
 

 
 

Some Basic Results on Fuzzy Strong 𝝓-b-
Normed Linear Spaces 

 

 

 

 

 

 

 

 

-

 

 

Mohammadreza Foroutan 

Sahand Communications in 

Mathematical Analysis 

 

Print ISSN: 2322-5807 

Online ISSN: 2423-3900 

Volume: 20 

Number: 4 

Pages: 47-61 

 

Sahand Commun. Math. Anal. 

DOI: 10.22130/scma.2023.1989152.1253 

On Relative Reproducing Kernel Banach Spaces: Definitions, 

Semi-Inner Product and Feature Maps 



Sahand Communications in Mathematical Analysis (SCMA) Vol. 20 No. 4 (2023), 47-61

http://scma.maragheh.ac.ir

DOI: 10.22130/scma.2023.1989152.1253

On Relative Reproducing Kernel Banach Spaces: Definitions,
Semi-Inner Product and Feature Maps

Mohammadreza Foroutan

Abstract. In this paper, a special class of relative reproducing
kernel Banach spaces a semi-inner product is studied. We extend
the concept of relative reproducing kernel Hilbert spaces to Ba-
nach spaces. We present these relative reproducing kernel Banach
spaces in terms of the feature maps and establish the separability of
the domains when they are separable. In addition, we prove some
theorems concerning feature maps and reproducing kernel Banach
spaces. And finally, the relative kernels are compared with the
semi-inner ones.

1. Introduction

Reproducing kernel Hilbert spaces are Hilbert spaces of functions such
that point evaluation functions are continuous [2, 12, 13]. In their gener-
alization of Banach spaces, Zhang and Xu [16] define a reflexive Banach
space of functions (function space) as a reproducing kernel Banach space
if its dual space is isometric with a Banach space of functions and the
point evaluation functions are continuous for both Banach space and its
dual. In particular, they show that if φ : X →W is a map to a reflexive
Banach space W and φ∗ : X → W ∗ is a map to its dual so that linear
span image of both maps are dense, then a reproducing kernel Banach
space is determined with reproducing kernel k(x, y) = 〈φ(x), φ∗(y)〉.
They called the maps as feature maps and the spaces W and W ∗ as
the pair of feature spaces for reproducing kernel Banach spaces. In [1],
Alpay and Jorgensen develop the reproducing kernel Hilbert space to
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relative reproducing kernel Hilbert spaces. A Hilbert space H of func-
tions on the given set X is called a relative reproducing kernel Hilbert
space if there exists a function Mx,y ∈ H such that for every f ∈ H,

f(x)− f(y) = 〈f,Mx,y〉.

Alpay et al. in [1] introduced the notion of relative reproducing kernel
Hilbert spaces to apply in electrical network models where the differ-
ences may represent voltage drops. We extend this definition to Banach
spaces of functions with applying duality mapping. For a relative repro-
ducing kernel Banach space of functions defined on a set X, the existence
of the right and left relative reproducing kernels has been shown. Our
goal is to apply feature maps to characterize the Banach spaces. To do
this, we take two steps. Firstly, we show that for a Banach space V
(not necessarily reflexive), if there exist two maps φ and ψ such that
spanφ(X) = V and spanψ(X) = V ∗, then there exists a relative re-
producing kernel Banach space B with a dual space B∗ endowed with
a bilinear form associated the those feature maps. We called the maps
primary and secondary feature maps for relative reproducing kernel Ba-
nach spaces. In the next step, we have a relative reproducing kernel
Banach space and look for feature maps related to it. Then, we gen-
eralize the notion of relativity to semi-inner product spaces. We find
feature maps in these spaces and compare the relative reproducing ker-
nel and semi-inner product relative reproducing kernel in these spaces.
According to Owhadi and Scovel [11], we establish the separability of
relative reproducing kernel Banach spaces and find some results about
Lipschitz function spaces and relative reproducing kernel Banach spaces.
Finally, we show that if the feature space is reflexive, the relative repro-
ducing kernel Banach space that is constructed by feature maps is a
reproducing kernel Banach space, and as a result the evaluation func-
tion becomes continuous and so we continue with the reproducing kernel
Banach spaces.

2. Reproducing Kernel Banach Spaces

In this section, we extend the idea of reproducing kernel Hilbert space
to Banach spaces.

