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Further Operator and Norm Versions of Young Type
Inequalities

Leila Nasiri1∗ and Mehdi Shams2

Abstract. In this note, first the better refinements of Young and
its reverse inequalities for scalars are given. Then, several operator
and norm versions according to these inequalities are established.

1. Introduction

Let Mn be the space of n×n complex matrices and let ∥.∥ denote any
unitarily invariant norm on Mn. So, ∥UAV ∥ = ∥A∥ for all A ∈ Mn and
for all unitary matrices U, V ∈ Mn. For A = (aij) ∈ Mn, the Hilbert-
Schmidt norm of A is defined by

∥A∥2 =

√√√√ n∑
j=1

s2j (A),

where s1 (A) ≥ s2 (A) ≥ · · · ≥ sn (A) are the singular values of A, that
is, the eigenvalues of the positive matrix. |A| = (A∗A)

1
2 , arranged in

decreasing order and repeated according to multiplicity. It is trivial that
∥.∥2 has the unitarily invariant property:

∥U1AU2∥2 = ∥A∥2 ,
for all A ∈ Mn and all unitary matrices U1, U2 ∈ Mn. The C∗−algebra
of all bounded linear operators on a complex Hilbert space H define by
B (H) (so that ||.|| is the operator norm). We say an operator A ∈ B (H)
is positive if A ≥ 0. Also, A ≥ B (A ≤ B) if A−B ≥ 0 (0 ≤ B −A) . The
adjoint of the operator A and its absolute value is defined respectively
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34 L. NASIRI AND M. SHAMS

by A∗ by |A|, that |A| = (A∗A)
1
2 . The famous Young inequality for

scalars says that if a, b ≥ 0 and 0 ≤ ν ≤ 1, then

(1.1) a1−νbν ≤ (1− ν) a+ νb,

with equality holding if and only if a = b. For ν = 1
2 , we get

√
ab ≤ a+ b

2
,

which is called the fundamental arithmetic-geometric mean inequality.
Kittaneh and Manasrah [8, 9] showed that for a, b ≥ 0 , 0 ≤ ν ≤ 1,

a1−νbν + r
(√

a−
√
b
)2

≤ (1− ν) a+ νb(1.2)

≤ a1−νbν + s
(√

a−
√
b
)2

,

where r = min{ν, 1 − ν} and s = max{ν, 1 − ν} which the left-hand
side of (1.2) is a refinement of (1.1) and the right-hand side of (1.2) is
a improved reverse of (1.1). Hirzallah and Kittaneh [7] and He and Zou
[6] showed that if a, b ≥ 0 , 0 ≤ ν ≤ 1, then, we have(

a1−νbν
)2

+ r2 (a− b)2 ≤ ((1− ν) a+ νb)2(1.3)

≤
(
a1−νbν

)2
+ s2 (a− b)2 ,

where r = min{ν, 1− ν} and s = max{ν, 1− ν}. It should be mentioned
that (1.3) refine (1.1) and it’s reverse. After a short time, Zhao and Wu
[14] presented further refinements and improvements of (1.1) and (1.2)
as:

r0

(
4
√
ab−

√
a
)2

+ ν
(√

a−
√
b
)2

+ a1−νbν

(1.4)

≤ (1− ν) a+ νb

≤ a1−νbν + (1− ν)
(√

a−
√
b
)2

− r0

(
4
√
ab−

√
b
)2

, 0 ≤ ν ≤ 1

2
,

and

r0

(
4
√
ab−

√
b
)2

+ (1− ν)
(√

a−
√
b
)2

+ a1−νbν(1.5)

≤ (1− ν) a+ νb

≤ a1−νbν + ν
(√

a−
√
b
)2

− r0

(
4
√
ab−

√
a
)2

,
1

2
≤ ν ≤ 1,

where a, b ≥ 0, r = min{ν, 1 − ν} and r0 = min{2r, 1 − 2r}. They also
obtained the following inequalities, that are the refinements of the two
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sides inequalities in (1.3).

