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A Fuzzy Solution of Fractional Differential Equations by
Fuzzy Conformable Laplace Transforms

Atimad Harir1∗ , Said Melliani2 and L. Saadia Chadli3

Abstract. The fuzzy conformable Laplace transforms proposed in
[8] are used to solve only fuzzy fractional differential equations of
order 0 < ι ≤ 1. In this article, under the generalized conformable
fractional derivatives notion, we extend and use this method to
solve fuzzy fractional differential equations of order 0 < ι ≤ 2.

1. Introduction

Ordinary calculus is generalized to fractional calculus. This contains
the function’s arbitrary order derivative. Researchers in various fields
including engineering, mathematics, and so on, , etc., have investigated
and studied the topic [9–11, 15]. One of the most important to this
field was the study of fuzzy fractional differential equations, generalized
conformable differentiability, and fuzzy conformable Laplace transforms
[17], which explored the problem extensively. It was later examined in
[14], where the authors suggested some uses.

There are various definitions of fuzzy fractional differentiation and
fuzzy integration. These include the fuzzy Riemann-Liouville formula-
tion [2, 11], the fuzzy Caputo definition [11, 20], etc. In [10, 11] de-
veloped the conformable fractional derivative, which is a simple defini-
tion of the fractional derivative that corrects flaws in previous defini-
tions. This new definition meets formulas for product derivative and
quotient of two functions. [16, 19]. In [10] presented the fuzzy gener-
alized conformable fractional derivative, which expanded and extended
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the Hukuhara differentiability idea for set valued mappings to the fuzzy
mappings class [3, 18].

The authors of [8] identified a relationship between a fuzzy function’s
fuzzy Laplace transforms and its conformable fractional derivative of
order 0 < ι ≤ 1. They provided a numerical example to demonstrate
the method’s efficiency, although this example is of order 0 < ι ≤ 1 for
FFDEs.

This work aims improve and extend their method by establishing a
relationship between a function’s fuzzy conformable Laplace transforms
and its conformable fractional derivative of order 1 < ι ≤ 2, with the
goal of solving conformable fuzzy fractional differential equations under
generalized conformable differentiability.

2. Preliminaries

Let us denote by F(R) = {u : R → [0, 1]} the class of fuzzy subsets of
the real axis satisfying the following properties:

(i) u is normal i.e, there exists an x0 ∈ R such that u(x0) = 1;
(ii) u is fuzzy convex i.e for x, y ∈ R and 0 < λ ≤ 1;

u(λx+ (1− λ)y) ≥ min[u(x), u(y)],

(iii) u is upper semicontinuous;
(iv) [u]0 = cl{x ∈ R|u(x) > 0} is compact.

Then F(R) is called the space of fuzzy numbers. Obviously, R ⊂ F(R).
For 0 < ϵ ≤ 1 denote [u]ϵ = {x ∈ R|u(x) ≥ ϵ}, then from (i) to (iv) it
follows that the ϵ-level sets [u]ϵ ∈ PK(R) for all 0 ≤ ϵ ≤ 1 is a bounded
interval with a closed end that is symbolized by [u]ϵ = [1uϵ,2 uϵ]. By
PK(R), we define the addition and scalar multiplication in PK(R) as
usual, and we designate the family of all nonempty compact convex
subsets of R.

Theorem 2.1 ([20]). If u ∈ F(R), then
(i) [u]ϵ ∈ PK(R) for all 0 ≤ ϵ ≤ 1,
(ii) [u]ϵ2 ⊂ [u]ϵ1 for all 0 ≤ ϵ1 ≤ ϵ2 ≤ 1,
(iii) {ϵk} ⊂ [0, 1] is a nondecreasing sequence which converges to ϵ

and
[u]ϵ =

∩
k≥1

[u]ϵk ,

Conversely, if Aϵ = {[1uϵ,2 uϵ]; ϵ ∈ (0, 1]} be a set of closed real intervals
that confirms (i) and (ii), then {Aϵ} defined a fuzzy number u ∈ F(R)
such that
[u]ϵ = Aϵ for 0 < ϵ ≤ 1 and [u]0 = ∪

0<ϵ≤1
Aϵ ⊂ A0.
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Lemma 2.2 ([6]). Let u, v : R → [0, 1] be the fuzzy sets.
Then u = v if and only if [u]ϵ = [v]ϵ for all ϵ ∈ [0, 1].