Definition 2.1. Let X ⊆ Rd and H be a Hilbert space consisting of
function f : X → C. H is called a reproducing kernel Hilbert space and
a kernel function K : X ×X → C is called a reproducing kernel for H if

(i) K(., y) ∈ H, for all y ∈ X,
(ii) f(y) = 〈f,K(., y)〉H , for all f ∈ H and y ∈ X,

where 〈., .〉H is used to denote the inner product of H.
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Let X be a set and K : X ×X → C a function. Let us denote
B0 = span{K(t, .) : t ∈ X}, B♯

0 = span{K(., t) : t ∈ X}.
Furthermore, suppose that there is a norm ‖.‖B0 in B0 satisfying:

(I) The evaluation functionals are continuous of B0.
(II) If {fn}∞n=1 is a Cauchy sequence in (B0, ‖.‖B0) such that fn(y) →

0 for all y ∈ X, then ‖fn‖B0 → 0.
Then, there are (B, ‖.‖B) and (B♯, ‖.‖B♯) Banach completions of B0 and
B♯

0 respectively, such that (B,B♯) is a pair of reproducing kernel Banach
space with the reproducing kernel K.

Definition 2.2. A reproducing kernel Banach space on X is a reflexive
Banach space B of functions on X for which B∗ is isometric to Banach
space B♯ of functions on X and the point evaluation is continuous on
both B and B♯.

As pointed out in [16], the identification B♯ of B∗ is not unique; we
will refer to the dual space B∗ of a reproducing kernel Banach space B
as its chosen identification. It has been proved in [16] that there exists
a reproducing kernel for a reproducing kernel Banach space as defined
above. To this end, we denote by 〈., .〉 : B×B∗ → C the evaluation map
〈x, y∗〉 = y∗(x) for x ∈ B and y∗ ∈ B∗. Let us notice that the mapping
L from the Banach space B♯ to the dual space B∗ of B is defined as

(L(g))(f) = 〈f,L(g)〉 := 〈f, g〉K , for all f ∈ B and g ∈ B♯,

is an embedding from B♯ to B∗, i.e., it is an isometric and linear map-
ping. So, we can define ϕ : X → B and ϕ∗ : X → B∗ as

ϕ(x) = K(x, .) ∈ B, ϕ∗(y) = L(K(., y)) ∈ B∗,

and they satisfy
K(x, y) = 〈ϕ(x), ϕ∗(y)〉.

Notice that as B is a reflexive Banach space then for any bounded linear
functional T on B∗ there exists a unique x ∈ B such that T (y∗) =
〈x, y∗〉B for each y∗ ∈ B∗. The following result holds [16]:

Theorem 2.3. Suppose that B is a reproducing kernel Banach space on
X. Then there exists a unique function K : X ×X → C such that the
following statements hold:

(a) For every t ∈ X, K(., t) ∈ B∗ and f(t) = (f,K(., t))B for all
f ∈ B.

(b) For every t ∈ X, K(t, .) ∈ B and f∗(t) = (K(t, .), f∗)B for all
f∗ ∈ B∗.

(c) The linear span of {K(t, .) : t ∈ X} is dense in B.
(d) The linear span of {K(., t) : t ∈ X} is dense in B∗.
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(e) For all t, s ∈ X, K(t, s) = (K(t, .),K(., s))B.

The function K in the above theorem is the reproducing kernel for
the reproducing kernel Banach space B.

3. Relative Reproducing Kernel Banach Spaces

This section deals with the relative reproducing kernel on Banach
spaces of functions by dual mapping. A relative reproducing kernel
Banach space with dual mapping on B × B∗ denoted by 〈·, ·〉 is an
extension of the relative reproducing kernel Hilbert space [1]. Influenced
by the definition of reproducing kernel Banach space [6], it does not
require the reflexivity condition. Throughout this paper, we assume
that the input set X is non-empty.

Definition 3.1. Let B be a Banach space of functions on X whose dual
space B∗ is isometrically equivalent to the space of functions on X that
we denote by B♯.

(i) We say that Rx(·, y) ∈ B∗ is a right relative reproducing kernel
for B, if f(x)− f(y) = 〈f,Rx(·, y)〉, for every f ∈ B and x, y ∈
X;

(ii) We say that Ly(x, ·) ∈ B∗ is a left relative reproducing kernel for
B, if g(y)− g(x) = 〈Ly(x, ·), g〉 for every g ∈ B∗ and x, y ∈ X.

(iii) If there are right and left relative reproducing kernels for B,
then we say that B is a relative reproducing kernel Banach
space.

Obviously, for every x, y ∈ X

(i) Rx(·, y) = −Ry(·, x) ;
(ii) Ly(x, ·) = −Lx(y, ·);
(iii) 〈Ly(x, ·), Rx(·, y)〉 = Rx(y, y) +Ry(x, x) = Ly(x, x) + Lx(y, y).