(
a1−νbν

)2
+ ν2 (a− b)2 + r0

(√
ab− a

)2
≤ ((1− ν) a+ νb)2

(1.6)

≤
(
a1−νbν

)2
+ (1− ν)2 (a− b)2

− r0

(√
ab− b

)2
, 0 ≤ ν ≤ 1

2
,

and

(
a1−νbν

)2
+ (1− ν)2 (a− b)2 + r0

(√
ab− b

)2
≤ ((1− ν) a+ νb)2

(1.7)

≤
(
a1−νbν

)2
+ ν2 (a− b)2

− r0

(√
ab− a

)2
,

1

2
≤ ν ≤ 1,

where, a, b ≥ 0, r = min{ν, 1− ν} and r0 = min{2r, 1− 2r}.
For two positive invertible operators A,B ∈ B (H) and 0 ≤ ν ≤ 1,

ν−weighted arithmetic, geometric and harmonic means, are denoted,
respectively by A∇νB, A♯νB and A!νB and are defined respectively as
[11]:

A▽ν B = (1− ν)A+ νB,

A♯νB = A
1
2

(
A− 1

2BA− 1
2

)ν
A

1
2 ,

and
A!νB =

(
(1− ν)A−1 + νB−1

)−1
.

In case ν = 1
2 , we write A▽B,A♯B and A!B, respectively. Furuta and

Yanagida [3] and Furuta [4] proved that the following inequalities hold:
(1.8) A!νB ≤ A♯νB ≤ A▽B,

where 0 ≤ ν ≤ 1 and A and B are two positive invertible operators.
The inequalities (1.8) are considered as the Heinz operator inequalities.
In [8, 9] Kittaneh and Manasrah obtained the matrix versions of (1.2)
in following form: If B,C ∈ Mn so that B is positive definite, C is
invertible, A = C∗C, then

2s
[
A▽B − C∗ (C∗−1BC−1

) 1
2 C

]
≥ A▽ν B − C∗ (C∗−1BC−1

)ν
C

(1.9)

≥ 2r
[
A▽B − C∗ (C∗−1BC−1

) 1
2 C

]
,
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where 0 ≤ ν ≤ 1, r = min{ν, 1 − ν} and s = max{ν, 1 − ν}. Zhao
and Wu [14] extended numerical inequalities (1.4) and (1.5) to operator
versions and improved the double inequalities in (1.9). Hirzallah and
Kittaneh [7] and Kittaneh and Manasrah [8], respectively proved that if
A,B,X ∈ Mn so that A and B are positive semidefinite, then

(1.10)
∥∥A1−νXBν

∥∥2
2
+ r2 ∥AX −XB∥22 ≤ ∥(1− ν)AX + νXB∥22 ,

and

(1.11) ∥(1− ν)AX + νXB∥22 ≤
∥∥A1−νXBν

∥∥2
2
+ s2 ∥AX −XB∥22 ,

where, 0 ≤ ν ≤ 1, r = min{ν, 1 − ν} and s = max{ν, 1 − ν}. Zhao
and Wu presented in [14] norm versions of (1.6) and (1.7) for Hilbert-
Schmidt norms, which are better than inequality (1.10) and (1.11). For
further information about the Young inequality refer to [1, 2, 10, 12, 13].
The paper has four sections. Section 1 is devoted to the introduction. In
section 2, we give some refinements for Young and its reverse inequalities.
In section 3, we study the operator versions of these inequalities. In the
end, matrix versions according the Hilbert-Schmidt norm are stated.

2. More Inequalities for Scalars

We begin this section with several theorems which refine the double
inequalities (1.4)-(1.7). The main result of this section is the following,
which are better than (1.4) and (1.5), respectively.

Theorem 2.1. Let a, b ≥ 0 and 0 ≤ ν ≤ 1
2 .