Definition 2.3 ([12]). In parametric form, a fuzzy number u is a pair(
1uϵ,2 uϵ

)
of functions 1uϵ,2 uϵ, ϵ ∈ [0, 1], which satisfy the following

requirements:
(i) 1uϵ is a right continuous at 0 and a bounded growing left con-

tinuous function in (0, 1].
(ii) 2uϵ is a right continuous at 0 and a bounded decreasing left

continuous function in (0, 1].
(iii) 1uϵ ≤2 uϵ, 0 ≤ ϵ ≤ 1.

A crisp number k is simply represented by 1uϵ =2 uϵ = k.
For arbitrary u =

(
1uϵ,2 uϵ

)
, v =

(
1vϵ,2 vϵ

)
and λ > 0 we define addition

and scalar multiplication by λ see [6, 8]:
[u+ v]ϵ = [1uϵ +1 vϵ,2 uϵ +2 vϵ],

[λu]ϵ = λ[u]ϵ =

{
[λ1uϵ, λ2uϵ],
[λ2uϵ, λ1uϵ],

if λ ≥ 0,
if λ < 0.

Definition 2.4. Let u, v ∈ F(R). If w ∈ F(R) exists, such as u = v+w,
w is known as the H-difference of u, v and is denoted uominusv.

Define d : F(R)× F(R) → R+ ∪ {0} by the equation
d(u, v) = sup

ϵ∈[0,1]
dH([u]ϵ, [v]ϵ), for all u, v ∈ F(R),

where dH is the Hausdorff metric .
dH([u]ϵ, [v]ϵ) = max

{
|1uϵ −1 vϵ|, |2uϵ −2 vϵ|

}
,

where u = (1uϵ,2 uϵ), v = (1vϵ,2 vϵ) ⊂ R is utilized in Bede and Gal
[3]. Then it’s clear that d is a metric in F(R) and has the following
properties [12]

(i) d(u+ w, v + w) = d(u, v), ∀u, v, w ∈ F(R);
(ii) d(ku, kv) = |k|d(u, v), ∀k ∈ R, u, v ∈ F(R);
(iii) (d,F(R)) is a complete metric space.

Definition 2.5 ([21]). Let g : R → F(R) be a fuzzy-valued function. If
for arbitrary fixed t0 ∈ R and τ > 0 a δ > 0 such that

|t− t0| < δ ⇒ d(g(t), g(t0)) < τ

then g is said to be continuous.
Definition 2.6 ([10]). Let G : I → F(R) be a fuzzy function. ιth order
“fuzzy conformable fractional derivative” of G is defined by

G(ι)(t) = lim
τ→0+

G
(
t+ τt1−ι

)
⊖G(t)

τ
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= lim
τ→0+

G(t)⊖G
(
t− τt1−ι

)
τ

,

for all t > 0, ι ∈ (0, 1) If G is ι-differentiable in some I and limt→0+ G(ι)(t)
exists, then

G(ι)(0) = lim
t→0+

G(ι)(t),

and the limits (in the metric d).

Remark 2.7 ([10]). If G is ι-differentiable for all ϵ ∈ [0, 1] and, then Gϵ

is ι-differentiable for all multi-valued mappings, and

G(ι)
ϵ =

[
G(ι)(t)

]ϵ
.

The conformable fractional derivative of Gϵ of order ι is represented
by G

(ι)
ϵ . Because the existence of Hukuhara differences [x]ϵ ⊖ [y]ϵ, ϵ ∈

[0, 1], does not necessitate the existence of H-differences, the reverse
result does not hold. x⊖ y. is the result of xminusy.

Here G
(ι)
ϵ is denoted the conformable fractional derivative of Gϵ of or-

der ι. The converse result doesn’t hold, since the existence of Hukuhara
differences [x]ϵ ⊖ [y]ϵ, ϵ ∈ [0, 1], does not imply the existence of H-
difference x⊖ y.