If x = y, then Rx(·, y) = Ly(x, ·) = 0. From now on, we suppose
that x 6= y. Let F be a Banach space of functions on X. Define S :
X ×X −→ F ∗ such that for any f ∈ F

Sx,y(f) = f(x)− f(y), (x, y ∈ X).

Theorem 3.2. Let B be a reflexive Banach space of functions on X
and Sx,y be a continuous linear functional on both B and B∗ for every
x, y ∈ X. Then there exist unique Rx(·, y) and Ly(x, ·) such that for
every f ∈ B, g ∈ B∗ and for every x, y ∈ X:

(i) Sx,y(f) = f(x)− f(y) = 〈f,Rx(·, y)〉.
(ii) Sy,x(g) = g(y)− g(x) = 〈Ly(x, ·), g〉.
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Proof. Since B is reflexive, B∗ is too. We know that for any continuous
linear functional T on B∗, there exists a unique Ly,x ∈ B such that

g(y)− g(x) = 〈Ly,x, g〉, g ∈ B∗.

Define Ly(x, ·) := Ly,x(·) for every x, y ∈ X. Likewise, there exists
Rx(·, y) ∈ B∗ such that:

f(x)− f(y) = 〈f,Rx(·, y)〉, (f ∈ B, x, y ∈ X).

For the uniqueness of relative kernels, suppose that Rx(·, y) and R′
x(·, y)

are in B∗ such that for every x, y ∈ X and f ∈ B satisfy in (i). Then
f(x)− f(y) = 〈f,Rx(·, y)〉

= 〈f,R′
x(·, y)〉.

The above equality implies that 〈f,Rx(·, y) − R′
x(·, y)〉 = 0, for every

x, y ∈ X and f ∈ B. This means that
Rx(·, y) = R′

x(·, y).
The proof for Ly(x, ·) is similar. □
Proposition 3.3. If Rx(·, y) and Ly(x, ·) are the right and left relative
reproducing kernels of Banach space B, respectively, then for every x, y
and z ∈ X:

(i) Rx(·, y) = Rx(·, z) +Rz(·, y).
(ii) Ly(x, ·) = Ly(z, ·) + Lz(x, ·).

Proof. Let f ∈ B, then for every x, y, z ∈ X

f(x)− f(y) = f(x)− f(z) + f(z)− f(y).

This implies (i). The proof is similar for (ii). □
For every x, y ∈ X and fixed z0 ∈ X, define

Tx := Lz0(x, ·),(3.1)
and

My := Rz0(·, y).(3.2)
By the cases (i) and (ii) in Proposition 3.3, we have

Ly(x, ·) = Tx − Ty,(3.3)
and

Rx(·, y) =My −Mx.(3.4)
A reproducing kernel Banach space with kernel K(x, y) is a relative re-
producing kernel on Banach spaces with right relative reproducing kernel
Rx(·, y) = k(·, y) − k(·, x) and the left one as Ly(x, ·) = k(x, ·) − k(y, ·)
for all x, y ∈ X. Authors in [1], characterized the relative reproducing
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kernel on Hilbert spaces. In the next proposition, we find some similar
results.

Proposition 3.4. A Banach space B of functions on the set X is a
relative reproducing kernel on Banach space with right and left relative
reproducing kernels Rx(·, y) and Ly(x, ·) respectively if and only if there
exist functions such as hx : X → B∗, dy : X → B and two linear
functional C : B → C and D : B∗ → C (possibly unbounded) such that
for all F ∈ B,G ∈ B∗ and x ∈ X

F (x) = 〈F, hx〉+ C(F ),

and
G(y) = 〈dy, G〉+D(G).

Proof. Similar to the proof of [1, Proposition 2.4], we define Rx(·, y) :=
hx − hy and Ly(x, ·) := dy − dx for every x, y ∈ X, so B is a relative
reproducing kernel on Banach space. On the other hand, take any fix
z0 ∈ X and put y = z0 in f(x) − f(y) = 〈f,Rx(·, y)〉 and x = z0 in
g(y)− g(x) = 〈Ly(x, ·), g〉. These imply that
hx = Rx(·, z0), dy = Ly(z0, ·), C(F ) = F (z0), D(G) = G(z0),

for every x, y ∈ X. □
By Proposition 3.4, we conclude that every relative reproducing kernel

Hilbert space is a relative reproducing kernel on Banach space.

Corollary 3.5. If B is a reflexive relative reproducing kernel on Banach
space that point evaluation function is bounded in at least one point like
x0 ∈ X on both B and B∗, then B is a reproducing kernel Banach space.

