direction
towards the study of discontinuity at fixed point using F -contractive
mappings due to Wardowski in a complete metric space (MS).

In 2012, Wardowski [35] defined the concept of F -contraction as fol-
lows.

Definition 1.1. Let F : (0,+∞) → (−∞,+∞) be a function which
satisfies the following:

(F1) F is strictly increasing;
(F2) For each sequence {un}n∈N ⊂ (0,+∞), lim

n→+∞
un = 0 if and only

if lim
n→+∞

F (un) = −∞;

(F3) There is t ∈ (0, 1) such that lim
u→0+

utF (u) = 0.

Let F denote the class of all such functions F . If (W, η) is an
MS, then a self-map Φ : W → W is said to be an F−contraction
if there exists δ > 0, F ∈ F , such that for all θ, ξ ∈ W,

η (Φθ,Φξ) > 0 ⇒ δ + F (η(Φθ,Φξ)) ≤ F (η(θ, ξ)) · · · (A).

Consider the function F : R+ → R given by F (η) = ln η. Then, it is
easy to see that any mapping Φ satisfying the above inequality (A) is
an F -contraction [35]. Further, F (η) = ln η + η, η > 0, F (η) = ln(η2 +
η), η > 0 can also provide examples of F -contractive mappings. It has
been observed that F -contractions exhibit a faster rate of convergence
towards the fixed point and as such, they are considered to provide
better iteration schemes than many other contractions[35].
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Our main work is divided into two sections. In the first section, we
establish a discontinuity at a fixed point result, assuming continuity
of the composition of the mapping under consideration. In the second
section, we develop a similar result where the continuity of the mapping
composition can be dropped.

2. Discontinuity at Fixed Point Assuming Continuity of the
Composition

In this section, we present a discontinuity at fixed point result assum-
ing continuity of the composition of the mapping.

The following notation will be used.

∆0(θ, ξ) = max

{
η(θ, ξ), η(θ,Φθ), η(ξ,Φξ),

η(θ,Φξ) + η(ξ,Φθ)

2

}
.

Theorem 2.1. Let (W, η) be a complete MS and Φ : W → W be such
that Φ2 is continuous and there exists δ > 0 and F ∈ F satisfying

(i) δ + F (η(Φθ,Φξ)) ≤ F (Γ(∆0(θ, ξ))), where Γ : R+ → R+ has
the property Γ(s) < s for each s > 0;

(ii) for a given ϵ > 0, there exist κ > 0 such that ϵ < ∆0(θ, ξ) < ϵ+κ
implies that η(θ, ξ) ≤ ϵ.

Then, Φ possesses a unique fixed point, say ω and lim
n→∞

Φnθ → ω for
each θ ∈ W. Moreover, Φ happens to be discontinuous at ω if and only
if lim

θ→ω
∆0 (θ, ω) ̸= 0.

Proof. We fix θ0 ∈ W such that θ0 ̸= Φθ0 and construct the sequence
{θn} by θn+1 = Φnθ0 = Φθn. We denote dn = η (θn, θn+1). Then
dn = η (θn, θn+1)) = η (Φθn−1,Φθn).

Using (i) of the hypothesis, we have
δ + F (η(Φθn−1,Φθn)) ≤ F (Γ(∆0(θn−1, θn)))

< F (∆0(θn−1, θn))

= F (max{dn, dn−1})
= F (dn−1).

The above implies
δ + F (dn) < F (dn−1) ⇒ F (dn) < F (dn−1)− δ

⇒ dn < dn−1, for all n ∈ N.

Thus {dn} is a strictly decreasing sequence of positive reals and hence
converges to, say d. If possible, suppose that d > 0. Obviously, there
exists p ∈ N such that for n ≥ p, we have
(2.1) d < dn < d+ κ.
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Using (ii) of the hypothesis and the fact that dn < dn−1, we have that
dn ≤ d for all n ≥ p, which contradicts (2.1). Thus, we have d = 0.

Next, we show that {θn} is Cauchy. Let ϵ > 0. Without loss of
generality, we may assume that κ < ϵ. Since dn → ∞ as n → ∞, there
exists q ∈ N such that

(2.2) dn <
κ

2
, for all n ≥ q.