Definition 2.8 ([10]). Let G : I → F(R) be a fuzzy function and
ι ∈ (0, 1]. One says, G is ι(1)-differentiable at point t > 0 if there exists
an element G(ι)(t) ∈ F(R) such that for all τ > 0 sufficiently near to 0,
there exist G

(
t+ τt1−ι

)
⊖G(t), G(t) ⊖G

(
t− τt1−ι

)
and the limits (in

the metric d)

lim
τ→0+

G
(
t+ τt1−ι

)
⊖G(t)

τ
= lim

τ→0+

G(t)⊖G
(
t− τt1−ι

)
τ

= G(ι)(t),

G is ι(2)-differentiable at t > 0 if for all τ < 0 sufficiently near to 0,
there exist G

(
t+ τt1−ι

)
⊖G(t) and G(t)⊖G

(
t− τt1−ι

)
lim

τ→0−

G
(
t+ τt1−ι

)
⊖G(t)

τ
= lim

τ→0−

F (t)⊖G
(
t− τt1−ι

)
τ

= G(ι)(t),

If G is ι(n)-differentiable at t > 0, we denote its ι-derivatives, for n = 1, 2.
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3. Fuzzy Conformable Laplace Transform

Definition 3.1 ([8]). The conformable fractional exponential function
is defined for every t ≥ 0 as

(3.1) Eι(Θ, t) = eΘ
tι

ι ,

where Θ ∈ R and 0 < ι ≤ 1.

Definition 3.2 ([8]). Let 0 < ι ≤ 1 and g(t) be continuous fuzzy-
value function. Suppose that Eι(−Θ, t)g(t) is improper fuzzy Rimann-
integrable on [0,∞), then

∫∞
0 Eι(−Θ, t)g(t)dιt is called fractional fuzzy

conformable Laplace transform of order ι starting from zero of g and is
defined as:

Lι [g(x)] =

∫ ∞

0
Eι(−Θ, t)g(t)dιt, Θ > 0 and integer.(3.2)

=

∫ ∞

0
Eι(−Θ, t)g(t)tι−1dt.

Denote by Lι [g(t)] the classical fractional Laplace transform of order
ι starting from zero of crisp function g(t). From Proposition 2.1 in [21],
we have∫ ∞

0
Eι(−Θ, t)g(t)dιt =

(∫ ∞

0
Eι(−Θ, t)1gϵ(t)dιt,

∫ ∞

0
Eι(−Θ, t)2gϵ(t)dιt

)
,

then, we have:
Lι [g(t)] =

(
Lι

[
1gϵ(t)

]
,Lι

[
2gϵ(t)

])
,

where ι ∈ (0, 1] and

Lι

[
1gϵ(t)

]
=

∫ ∞

0
Eι(−Θ, t)1gϵ(t)dιt,

and
Lι

[
2gϵ(t)

]
=

∫ ∞

0
Eι(−Θ, t)2gϵ(t)dιt,

Theorem 3.3 ([8]). Let 0 < ι ≤ 1 and g(ι)(t) be a conformable fractional
integral fuzzy-value function and g(t) is the primitive of g(ι)(t) on [0,∞).
Then

(i) if g is ι(1)-differentiable:

(3.3) Lι

[
g(ι)(t)

]
= ΘLι [g(t)]⊖ g(0),

(ii) if g is ι(2)-differentiable:

(3.4) Lι

[
g(ι)(t)

]
= (−g(0))⊖ ((−Θ)Lι [g(t)]) .
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Theorem 3.4 ([8]). Let f(t), g(t) be continuous fuzzy-valued functions,
ι ∈ (0, 1] and c1, c2 two real constants, then
(3.5) Lι [c1f(t) + c2g(t)] = c1Lι [f(t)] + c2Lι [g(t)] .

4. Generalization of Conformable Fuzzy Laplace
Transforms

In this section, we define conformable fractional derivatives of frac-
tional order 0 < ι ≤ 2 and we find fuzzy conformable Laplace transforms
of the fractional order 0 < ι ≤ 2 of fuzzy-valued function g.