Let B be a Banach space of functions. Define for every f ∈ B and
g ∈ B∗ the orthogonal spaces by

f⊥ := {g ∈ B∗; 〈f, g〉 = 0}, ⊥g = {f ∈ B; 〈f, g〉 = 0}.

Proposition 3.6. Let B be a relative reproducing kernel on Banach
space with the right and left relative kernels Rx(·, y) and Ly(x, ·). Then
the orthogonal spaces of Rx(·, y), Ly(x, ·) are the space of constant func-
tions in B and B∗, accordingly. In particular, the linear span Rx(·, y)
and Ly(x, ·) are dense in B∗ and B, respectively, if and only if B∗ and
B, contain no non-zero constant functions.

Proof. For every x, y ∈ X

⊥Rx(·, y) = {f ∈ B; 〈f,Rx(·, y)〉 = 0}.
This implies that f(x)− f(y) = 0, so f is constant in B and

Ly(x, ·)⊥ := {g ∈ B∗; 〈Ly(x, ·), g〉 = 0}.
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Hence, g is a constant function in B∗. For the last, assume that the
constant functions in B and B∗ are just zero functions and

span{Ly(x, ·);x, y ∈ X} 6= B.

Then by Hahn-Banach theorem, there exists a nontrivial functional f ∈
B∗ such that 〈Ly(x, ·), f〉 = 0. We get immediately that f is a constant
function in B∗, so hypothesis f = 0, a contradiction. □

4. Relative Reproducing Kernel on Banach Space and
Feature Maps

We start with the following lemma that is part of [16, Theorem 3].
Note that we have removed the reflexivity of the Banach space from the
mentioned theorem because in the current case, we do not need that
condition.
Lemma 4.1. Let V be a Banach space with the dual space V ∗. Sup-
pose that there exist families of functions such {ψx}x∈X ∈ V ∗ and
{φx}x∈X ∈ V on a given set X that (linear span) span{φx}x∈X = V and
span{ψx}x∈X = V ∗. Define I(f)(x) = 〈f, ψx〉 and J(g)(y) = 〈φy, g〉 for
all f ∈ V and g ∈ V ∗. Then the space

B := {I(f) : f ∈ V },
with the norm ‖I(f)‖B := ‖f‖V is a Banach space with the dual space

B∗ := {J(g) : g ∈ V ∗},
endowed with the norm

‖J(g)‖B∗ := ‖g‖V ∗ .

The bilinear form on B ×B∗ is
〈I(f), J(g)〉 := 〈f, g〉V .

Proof. We show that I and J are one-one and the Banach space B∗ is
dual of B by bilinear form as defined. Assume that I(f) = 0. This
implies that for all x ∈ X, 〈f, ψx〉 = 0. By hypothesising on the ψx,
〈f, g〉 = 0 for all g ∈ V ∗ implying that f = 0. So B is a Banach
space with the norm as mentioned. Similarly, so J(g) is one-one and
B′ := {J(g) : g ∈ V ∗} is Banach space, too. We have

|〈I(f), J(g)〉| < ‖f‖V ‖g‖V ∗

= ‖I(f)‖B‖J(g)‖B∗ .

Therefore, every function in B′ is a continuous linear function on B,
since the mappings u 7−→ 〈u, ψ(·)〉V is isometric from V to B. Whence,
functions in B′ exhaust all the continuous linear functionals on B, con-
clude that B∗ = B′ with the above bilinear form and B∗ is the dual of
B. □
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Theorem 4.2. The Banach space B defined in Lemma 4.1 is a rela-
tive reproducing kernel on Banach space. Moreover, the right relative
reproducing kernel for B is

Rx(·, y) := 〈φ(·), ψx − ψy〉V
= J(ψx)− J(ψy),

and the left relative reproducing kernel for B is
Ly(x, ·) := 〈φy − φx, ψ(·)〉V

= I(φy)− I(φx),

for every x, y ∈ X.

Proof. Clearly, by definition, B and B∗ are function spaces. We show
that Rx(·, y) is the right relative reproducing kernel and Ly(x, ·) is the
left one. For each x, y ∈ X,u ∈ B, put u = I(f) = 〈f, ψ(·)〉V for some
f ∈ V . Then

〈u,Rx(·, y)〉B =
⟨
〈f, ψ(·)〉V , 〈φ(·), ψx − ψy〉V

⟩
B

= 〈f, ψx − ψy〉
= 〈f, ψx〉V − 〈f, ψy〉V
= I(f)(x)− I(f)(y).