With the help of mathematical induction, we show that

(2.3) η(θq, θq+n) < ϵ+
κ

2
, for all n ∈ N.

From (2.2), clearly (2.3) holds for n = 1. Suppose that (2.3) holds true
for some n. Then, we obtain

η(θq, θq+n+1) ≤ η(θq, θq+1) + η(θq+1, θq+n+1).

It is enough to show that η(θq+1, θq+n+1) ≤ ϵ. For this purpose, we
prove that ∆0(θq, θq+n) ≤ ϵ+ κ, where

∆0(θq, θq+n) = max

{
η(θq, ξq+n), η(θq,Φθq), η(ξq+n,Φξq+n),

η(θq,Φξq+n) + η(ξq+n,Φθq)

2

}
.

Now we have that
(2.4)
η(θq, θq+n) < ϵ+

κ

2
, η(θq, θq+1) <

κ

2
, η(θq+n, θq+n+1) <

κ

2
.

Further,
η(θq, ξq+n+1) + η(ξq+1, θq+n)

2
(2.5)

≤ η(θq, θq+n) + η(θq+n+1, θq+n) + η(θq, θq+1) + η(θq, ξq+n)

2
< ϵ+ κ.

Thus, ∆0(θq, θq+n) ≤ ϵ+κ, so that by (ii) we have η(θq+1, ξq+n+1) ≤ ϵ.
This completes the induction.

Now, fix p > 0 and let ϵ = p
2 . Since κ < ϵ, we have κ

2 <
ϵ
2 . Then

η(θq, θq+n) < ϵ+
κ

2
for all n ∈ N

<
p

2
+
p

4

<
p

2
+
p

2
= p.
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Therefore, {θn} is Cauchy.
Since W is complete, there exists a point ω ∈ W such that θn → ω

as n → ∞. Also, Φθn → ω and Φ2θn → ω. Since Φ2 is continuous, we
have that Φ2θn → Φ2ω.

If possible, suppose that ω ̸= Φω. Then
η(ω,Φω) = η(Φ2ω,Φω)

≤ Γ(∆0(Φω, ω))

< ∆0(Φω, ω)

= η(ω,Φω),

which is a contradiction. Hence, ω = Φω.
To prove the uniqueness, let ω = Φω and ν = Φν with ω ̸= ν. Thus,

from (i),
δ + F (η(Φω,Φν)) ≤ F (Γ(∆0(ω, ν))) .

The above implies that
η (Φω,Φν) < Γ (∆0(ω, ν)) < ∆0 (ω, ν) .

Thus, we have

η (ω, ν) < max

{
η(ω, ν), η(ω, ω), η(ν, ν),

η(ω, ν) + η(ν, ω)

2

}
= η (ω, ν) ,

which is a contradiction. Hence, ω = ν.
Last part of the proof is trivial and hence omitted. □

Below we provide an example to validate Theorem 2.1.

Example 2.2. Let W = [0, 4] be endowed with the usual metric η.
Define Φ : W → W by

Φθ =

{
2, if θ ≤ 2
0, if θ > 2.

Then Φ satisfies condition (i) of Theorem 2.1 with

Γs =

{
1, if s > 2
s
2 , if s ≤ 2.

Also, Φ satisfies condition (ii) of Theorem 2.1 with

κ(ϵ) =

{
1, if ϵ ≥ 1
1− ϵ, if ϵ < 1.

We also observe that lim
θ→2

∆0(θ, 2) ̸= 0 and Φ is discontinuous at the
fixed point ω = 2. However, Φ2(θ) = 2 for all θ ∈ W and hence, it is
continuous (see Figure 1).
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Figure 1. Plot of the functions Φ and Φ2.

We have the following two consequences of Theorem 2.1.