Now, we introduce definitions and theoreme for ι ∈ (n, n+1] for some
natural number n. For convenience, we concentrate on ι ∈ (1, 2] case.

Definition 4.1. Let G : I → F(R) be a fuzzy function and be n-
differentiable at t, where t > 0. Then the fuzzy conformable fractional
derivative of g of order ι is defined by

G(ι)(t) = lim
τ→0+

G([ι]−1)
(
t+ τt([ι]−ι)

)
⊖G([ι]−1)(t)

τ
(4.1)

= lim
τ→0+

G([ι]−1)(t)⊖G([ι]−1)
(
t− τt([ι]−ι)

)
τ

,

where ι ∈ (n, n+ 1) and [ι] is the smallest integer greater than or equal
to ι. and the limits ( in the metric d).

Theorem 4.2. Let G : I → F(R) and ι ∈ (1, 2] and n,m = 1, 2. If G is
(n,m)-differentiable and G is ι(n,m)-differentiable, then

(4.2) G(ι(n,m))(t) = t2−ιD(2)
n,mG(t).

Remark 4.3. [4] G is (n,m)-differentiable on I, if D1
n exists on I and

it be (m)-differentiable on I. The second derivatives of F are denoted
by D

(2)
n,mG(t) for n,m = 1, 2.

Proof. We present the details only for n = m = 1, since the other case is
analogous. Let h = τt2−ι in Definition (4.1), then τ = tι−2ϖ. Therefore,
if τ > 0 and ϵ ∈ [0, 1], we have[

D1
1G

(
t+ τt2−ι

)
⊖D1

1G(t)
]ϵ

=
[(

1gϵ
)′ (

t+ τt2−ι
)
−
(
1gϵ

)′
(t),

(
2gϵ

)′ (
t+ τt2−ι

)
−
(
2gϵ

)′
(t)

]
,

Dividing by τ, we have[
D1

1G
(
t+ τt2−ι

)
⊖D1

1G(t)
]ϵ

τ
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=

[(
1gϵ

)′ (
t+ τt2−ι

)
−

(
1gϵ

)′
(t)

τ
,

(
2gϵ

)′ (
t+ τt2−ι

)
−
(
2gϵ

)′
(t)

τ

]
,

and passing to the limit

lim
τ→0+

[
D1

1G
(
t+ τt2−ι

)
⊖D1

1G(t)
]ϵ

τ

= lim
τ→0+

[(
1gϵ

)′ (
t+ τt2−ι

)
−
(
1gϵ

)′
(t)

τ
,

(
2gϵ

)′ (
t+ τt2−ι

)
−
(
2gϵ

)′
(t)

τ

]

= lim
h→0+

[(
1gϵ

)′
(t+ϖ)−

(
1gϵ

)′
(t)

tι−2ϖ
,

(
2gϵ

)′
(t+ϖ)−

(
2gϵ

)′
(t)

tι−2ϖ

]

= t2−ι lim
ϖ→0+

[(
1gϵ

)′
(t+ϖ)−

(
1gϵ

)′
(t)

ϖ
,

(
2gϵ

)′
(t+ϖ)−

(
2gϵ

)′
(t)

ϖ

]
= t2−ι

[(
1gϵ

)′′
(t),

(
2gϵ

)′′
(t)

]
.

Similarly, we obtain[
D1

1G(t)⊖D1
1G

(
t− τt2−ι

)]ϵ
τ

=

[(
1gϵ

)′
(t)−

(
1gϵ

)′ (
t− τt2−ι

)
τ

,

(
2gϵ

)′
(t)−

(
2gϵ

)′ (
t− τt2−ι

)
τ

]
,

and passing to the limit and τ = tι−2ϖ gives

G(ι(1,1))(t) = t2−ι
[(

1gϵ
)′′

(t),
(
2gϵ

)′′
(t)

]
. □

Theorem 4.4. Let g(t) be a continuous fuzzy-valued function such that
Eι(−Θ, t)g(t) and Eι(−Θ, t)g(ι)(t) exist So Eι(−Θ, t)g(ι)(t) continuous
for ι ∈ (0, 1], We distinguish the following cases:

(a) If g(t) and g(ι)(t) are (ι1)-differentiable, then

Lι

[
g(2ι)(t)

]
=

{
Θ2Lι[g(x)]⊖Θg(0)

}
⊖ g(ι)(0).