(i) If 0 ≤ ν ≤ 1
4 , then

(1− ν) a+ νb ≥ a1−νbν + ν
(√

a−
√
b
)2

(2.1)

+ 2ν
(√

a− 4
√
ab
)2

+ r0

(
4

√
a
√
ab−

√
a

)2

,

(ii) If 1
4 ≤ ν ≤ 1

2 , then

(1− ν) a+ νb ≥ a1−νbν + ν
(√

a−
√
b
)2

+ (1− 2ν)
(√

a− 4
√
ab
)2

(2.2)

+ r0

(
4

√
a
√
ab− 4

√
ab

)2

,

where r = min{2ν, 1− 2ν} and r0 = min{2r, 1− 2r}.
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Proof. Firstly, we suppose 0 ≤ ν ≤ 1
4 . By applying (1.4), we have

(1− ν) a+ νb− ν
(√

a−
√
b
)2

= (1− 2ν) a+ 2ν
√
ab

≥ a1−νbν + 2ν
(√

a− 4
√
ab
)2

+ r0

(
4

√
a
√
ab−

√
a

)2

.

That is,

(1− ν) a+ νb ≥ a1−νbν + ν
(√

a−
√
b
)2

+ 2ν
(√

a− 4
√
ab
)2

+ r0

(
4

√
a
√
ab−

√
a

)2

.

Thus, (2.1) holds. Now, we suppose 1
4 ≤ ν ≤ 1

2 . By (1.5), it follows that

(1− ν) a+ νb− ν
(√

a−
√
b
)2

= (1− 2ν) a+ 2ν
√
ab

≥ a1−νbν + (1− 2ν)
(√

a− 4
√
ab
)

+ r0

(
4

√
a
√
ab− 4

√
ab

)2

.

i.e.,

(1− ν) a+ νb ≥ a1−νbν + ν
(√

a−
√
b
)2

+ (1− 2ν)
(√

a− 4
√
ab
)2

+ r0

(
4

√
a
√
ab−

√
ab

)2

.

Consequently, (2.2) holds. This completes the proof. □
Remark 2.2. With replacing a and b by their squares in (2.1) and (2.2),
respectively, we have

(1− ν) a2 + νb2 ≥
(
a1−νbν

)2
+ ν (a− b)2 + 2ν

(
a−

√
ab
)2

(2.3)

+ r0

(
4
√
a3b− a

)2
, 0 ≤ ν ≤ 1

4
,

(1− ν) a2 + νb2 ≥
(
a1−νbν

)2
+ ν (a− b)2 + (1− 2ν)

(
a−

√
ab
)2

(2.4)

+ r0

(
4
√
a3b−

√
ab
)2

,
1

4
≤ ν ≤ 1

2
,

With considering (2.3) and (2.4), we get to the folowing result:
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Corollary 2.3. Let a, b ≥ 0 and 0 ≤ ν ≤ 1
2 .

(i) If 0 ≤ ν ≤ 1
4 , then

((1− ν) a+ νb)2 ≥
(
a1−νbν

)2
+ ν2 (a− b)2 + 2ν

(
a−

√
ab
)2

(2.5)

+ r0

(
4
√
a3b− a

)2
,

(ii) If 1
4 ≤ ν ≤ 1

2 , then

((1− ν) a+ νb)2 ≥
(
a1−νbν

)2
+ ν2 (a− b)2 + (1− 2ν)

(
a−

√
ab
)2

(2.6)

+ r0

(
4
√
a3b−

√
ab
)2

,

where r = min{2ν, 1− 2ν} and r0 = min{2r, 1− 2r}.

Proof. If 0 ≤ ν ≤ 1
4 . Then, we have from (2.3):

((1− ν) a+ νb)2 − ν2 (a− b)2 = (1− ν) a2 + νb2 − ν (a− b)2

≥
(
a1−νbν

)2
+ 2ν

(
a−

√
ab
)2

+ r0

(
4
√
a3b− a

)2
.

Hence,

((1− ν) a+ νb)2 ≥
(
a1−νbν

)2
+ ν2 (a− b)2 + 2ν

(
a−

√
ab
)2

+ r0

(
4
√
a3b− a

)2
.

Thus, (2.5) holds. By using (2.4) and similar calculations, we are able
to obtain (2.6). □

Remark 2.4. Clearly, (2.5) and (2.6) are improvements of the first
inequality in (1.6) and (1.7).