Corollary 2.3. Let (W, η) be a complete MS and Φ : W → W be such
that Φ2 is continuous and there exists δ > 0 and F ∈ F satisfying

(i) δ + F (η(Φθ,Φξ)) ≤ F (∆0(θ, ξ)), with ∆0(θ, ξ) > 0;
(ii) for a given ϵ > 0, there exists κ > 0 such that ϵ < ∆0(θ, ξ) <

ϵ+ κ implies that η(Φθ,Φξ) ≤ ϵ.
Then, Φ possesses a unique fixed point, say ω and lim

n→∞
Φnθ → ω for

each θ ∈ W. Moreover, Φ happens to be discontinuous at ω if and only
if lim

θ→ω
∆(θ, ω) ̸= 0.

Corollary 2.4. Let (W, η) be a complete MS and Φ : W → W be such
that Φ2 is continuous and there exists δ > 0 and F ∈ F satisfying

(i) δ + F (η(Φθ,Φξ)) ≤ F (Γ(η(θ, ξ))), where Γ : R+ → R+ has the
property that Γ(η(θ, ξ)) < η(θ, ξ) for all θ, ξ ∈ W;

(ii) for a given ϵ > 0, there exists κ > 0 such that for s > 0,
ϵ < s < ϵ+ κ implies that Γ(s) ≤ ϵ.
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Then, Φ possesses a unique fixed point, say ω and lim
n→∞

Φnθ → ω for
each θ ∈ W.

3. Discontinuity at Fixed Point Without Assuming
Continuity of the Composition

In this section, we drop the condition that Φ2 is continuous. We shall
use the following notation, which was recently used by Ozgur and Tas
[24] to describe some interesting fixed-circle problems.

∆1(θ, ξ)

= max

{
η(θ, ξ), η(θ,Φθ), η(ξ,Φξ),

[
η(θ,Φξ) + η(ξ,Φθ)

1 + η(θ,Φξ) + η(ξ,Φθ)

]
η(θ, ξ)

}
.

Theorem 3.1. Let (W, η) be a complete MS and Φ : W → W be such
that there exists δ > 0 and F ∈ F satisfying

(i) δ+F (η(Φθ,Φξ)) ≤ F (Γ(∆1(θ, ξ))), where Γ : R+ → R+ has the
property Γ(s) < s for each s > 0;

(ii) for a given ϵ > 0, there exists κ > 0 such that ϵ < ∆1(θ, ξ) <
ϵ+ κ implies that η(Φθ,Φξ) ≤ ϵ.

Then, Φ possesses a fixed point, say ω and lim
n→∞

Φnθ → ω for each
θ ∈ W. Moreover, Φ happens to be discontinuous at ω if and only if
lim
θ→ω

∆1(θ, ω) ̸= 0.

Proof. We fix θ0 ∈ W such that θ0 ̸= Φθ0 and construct the sequence
{θn} by θn+1 = Φnθ0 = Φθn. We denote dn = η (θn, θn+1). Then
dn = η (θn, θn+1) = η (Φθn−1,Φθn).

Now, we have

∆(θn−1, θn) = max

{
η(θn−1, θn), η(θn−1,Φθn−1), η(θn,Φθn),(3.1)

[
η(θn−1,Φθn) + η(θn,Φθn−1)

1 + η(θn−1,Φθn−1) + η(θn,Φθn)

]
η(θn−1, θn)

}

= max

{
η(θn−1, θn), η(θn−1, θn), η(θn, θn+1),[

η(θn−1, θn+1) + η(θn, θn)

1 + η(θn−1, θn) + η(θn, θn+1)

]
η(θn−1, θn)

}

= max

{
η(θn−1, θn), η(θn, θn+1),
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η(θn−1, θn+1)

1 + η(θn−1, θn) + η(θn, θn+1)

]
η(θn−1, θn)

}

= max

{
η(θn−1, θn), η(θn, θn+1),[

η(θn−1, θn) + η(θn, θn+1)

1 + η(θn−1, θn) + η(θn, θn+1)

]
η(θn−1, θn)

}
= max {η(θn−1, θn), η(θn, θn+1)} .

From (i) of the hypothesis, we have that
(3.2) F (η(Φθ,Φξ)) ≤ F (Γ(∆1(θ, ξ))), for δ > 0,

then
η(Φθ,Φξ) ≤ Γ(∆1(θ, ξ)).