(b) If g(t) is (ι1)-differentiable and g(ι)(t) is (ι2)-differentiable, then

Lι

[
g(2ι)(t)

]
=

(
−g(ι)(0)

)
⊖
{
−Θ2Lι[g(t)]⊖ (−Θg(0))

}
.

(c) If g(t) is (ι2)-differentiable and g(ι)(t) is (ι1)-differentiable, then

Lι

[
g(2ι)(t)

]
=

{
(−Θg(0))⊖

(
−Θ2Lι[g(t)]

)}
⊖ g(ι)(0).
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(d) If g(t) is (ι2)-differentiable and g(ι)(t) is (ι2)-differentiable, then

Lι

[
g(2ι)(t)

]
=

(
−g(ι)(0)

)
⊖
{
Θg(0)⊖Θ2Lι[g(t)]

}
.

Proof. (a) Let 0 < ι ≤ 1, assume that g(t) and g(ι)(t) are (ι1)-
differentiable, then applying (3.3) to f(t) and g(ι)(t), respec-
tively, we get

Lι

[
g(ι)(t)

]
= ΘLι[g(t)]⊖ g(0),

and
Lι

[
g(2ι)(t)

]
= ΘLι

[
g(ι)(t)

]
⊖ g(ι)(0).

Combining these identities yields

Lι

[
g(ι)(t)

]
= Θ {ΘLι[g(t)]⊖ g(0)} ⊖ g(ι)(0),

=
{
Θ2Lι[g(t)]⊖Θg(0)

}
⊖ g(ι)(0).

(b) Assume that g(t) is (ι1)-differentiable and g(ι)(t) is (ι2)-differentiable,
then applying (3.3) and (3.4) to g(t) and g(ι)(t), respectively,
we get

Lι

[
g(ι)(t)

]
= ΘLι[g(t)]⊖ f(0),

and

Lι

[
g(2ι)(t)

]
=

(
−g(ι)(0)

)
⊖ (−Θ)Lι

[
g(ι)(t)

]
.

The result of combining these identities is

Lι

[
g(2ι)(t)

]
=

(
−g(ι)(0)

)
⊖ (−Θ){ΘLι[g(t)]⊖ g(0)}

=
(
−g(ι)(0)

)
⊖
{
−Θ2Lι[g(t)]⊖ (−Θg(0))

}
.

(c) If g(t) is (ι2)-differentiable and g(ι)(t) is (ι1)-differentiable, then

Lι

[
g(ι)(t)

]
= (−g(0))⊖ (−Θ)Lι[g(t)],

and
Lι

[
g(2ι)(t)

]
= ΘLι

[
g(ι)(t)

]
⊖ g(ι)(0).

By combining of these identities, we get

Lι

[
g(2ι)(t)

]
= Θ{(−g(0))⊖ (−Θ)Lι[g(t)]} ⊖ g(ι)(0)

=
{
(−Θg(0))⊖

(
−Θ2

)
Lι[g(t)]

}
⊖ g(ι)(0).



A FUZZY SOLUTION OF FRACTIONAL DIFFERENTIAL DQUATIONS 163

(d) Assume that g(t) and g(ι)(t) are (ι2)-differentiable, then

Lι

[
g(ι)(t)

]
= (−g(0))⊖ (−Θ)Lι[g(t)],

and
Lι

[
g(2ι)(t)

]
=

(
−g(ι)(0)

)
⊖ (−Θ)Lι

[
g(ι)(t)

]
,

When these identities are combined, the result is

Lι

[
g(2ι)(t)

]
=

(
−g(ι)(0)

)
⊖ (−Θ){(−g(0))⊖ (−Θ)Lι[g(t)]}

=
(
−g(ι)(0)

)
⊖
{
Θg(0)⊖Θ2Lι[g(t)]