Theorem 2.5 is a refined reverse of (1.1) which refines the right-hand
side of (1.4) and (1.5), respectively.

Theorem 2.5. Let a, b ≥ 0 and 0 ≤ ν ≤ 1
2 .

(i) If 0 ≤ ν ≤ 1
4 , then

(1− ν) a+ νb ≤ a1−νbν + (1− ν)
(√

a−
√
b
)2

(2.7)

− 2ν
(√

b− 4
√
ab
)2

− r0

(
4

√
b
√
ab−

√
b

)2

,
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(ii) If 1
4 ≤ ν ≤ 1

2 , then

(1− ν) a+ νb ≤ a1−νbν + (1− ν)
(√

a−
√
b
)2

(2.8)

− (1− 2ν)
(√

b− 4
√
ab
)2

− r0

(
4

√
b
√
ab− 4

√
ab

)2

,

where r = min{2ν, 1− 2ν} and r0 = min{2r, 1− 2r}.

Proof. Let 0 ≤ ν ≤ 1
4 . Then, by (1.4), we have

a1−νbν + (1− ν)
(√

a−
√
b
)2

− (1− ν) a− νb

= a1−νbν + (1− 2ν) b+ 2ν
√
ab− 2

√
ab

≥ a1−νbν + b1−νaν + 2ν
(√

b− 4
√
ab
)2

+ r0

(
4

√
b
√
ab−

√
b

)2

− 2
√
ab

≥ 2
√
ab+ 2ν

(√
b− 4

√
ab
)2

+ r0

(
4

√
b
√
ab−

√
b

)2

− 2
√
ab

= 2ν
(√

b− 4
√
ab
)2

+ r0

(
4

√
b
√
ab−

√
b

)2

.

Therefore,

(1− ν) a+ νb ≤ a1−νbν + (1− ν)
(√

a−
√
b
)2

− 2ν
(√

b− 4
√
ab
)2

− r0

(
4

√
b
√
ab−

√
b

)2

.

This estimate completes the proof of (2.7). The proof (2.8) is similar to
inequality (2.7) by applying (1.5). □
Remark 2.6. By setting a and b by their squares in Theorems 2.2
respectively, we get

(1− ν) a2 + νb2 ≤
(
a1−νbν

)2
+ (1− ν) (a− b)2 − 2ν

(
b−

√
ab
)2

(2.9)

− r0

(
4
√
b3a− b

)2
,

and

(1− ν) a2 + νb2 ≤
(
a1−νbν

)2
+ (1− ν) (a− b)2 − (1− 2ν)

(
b−

√
ab
)2

(2.10)

− r0

(
4
√
b3a−

√
ab
)2

.
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With applying (2.9) and (2.10), we obtain the following result that is a
refinement of the second inequality in (1.6) and (1.7).

Corollary 2.7. Let a, b ≥ 0 and 0 ≤ ν ≤ 1
2 .

(i) If 0 ≤ ν ≤ 1
4 , then

((1− ν) a+ νb)2 ≤
(
a1−νbν

)2
+ (1− ν)2 (a− b)2 − 2ν

(
b−

√
ab
)2

(2.11)

− r0

(
4
√
b3a− b

)2
,

(ii) If 1
4 ≤ ν ≤ 1

2 , then

((1− ν) a+ νb)2 ≤
(
a1−νbν

)2
+ (1− ν)2 (a− b)2 − (1− 2ν)

(
b−

√
ab
)2

(2.12)

− r0

(
4
√
b3a−

√
ab
)2

,

where r = min{2ν, 1− 2ν} and r0 = min{2r, 1− 2r}.