Similarly, for every t ∈ V ∗, define g := 〈φ(·), t〉, then
〈Ly(x, ·), g〉B =

⟨
〈φy − φx, ψ(·)〉V , 〈φ(·), t〉V

⟩
B

= 〈φy − φx, t〉V
= 〈φy, t〉V − 〈φx, t〉V
= J(g)(y)− J(g)(x).

These facts show that Ly(x, ·) and Rx(·, y) are the left and right relative
reproducing kernels, respectively. □
Theorem 4.3. Assume that for every x, y ∈ X, Rx,y and Ly,x are
functions on the set X. Then

(i) Rx,y is the right relative reproducing kernel for some Banach
spaceB,

(ii) Ly,x is the left relative reproducing kernel for some Banach space
B,

for every x, y ∈ X if, there exist some families of functions such as
{φx}x∈X ⊂ V and {ψy}y∈X ⊂ V ∗ , where V is a Banach space with dual
space V ∗ that:

(1) span{φx}x∈X = V ;
(2) span{ψy}y∈X = V ∗;
(3) 〈Ly,x, Rx,y〉 = 〈φy − φx, ψx − ψy〉.
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The converse is true when the relative reproducing kernel on Banach
space B and B∗ contain no non-zero constant functions.

Proof. The first part has been shown in Theorem 4.2. Then
〈Ly(x, ·), Rx(·, y)〉B =

⟨
〈φy − φx, ψ(·)〉V , 〈φ(·), ψx − ψy〉V

⟩
B

= 〈φy − φx, ψx − ψy〉,

for every x, y ∈ X. We put Rx,y(·) := Rx(·, y) and Ly,x(·) := Ly(x, ·).
For the converse, assume that Ly(x, ·) and Rx(·, y) are the left and the
right relative reproducing kernels. As equation (1) and (2), set for every
x, y ∈ X :

ψ(y) :=My, φ(x) := Tx.

By the Theorem 3.6, span{Ly(x, ·) : x, y ∈ X} = B and span{Rx(·, y) :
x, y ∈ X} = B∗, because of that for every x, y ∈ X, Tx − Ty ∈
span{Tx}x∈X . Thus span{Tx − Ty} ⊆ span{Tx}x∈X ⊆ B. This means
that span{Tx}x∈X = B. □

We call the mappings φ : X −→ V and ψ : x −→ V ∗ that maps
x 7−→ φx and y 7−→ ψy in the Theorem 4.3 as the primary and secondary
feature maps for relative reproducing kernel on Banach space B and the
Banach spaces V the primary and V ∗ as secondary feature spaces.

Remark 4.4. If we assume that the Banach space V is reflexive, then
by [16, Theorem 3], we see that the evaluation function is continuous on
B and B∗. This implies that B is reproducing kernel on Banach space.
However, we know that every reproducing kernel on Banach space is a
relative. This is in accordance with Corollary 3.5, too.

In [11], there are some results about the separability of the image
of the feature maps image and the corresponding reproducing kernel
on Banach space. This lemma is used to prove our theorem about the
separability of the relative reproducing kernel on Banach space. The
proofs of the next lemma and the theorem are similar to [11], so we omit
the proofs.

Lemma 4.5. Let B be a relative reproducing kernel on Banach space of
functions on a set X with primary and secondary feature Banach space
V and V ∗ and feature maps φ and ψ. Then:

(i) if B∗ contains no non-zero constant functions and φ(X) is sep-
arable, then B is separable.

(ii) if B contains no non-zero constant functions and ψ(X) is sep-
arable, then B∗ is separable.

Theorem 4.6. Relative reproducing kernel B of function on X is sep-
arable if and only if there exists a (primary or secondary) feature map
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φ : X −→ V or ψ : X −→ V ∗ such that (X, dφ)or (X, dψ) by
dφ(x, y) := ‖φ(x)− φ(y)‖V , dψ(x, y) := ‖ψ(x)− ψ(y)‖V ∗ ,

is separable.

In Hein’s paper, [8, Proposition 1], there is a result about the relation
between the Banach space of real-valued Lipschitz functions on the set
X and feature spaces of Banach space B. We show that there is an
isomorphism between relative reproducing kernel on Banach space and
the Banach space of real-valued Lipschitz functions:

Theorem 4.7. Let B be a real relative reproducing kernel on Banach
space of functions on the set X (contains no non-zero constant func-
tions). Then there exists a primary feature map φ, the secondary
one ψ for B and some Banach spaces FB, FB∗ of real-valued Lips-
chitz functions on the (X, dφ), (X, dψ), respectively, such that the maps
Γ1 : B −→ FB and Γ2 : B

∗ −→ FB∗ defined by Γ1(w)(·) = 〈w,ψ(·)〉 and
Γ2(w

′)(·) = 〈φ(·), w′〉 are isometric isomorphisms with defined norm
‖Γ1(w)‖ = ‖w‖ and ‖Γ2(w

′)‖ = ‖w′‖.