}
. □

5. Algorithem for Solving Fuzzy Fractional Differential
Equations by Fuzzy Conformable Laplace Transform

Consider the fuzzy fractional differential equation: y(2ι)(t) = g
(
t, y(t), y(ι)(t)

)
,

y(0) = y0,

y(ι)(0) = z0,

y0 =
(
1y0,

2 y0
)
∈ F(R),

z0 =
(
1z0,

2 z0
)
∈ F(R),

where y(t) = (1yϵ(t),2 yϵ(t)) is a fuzzy function of t ≥ 0 and for all
ι ∈ (0, 1], g

(
t, y(t), y(ι)(t)

)
is a fuzzy-valued function, which is linear

with respect to
(
y(t), y(ι)(t)

)
. The fuzzy conformable Laplace transform

is used to produce

(5.1) Lι

[
y(2ι)(t)

]
= Lι

[
g
(
t, y(t), y(ι)(t)

)]
.

After that, we have the following options for solving (5.1): (a) Case I: If
y and y(ι) are (ι1)-differentiable: y(ι)(t) =

((
1yϵ

)(ι)
(t),

(
2yϵ

)(ι)
(t)

)
and

y(2ι)(t) =
(
(yϵ1)

(2ι) (t),
(
2yϵ

)(2ι)
(t)

)
,

Lι

[
y(2ι)(t)

]
=

{
Θ2Lι[y(t)]⊖Θy(0)

}
⊖ y(ι)(0).

Therefore
Lι

[
g
(
t, y(t), y(ι)(t)

)]
=

{
Θ2Lι[y(t)]⊖Θy0

}
⊖ z0,

Hence

(5.2)
{

Lι

[
1gϵ

(
t, y(t), y(ι)(t)

)]
= Θ2Lι[y

ϵ
1(t)]−Θ1yϵ0 −1 zϵ0,

Lι

[
2gϵ

(
t, y(t), y(ι)(t)

)]
= Θ2Lι[y

ϵ
2(t)]−Θ2yϵ0 −2 zϵ0,

where
1gϵ

(
t, y(t), y(ι)(t)

)
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= min
{
g(t, u, v)/u ∈

(
1yϵ(t),2 yϵ(t)

)
; v ∈

((
1yϵ

)(ι)
(t),

(
2yϵ

)(ι)
(t)

)}
,

and
gϵ2

(
t, y(t), y(ι)(t)

)
= max

{
g(t, u, v)/u ∈

(
1yϵ(t),2 yϵ(t)

)
; v ∈

((
1yϵ

)(ι)
(t),

(
2yϵ

)(ι)
(t)

)}
.

Assume that this leads to{
Lι[

1yϵ(t)] = Ψϵ
1(Θ),

Lι[
2yϵ(t)] = Ωϵ

1(Θ),

where the couple (Ψϵ
1(Θ),Ωϵ

1(Θ)) is a solution of the system (5.2). The
inverse conformable Laplace transform is used to obtain{

1yϵ(t) = L−1
ι [Ψϵ

1(Θ)] ,
2yϵ(t) = L−1

ι [Ωϵ
1(Θ)] .

,

(b) Case II: If y is (ι1)-differentiable and y(ι) is (ι2)-differentiable:

y(ι)(t) =
((

1yϵ
)(ι)

,
(
2yϵ

)(ι))
and y(2ι)(t) =

((
1yϵ

)(2ι)
(t),

(
2yϵ

)(2ι)
(t)

)
and

Lι

[
y(2ι)(t)

]
=

(
−y(ι)(0)

)
⊖
{
−Θ2Lι[y(t)]⊖ (−Θy(0))

}
.

Therefore
Lι

[
g
(
t, y(t), y(ι)(t)

)]
= (−z0)⊖

{
−Θ2Lι[y(t)]⊖ (−Θy0)

}
.