Proof. If 0 ≤ ν ≤ 1
4 . Then, we have (2.9)

((1− ν) a+ νb)2 − (1− ν)2 (a− b)2 = (1− ν) a2 + νb2 − (1− ν) (a− b)2

≤
(
a1−νbν

)2 − 2ν
(
b−

√
ab
)2

− r0

(
4
√
b3a− b

)2
.

by using from inequality (2.10) and the same technique as in (2.11), one
can prove (2.12). Corollary 2.7 is proved. □

3. Some Inequalities for Operators

Our aim in this section is to present operator versions of the refined
Young and its reverse inequalities according to the monotonicity prop-
erty of operator functions. So, we need the following lemma to prove
the main theorems (for more details one can see [5]).

Lemma 3.1. Let X ∈ B (H) be hermitian and let f and g be continuous
real functions such that f (t) ≥ g (t) on Sp (X) the spectrum of (X) .
Then f (X) ≥ g (X) .

Now, we are ready to present operator versions of (2.1), (2.1), (2.7)
and (2.8). We will prove the following theorem.

Theorem 3.2. Let A,B ∈ B (H) be two positive invertible operators
and 0 ≤ ν ≤ 1

2 .
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(i) If 0 ≤ ν ≤ 1
4 , then

A▽ν B ≥ A♯νB + 2ν (A▽B −A♯B)(3.1)

+ 2ν
(
A+A♯B − 2

(
A♯ 1

4
B
))

+ r0

(
A+A♯ 1

4
B − 2

(
A♯ 1

8
B
))

,

(ii) If 1
4 ≤ ν ≤ 1

2 , then
A▽ν B ≥ B♯1−νA+ 2υ (A▽B −B♯A)(3.2)

+ (1− 2ν)
(
B♯A+B − 2

(
B♯ 3

4
A
))

+ r0

(
B♯A+B♯ 3

4
A− 2

(
B♯ 5

8
A
))

,

where r = min{2ν, 1− 2ν} and r0 = min{2r, 1− 2r}.

Proof. Letting 0 ≤ ν ≤ 1
4 . Then by putting a = 1 in (2.1), we obtain

(1− ν) + νb ≥ bν + ν
(
1 + b− 2

√
b
)
+ 2ν

(√
b+ 1− 2

4
√
b
)

(3.3)

+ r0

(
1 +

4
√
b− 2

8
√
b
)
,

for every b > 0. By lemma 3.1, for any positive operator X, (3.3) holds.
Therefore, we have

(1− ν) Id+ νX ≥ Xν + ν
(
Id+X − 2

√
X
)
+ 2ν

(√
X + Id− 2

4
√
X
)(3.4)

+ r0

(
Id+

4
√
X − 2

8
√
X
)
.

By putting X = A− 1
2BA− 1

2 in (3.4), we get

(1− ν) Id+ ν
(
A− 1

2BA− 1
2

)
≥

(
A− 1

2BA− 1
2

)ν

(3.5)

+ ν

(
Id+

(
A− 1

2BA− 1
2

)
− 2

√
A− 1

2BA− 1
2

)
+ 2ν

(√
A− 1

2BA− 1
2 + Id− 2

4

√
A− 1

2BA− 1
2

)
+ r0

(
Id+

4

√
A− 1

2BA− 1
2 − 2

8

√
A− 1

2BA− 1
2

)
.

By multiplying both sides of (3.5) by A
1
2 , we have

A▽ν B ≥ A♯νB + 2ν (A▽B −A♯B) + 2ν
(
A+A♯B − 2

(
A♯ 1

4
B
))
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+ r0

(
A+A♯ 1

4
B − 2

(
A♯ 1

8
B
))

.

Now, let 1
4 ≤ ν ≤ 1

2 , then by replacing b = 1 in (2.2), we have

(1− ν) a+ ν ≥ a1−ν + ν
(
1 + a− 2

√
a
)
+ (1− 2ν)

(√
a+ a− 2

4
√
a3
)(3.6)

+ r0

(√
a+

4
√
a3 − 2

8
√
a5
)
,

for any a > 0. By lemma 3.1, for any positive operator X, (3.6) holds.
Thus,

(1− ν)X + νId ≥ X1−ν + ν
(
Id+X − 2

√
X
)

(3.7)

+ (1− 2ν)
(√

X +X − 2
4
√
X3

)
+ r0

(√
X +

√
X3 − 2

8
√
X5

)
.