Proof. Put ψ(y) :=My, φ(x) := Tx for some fixed z0 and every x, y ∈ X.
Then

Γ1(wf )(y)− Γ1(wg)(y) = 〈wf ,My〉 − 〈wg,My〉
= 〈wf − wg,My〉.

This implies that (wf − wg)(y) = (wf − wg)(z0) for every y ∈ X, so
wf − wg is constant. For the last, we have

|Γ1(w)(x)− Γ1(w)(y)| = |〈w,ψ(x)− ψ(y)〉|
≤ ‖w‖Bdψ(x, y).

So, Γ1(w) is Lipschitz function. The proof for Γ2 is similar. □

5. Relative Reproducing Kernel on Banach Space and
Semi-Inner Products

In Theorem 4.2, we construct a relative reproducing kernel on Banach
space without an inner product. Using semi-inner products, we find
some results above reproducing kernel Banach spaces for relative ones.
A semi-inner product on a vector space V is a function, defined by [., .]V ,
from V × V to C such that for all x, y, z ∈ V and λ ∈ C

(1) [x+ y, z]V = [x, z]V + [y, z]V ,
(2) [λx, y]V = λ[x, y]V , [x, λy]V = λ̄[x, y]V ,
(3) [x, x]V > 0 for x 6= 0,
(4) (Cauchy -schwartz) |[x, y]V |2 ≤ [x, x]V [y, y]V .
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For more information, refer to [7]. There is a well-known relationship be-
tween uniform Frećhet differentiability and uniform convexity. It states
that a normed vector space is uniformly Frećhet differentiable if and only
if its dual is uniformly convex. Therefore, if B is a uniformly convex
and uniformly Frećhet differentiable Banach space, so is B∗, since B is
reflexive. The important role of uniform convexity is explained in the
next lemma.

Theorem 5.1 (Riesz Representation Theorem). Suppose that B is a
uniformly convex, uniformly Frećhet differentiable Banach space, then
for each f ∈ B∗ there exists a unique x ∈ B such that f = x∗, that is
f(y) = [y, x]B for all y ∈ B. Moreover, ‖f‖B∗ = ‖x‖B.

The above Riesz Representation Theorem is desirable for relative re-
producing kernel on Banach space, if Sx,y defined as before is continued
on both B and B∗ for every x, y in a given set X. Note that the conti-
nuity of Sx,y does not mean that the evaluation function is continuous.
If this happens, every result is proved is the same as the reproducing
kernel on Banach space [16]. Based on the above theorem and our ear-
lier discussion, we shall investigate in the next subsection the relative
reproducing kernel on Banach space. These kernels are both uniformly
convex and uniformly Frećhet differentiable. We call these spaces uni-
form spaces. Let B be a uniform Banach space. According to the above
theorem, x 7−→ x∗ defines a bijection from B to B∗ that preserves the
norm. Note that this duality mapping is nonlinear. We call x∗ the
dual element of x. Since B∗ is uniformly Frećhet differentiable, it has a
unique semi-inner product which given by

[x∗, y∗]B∗ = [y, x]B,

for all x, y ∈ B. We denote a uniform relative reproducing kernel on
Banach space by a semi-inner product relative reproducing kernel on
Banach space. We shall see that every semi-inner product reproducing
kernel on Banach space is a semi-inner product relative reproducing
kernel on Banach space.

Theorem 5.2. Let B be a semi-inner product relative reproducing kernel
on Banach space on X that Sx,y is continuous function on both B and B∗

with Rx(·, y) and Ly(x, ·) as right and left relative reproducing kernels for
B, respectively. Then there exists a unique function K : X ×X ×X →
C such that {K(x, y, ·) : x, y ∈ X} ⊂ B and for all f ∈ B and x, y ∈ X,

f(x)− f(y) = [f,K(x, y, ·)]B.

Moreover,
Rx(·, y) = (K(x, y, ·))∗,
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for all x, y ∈ X and for all f ∈ B,
f∗(y)− f∗(x) = [Ly(x, ·), f ]B.