Putting θ = θn−1 and ξ = θn in (3.2), we have
η(Φθn−1,Φθn) ≤ Γ(∆1(θn−1, θn))(3.3)

≤ ∆1(θn−1, θn).

Now, if η(θn−1, θn) ≤ η(θn, θn+1), from (3.3) and (3.1), we obtain
η(Φθn−1,Φθn) < η(θn, θn+1), i.e., η(θn, θn+1) < η(θn, θn+1), which is a
contradiction.

Hence, we must have
η(θn, θn+1) < η(θn−1, θn).

Thus, from (3.1), we have dn < dn−1, i.e., {dn} is a strictly decreasing
sequence of positive reals. Hence, dn → d for some d ∈ R as n → ∞.
Using similar arguments as in the proof of Theorem 2.1, we can prove
that d = 0.

Next, using exactly similar techniques as in [24] we can show that
{θn} is Cauchy.

Since (W, η) is complete, there exists ω ∈ W such that θn → ω as
n→ ∞. Also, we have Φθn → ω θn → ω as n→ ∞. If Φω ̸= ω, then

δ + F (η(Φω,Φθn)) ≤ F (Γ(∆1(ω, θn))),

then
F (η(Φω,Φθn)) ≤ F (Γ(∆1(ω, θn))),

then
η(Φω,Φθn) ≤ Γ(∆(ω, θn))

< ∆1(ω, θn)

= max

{
η(ω, θn), η(ω,Φω),
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η(ω,Φθn) + η(θn,Φω)

1 + η(ω,Φω) + η(θn,Φθn)

]
η(ω, θn)

}
.

Letting n→ ∞, in the last inequality, we have
η(Φω, ω) < η(ω,Φω),

which is a contradiction. Hence, we must have Φω = ω.
Last part of the proof is obvious. □

We have the following consequences of Theorem 3.1.

Corollary 3.2. Let (W, η) be a complete MS and Φ : W → W be such
that there exists δ > 0 and F ∈ F satisfying

(i) δ+F (η(Φθ,Φξ)) ≤ F (∆1(θ, ξ)), for any θ, ξ ∈ W with ∆1 (θ, ξ) >
0;

(ii) for a given ϵ > 0, there exists κ > 0 such that ϵ < ∆1 (θ, ξ) <
ϵ+ κ implies that η (Φθ,Φξ) ≤ ϵ.

Then, Φ possesses a fixed point, say ω and lim
n→∞

Φnθ → ω for each
θ ∈ W. Moreover, Φ happens to be discontinuous at ω if and only if
lim
θ→ω

∆1 (θ, ω) ̸= 0.

Corollary 3.3. Let (W, η) be a complete MS and Φ : W → W be such
that there exist δ > 0 and F ∈ F satisfying

(i) δ + F (η(Φθ,Φξ)) ≤ F (Γ(η(θ, ξ))), where Γ : R+ → R+ has the
property that Γ (η(θ, ξ)) < η (θ, ξ) for each η (θ, ξ) > 0;

(ii) for a given ϵ > 0, there exists κ > 0 such that for s > 0,
ϵ < s < ϵ+ κ implies that Γ(s) ≤ ϵ.

Then, Φ possesses a fixed point, say ω and lim
n→∞

Φnθ → ω for each
θ ∈ W.

4. Conclusion and Future Work

In this paper, we have established some new results on discontinuity
at fixed points using F -contractive definitions. In [2], Bisht and Pant
explained real-life situations where such discontinuity results could be
applied. The well-known McCulloch-Pitts model is prevalent in Artifi-
cial Intelligence and Biology. This model devises particular algorithms
for neural networks to reduce neuron deviation from its limiting equilib-
rium state. This type of equilibrium can be modeled using fixed points
of specific mappings. All derived functions obtained by such a process
display discontinuity caused by a jump in the biological operations, such
as the threshold frequency. As such, applying of our results to neural
networks applying feasible conditions is a suggested future work. The
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works listed in [7, 8, 34] are referred to for details of such models. Ob-
taining multivalued analogs of the current results using the framework
as in [10, 11] is also some interesting suggested future work.

Acknowledgment. The author thanks the reviewers for their excel-
lent constructive comments which resulted in the improvement of the
manuscript.
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