By insertting X = B− 1
2AB− 1

2 in (3.7) and then multiplying both sides
by B

1
2 , we get,

A▽ν B ≥ B♯1−νA+ 2υ (A▽B −B♯A)

+ (1− 2ν)
(
B♯A+B − 2

(
B♯ 3

4
A
))

+ r0

(
B♯A+B♯ 3

4
A− 2

(
B♯ 5

8
A
))

.

Therefore,

A▽ν B ≥ B♯1−νA+ 2ν (A▽B −B♯A)

+ (1− 2ν)
(
B +B♯A− 2

(
B♯ 3

4
A
))

+ r0

(
B♯A+B♯ 3

4
A− 2

(
B♯ 5

8
A
))

.

This completes the proof. □

Theorem 3.3. Let A,B ∈ B (H) so that A and B are two positive
invertible operators and 0 ≤ ν ≤ 1

2 .

(i) If 0 ≤ ν ≤ 1
4 , then

A▽ν B ≤ A♯νB + 2 (1− ν) (A▽B −A♯B)(3.8)

− 2ν
(
A+A♯B − 2

(
A♯ 3

4
B
))

− r0

(
A+A♯ 3

4
B − 2

(
A♯ 7

8
B
))

,
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(ii) If 1
4 ≤ ν ≤ 1

2 , then
A▽ν B ≤ B♯1−νA+ 2 (1− ν) (A▽B −B♯A)(3.9)

− (1− 2ν)
(
B♯A+B − 2

(
B♯ 1

4
A
))

− r0

(
B♯A+B♯ 1

4
A− 2

(
B♯ 3

8
A
))

,

where r = min{2ν, 1− 2ν} and r0 = min{2r, 1− 2r}.

Proof. In view of Theorem 2.2, and by proceeding with similar calcula-
tions as used in Theorem 3.2, we obtain inequalities (3.8) and (3.9). □

4. Better Inequalities for Matrices

In this section, we establish norm inequalities for the Hilbert-Schmidt
norm based on Corollaries 2.3 and 2.7.

Theorem 4.1. Let A,B,X ∈ Mn so that A and B are positive semi-
definite and 0 ≤ ν ≤ 1

2 .

(i) If 0 ≤ ν ≤ 1
4 , then

∥(1− ν)AX + νXB∥22 ≥
∥∥A1−νXBν

∥∥2

2
+ v2 ∥AX −XB∥22(4.1)

+ 2v

(
∥AX∥22 +

∥∥∥A 1
2XB

1
2

∥∥∥2

2
− 2

∥∥∥A 3
4XB

1
4

∥∥∥2

2

)
+ r0

(∥∥∥A 3
4XB

1
4

∥∥∥2

2
+ ∥AX∥22 − 2

∥∥∥A 7
8XB

1
8

∥∥∥2

2

)
,

(ii) If 1
4 ≤ ν ≤ 1

2 , then

∥(1− ν)AX + νXB∥22 ≥
∥∥A1−νXBν

∥∥2

2
+ v2 ∥AX −XB∥22

(4.2)

+ (1− 2v)

(
∥AX∥22 +

∥∥∥A 1
2XB

1
2

∥∥∥2

2
− 2

∥∥∥A 3
4XB

1
4

∥∥∥2

2

)
+ r0

(∥∥∥A 3
4XB

1
4

∥∥∥2

2
+

∥∥∥A 1
2XB

1
2

∥∥∥2

2
− 2

∥∥∥A 5
8XB

3
8

∥∥∥2

2

)
,

where r = min{2ν, 1− 2ν} and r0 = min{2r, 1− 2r}.