Proof. By continuity of Sx,y on B and Riesz representation theorem, for
each x, y ∈ X there exists a function Kx,y ∈ B such that

f(x)− f(y) = [f,Kx,y],

for all f ∈ B. We define K : X ×X ×X → C by K(x, y, z) = Kx,y(z)
for all x, y ∈ X. We see that K(x, y, ·) = Kx,y(·) ∈ B and f(x)− f(y) =
[f,K(x, y, ·)]B holds. The Riesz Representation Theorem states that
such a function is unique, based on the uniqueness of the function. To
prove the remaining claims, we have for every f ∈ B, f∗ ∈ B∗ and
x, y ∈ X,

f(x)− f(y) = 〈f,Rx(·, y)〉B,
and

f∗(y)− f∗(x) = 〈Ly(x, ·), f∗〉.
Then

f(x)− f(y) = [f,K(x, y, ·)]B
= 〈f,Rx(·, y)〉B,

for every x, y ∈ X. The above relation leads to
〈f, (K(x, y, ·)∗)〉B = [f,K(x, y, ·)]B

= f(x)− f(y)

= 〈f,Rx(·, y)〉B.

This implies Rx(·, y) = (K(x, y, ·))∗ and 〈Ly(x, ·), f∗〉B = [Ly(x, ·), f ]B.
Hence

f∗(y)− f∗(x) = [Ly(x, ·), f ]B,
for all x, y ∈ X, f ∈ B and for f∗ ∈ B∗. □

We call K is a semi-inner product relative reproducing kernel if
K(x, y, ·)∗ = Rx(·, y) and for abbreviate represent by Kx,y.
Now, we give a characterization of the semi-inner product relative re-
producing kernel. For a map from X to a uniform space, we denote by
φ∗, the mapping from X to V ∗ defined as

φ∗(X) = (φ(X))∗.

Theorem 5.3. Let V be a uniform Banach space and φ be a mapping
from X to V such that spanφ(X) = V and spanφ∗(X) = V ∗, then

(i) B := {[φ(·), u]V : u ∈ V } with [[φ(·), u]V , [φ(·), w]V ]B := [u,w]V ,
(ii) B∗ := {[v, φ(·)]V : v ∈ V } with [[v, φ(·)]V , [w,φ(·)]V ]B∗ :=

[w, v]V ,
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are uniform Banach spaces and B∗ is the dual of B with the bilinear
form

(5.1) 〈[φ(·), u]V , [v, φ(·)]V 〉B := [v, u]V ,

for all u,w ∈ V . Moreover, the semi-inner product relative reproducing
kernel of B is given by

(5.2) K(x, y, ·) = [φ(x)− φ(y), φ(·)]V .

Proof. We just show the (5.2), the others are such as the proof of the
Theorem (4.2). Let f ∈ B, then there exists a unique u ∈ V such that
f = [φ(·), u]V . By the bilinear form (5.1), we have

f(x)− f(y) = [φ(x), u]V − [φ(y), u]V
= [φ(x)− φ(y), u]V
= 〈[φ(·), u]V , [φ(x)− φ(y), φ(·)]V 〉B
= 〈f, [φ(x)− φ(y), φ(·)]V 〉B.

for every x, y ∈ X. Compared with the semi-inner product relative
reproducing kernel,

K(x, y, ·) = [φ(x)− φ(y), φ(·)]V
∗.

On the other hand,

f(x) = [φ(x), u]V
= [[φ(·), φ(x)], [φ(·), u]V ]B
= [[φ(·), φ(x)], f ]B,

for every x ∈ X and f ∈ B. □

6. An Example of Relative Reproducing Kernel on Banach
Space

Let Hp(C+) be a set of all analytic functions on an open half plane
denoted by C+. Hp(C+) is a Banach space isomorphic to a closed sub-
space of Lp(R) denoted by Hp(R). H1(C+) is a non-reflexive Banach
space that contains no non-zero constant functions and its dual space
is the space of bound mean oscillation functions. For more details, see
[3, 10]. Let V be the space H1(C+). Put X := C+. Suppose that C
and D are everywhere defined unbounded linear functions with com-
plex values. There exist families of functions like {φx}x∈X ∈ V and
{ψy}y∈X ∈ V ∗ that

span{φx − φy} = V, span{ψy − ψx} = V ∗.
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It should be noted that such families exist, and that polynomials with
the form of

∑n
k=0 ake

ikθ are dense in H1(C+). Define
ρ(f)(x) := 〈f, ψx〉+ C(f), (f ∈ V ).

ω(g)(y) := 〈φy, g〉+D(g), (g ∈ V ∗).

Define B := {ρ(f) : f ∈ V } and B∗ = {ω(g) : g ∈ V ∗}. Clearly the
linear space B∗ is dual space of B. By bilinear form

〈ρ(f), ω(g)〉 = 〈f, g〉.