Proof. To prove Theorem 4.1, we consider the spectral theorem. Since
A,B are positive semidefinite. So by spectral theorem, there exist uni-
tary matrices U and V so that A = UDU∗ and B = V EV ∗, where
D = diag (λ1, . . . , λn) and E = diag (µ1, . . . , µn) , with λi, µj ≥ 0,
1 ≤ i, j ≤ n. Let Y = U∗XV = (yij) , then we have

AX +XB = U [(λi + µj) ◦ yij ]V ∗,

AX −XB = U [(λi − µj) ◦ yij ]V ∗,

A
1
2XB

1
2 = U

[
(λiµj)

1
2 ◦ yij

]
V ∗,
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AvXB1−v +A1−vXBv = U
[(

λv
i µ

1−v
j + λ1−v

i µv
j

)
◦ yij

]
V ∗.

If 0 ≤ ν ≤ 1
4 , then according to (2.5) and the unitary invariance of ∥.∥2 ,

we obtain

∥(1− ν)AX + νXB∥22 =
n∑

i,j=1

((1− ν)λi + νµj)
2 |yij |2

≥
n∑

i,j=1

(
λ1−ν
i µν

j

)2 |yij |2 + ν2
n∑

i,j=1

(λi − µj)
2

+ 2ν
n∑

i,j=1

(
λi −

√
λiµj

)2

+ r0

n∑
i,j=1

(
4

√
λ3
iµj − λi

)2

=
∥∥A1−νXBν

∥∥2
2
+ v2 ∥AX −XB∥22

+ 2v

(
∥AX∥22 +

∥∥∥A 1
2XB

1
2

∥∥∥2
2
− 2

∥∥∥A 3
4XB

1
4

∥∥∥2
2

)
+ r0

(∥∥∥A 3
4XB

1
4

∥∥∥2
2
+ ∥AX∥22 − 2

∥∥∥A 7
8XB

1
8

∥∥∥2
2

)
.

Consequently,

∥(1− ν)AX + νXB∥22 ≥
∥∥A1−νXBν

∥∥2
2
+ v2 ∥AX −XB∥22

+ 2v

(
∥AX∥22 +

∥∥∥A 1
2XB

1
2

∥∥∥2
2
− 2

∥∥∥A 3
4XB

1
4

∥∥∥2
2

)
+ r0

(∥∥∥A 3
4XB

1
4

∥∥∥2
2
+ ∥AX∥22 − 2

∥∥∥A 7
8XB

1
8

∥∥∥2
2

)
.

This estimate completes the proof of (4.1). With the help of (2.6) and
the same method as used in (4.1), one can deduce (4.2). □

Theorem 4.2. Let A,B,X ∈ Mn so that A and B are positive semi-
definite and 0 ≤ ν ≤ 1

2 .

(i) If 0 < ν ≤ 1
4 , then

∥(1− ν)AX + νXB∥22 ≤
∥∥A1−vXBv

∥∥2

2
+ (1− ν)2 ∥AX −XB∥22

− 2ν

(
∥XB∥22 +

∥∥∥A 1
2XB

1
2

∥∥∥2

2
− 2

∥∥∥A 1
4XB

3
4

∥∥∥)
− r0

(
∥XB∥22 +

∥∥∥A 1
4XB

3
4

∥∥∥2

2
− 2

∥∥∥B 7
8XA

1
8

∥∥∥2

2

)
,



OPERATOR AND NORM VERSIONS 45

(ii) If 1
4 ≤ ν ≤ 1

2 , then
∥(1− ν)AX + νXB∥22 ≤

∥∥A1−vXBv
∥∥2

2
+ (1− v)2 ∥AX −XB∥22

− (1− 2ν)

(
∥XB∥22 +

∥∥∥A 1
2XB

1
2

∥∥∥2

2
− 2

∥∥∥A 1
4XB

3
4

∥∥∥2

2

)
− r0

(∥∥∥A 1
2XB

1
2

∥∥∥2

2
+

∥∥∥B 3
4XA

1
4

∥∥∥2

2
− 2

∥∥∥A 3
8XB

5
8

∥∥∥2

2

)
,

where r = min{2ν, 1− 2ν} and r0 = min{2r, 1− 2r}.

Proof. Considering Corollary (2.7), the unitarily invariant property of
∥.∥2 and in the same way as in Theorem 4.1, we are able to prove The-
orem 4.2. □
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