Theorem 6.1. The Banach space B is a relative reproducing kernel
Banach space, but it is not a reproducing kernel Banach space.

Proof. For every f ∈ V and x, y ∈ X, we have
ρ(f)(x)− ρ(f)(y) = 〈f, ψx〉 − 〈f, ψy〉

= 〈f, ψx − ψy〉
= 〈ρ(f), ω(ψx − ψy)〉
= 〈ρ(f), Rx,y〉.

It is similar for B∗ where Ly,x = ρ(φy − φx).
Now, we show that this space is not a reproducing kernel Banach

space. Suppose that B is a reproducing kernel Banach space, then there
exists a function K : X ×X → C such that ρ(f)(x) = 〈ρ(f),K(·, x)〉 =
〈ρ(f), ω(gx)〉 for some gx ∈ V ∗, Since K(·, x) belongs to B∗.

ρ(f)(x) = 〈ρ(f), ω(gx)〉
= 〈f, gx〉.

So that
C(f) = 〈f, gx〉 − 〈f, ψx〉,

so C(f) is bounded. This is a contradiction, because we assumed C is
unbounded. □

Acknowledgment. The author would like to gratefully thank the
anonymous referees for their careful reading of the paper and the sug-
gestions and corrections.

References

1. D. Alpay, P. Jorgensen and D. Volok, Relative reproducing kernel
Hilbert spaces, Proc. Amer. Math. Soc., 142(11), (2014), pp. 3889-
3895.

2. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math.,
Soc., 68.3 (1950), pp. 337-404.



ON RELATIVE REPRODUCING KERNEL BANACH SPACES 61

3. P. L. Duren, Theory of Hp spaces, New York and London, Academic
Press, (1970).

4. G. E. Fasshauera, F. Hickernella and Q. Ye, Solving support vector
machines in reproducing kernel Banach spaces with positive definite
functions, Appl. Comput. Harmon. Anal., 38 (2015), pp. 115-139.

5. P. Georgiev, L. Sanchez-Gozalez and P. Pardalos, Construction of
pair of reproducing kernel Banach spaces, Springer Optim. Appl.
87 (2014), pp. 39-57.

6. E. F. Gregory, F. J. Hickernell, Q. Ye, Solving support vector ma-
chines in reproducing kernel Banach spaces with positive definite
functions, Appl. Comp. Harm., Anal, 38 (2015), pp. 115-139.

7. J. R. Giles, Classes of sem–inner-product, Trans. Amer. Math. Soc.,
129 (1967), pp. 436-446.

8. M. Hein, O. Bousquet and B. Scholkopf, Maximal margin classi-
fication for metric spaces, J. Comput. System Sci., 71 (2005), pp.
333-359.

9. P. E. T. Jorgensen and M.S Song, Reproducing kernel Hilbert space
vs. frame estimates, Math., 3(3) (2016), pp. 615-625.

10. J. Mashreghi, Representation theorems in Hardy spaces, Cambridge
University Press, Cambridge, 2009.

11. H. Owhadi and C. Scovel, Separability of reproducing kernel Banach
spaces, Proc. Amer. Math. Soc., 145 (2017), pp. 2131-2138.

12. V. Paulsen,An introduction to the theory of reproducing kernel
Hilbert spaces, Cambridge University Press., vol 152, (2016).

13. S. Saitoh, Integral transforms, reproducing kernels and their appli-
cations, Pitman Research Notes in Mathematics Series, 369 CRC
Press, (1997).

14. G. Song, H. Zhang and F. Hickernell,Reproducing kernel Banach
spaces with the l1 norm, Appl. Comp. Har. Anal., 34 (2013), pp.
96-116.

15. S. Zaremba,L’équation biharmonique et une classe remarquable de
fonctions fondamentales harmoniques, Bulletin Int Acad des Sci-
ences de Cracovie,3 (1907), pp. 147-196.

16. H. Zhang, Y. Xu and J. Zhang, Reproducing kernel Banach spaces
for machine learning, Mach. Learn. Res., 10 (2009), pp. 2741-2775.

17. C.T. Shieh and V.A. Yurko, Inverse nodal and inverse spectral
problems for discontinuous boundary value problems, J. Math. Anal.
Appl., 347 (2008), pp. 266-272.

Department of Mathematics, Payame Noor University, P.O.Box 19395-
3697, Tehran, Iran.

Email address: mr_forootan@pnu.ac.ir, foroutan_mohammadreza@yahoo.com