Hence

(5.3)
{

Lι

[
2gϵ

(
t, y(t), y(ι)(t)

)]
= Θ2Lι[

1yϵ(t)]−Θ1yϵ0 −1 zϵ0,
Lι

[
1gϵ (t, y(t), y′(t))

]
= Θ2Lι[

2yϵ(t)]−Θ2yϵ0 −2 zϵ0,

that this implies {
Lι[

1yϵ(t)] = Ψϵ
2(Θ),

Lι[
2yϵ(t)] = Ωϵ

2(Θ),

where (Ψϵ
2(Θ),Ωϵ

2(Θ)) is a solution of the system (5.3). We may reach
this result by applying the inverse conformable Laplace transform:{

1yϵ(t) = L−1
ι [Ψϵ

2(Θ)] ,
2yϵ(t) = L−1

ι [Ωϵ
2(Θ)] .

(c) Case III: If y is (ι2)-differentiable and y(ι) is (ι1)-differentiable:

y(ι)(t) =
((

1yϵ
)(ι)

(t),
(
2yϵ

)(ι)
(t)

)
,

y(2ι)(t) =
((

1yϵ
)(2ι)

(t),
(
2yϵ

)(2ι)
(t)

)
,
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Lι

[
y(2ι)(t)

]
=

{
(−Θy(0))⊖

(
−Θ2Lι[y(t)]

)}
⊖ y(ι)(0).

Therefore
Lι

[
g
(
t, y(t), y(ι)(t)

)]
=

{
(−Θy(0))⊖

(
−Θ2Lι[y(t)]

)}
⊖ y(ι)(0).

Hence

(5.4)
{

Lι

[
2gϵ

(
t, y(t), y(ι)(t)

)]
= Θ2Lι[y

ϵ
1(t)]−Θ1yϵ0 −2 zϵ0,

Lι

[
1gϵ

(
t, y(t), y(ι)(t)

)]
= Θ2Lι[

2yϵ]−Θ2yϵ0 −1 zϵ0,

that this leads to {
Lι[

1yϵ(t)] = Ψϵ
3(Θ),

Lι[
2yϵ(t)] = Ωϵ

3(Θ),

where (Ψϵ
3(Θ),Ωϵ

3(Θ)) is a solution of the system (5.4). By using the
inverse Laplace transform, we get{

1yϵ(t) = L−1
ι [Ψϵ

3(Θ)] ,
2yϵ(t) = L−1

ι [Ωϵ
3(Θ)] .

(d) Case IV: If y and y(ι) are (ι2)-differentiable:

y(ι)(t) =
(
(yϵ1)

ι) (t),
(
2yϵ

)ι)
(t)

)
,

y(2ι)(t) =
((

1yϵ
)2ι)

(t),
(
1yϵ

)2ι)
(t)

)
,

Lι

[
y(2ι)(t)

]
=

(
−y(ι)(0)

)
⊖
{
Θy(0)⊖Θ2Lι[y(t)]

}
.

Therefore
Lι

[
g
(
t, y(t), y(ι)(t)

)]
=

(
−y(ι)(0)

)
⊖
{
Θy(0)⊖Θ2Lι[y(t)]

}
.

Hence

(5.5)
{

Lι

[
1gϵ

(
t, y(t), y(ι)(t)

)]
= Θ2Lι

[(
1yϵ(t)

)]
−Θ1yϵ0 −2 zϵ0,

Lι

[
2gϵ

(
t, y(t), y(ι)(t)

)]
= Θ2Lι

[(
2yϵ(t)

)]
−Θ2yϵ0 −1 zϵ0,

that this implies {
Lι

[
1yϵ(t)

]
= Ψϵ

4(Θ),
Lι

[
2yϵ(t)

]
= Ωϵ

4(Θ),

where (Ψϵ
4(Θ),Ωϵ

4(Θ)) is a solution of the system (5.5) the inverse Laplace
transform is used to obtain{

yϵ(t) = L−1
ι [Ψϵ

4(Θ)] ,
yϵ(t) = L−1

ι [Ωϵ
4(Θ)] .

The following cases must be discussed: (1) Case (I.1): If η ≥ 0 and
β ≥ 0, then the system (5.2) is equivalent to{

Θ2Lι

[
1yϵ(t)

]
−Θ1yϵ0 −1 zϵ0 = (η + βΘ)Lι

[
1yϵ(t)

]
− b1yϵ(t) + λ,

Θ2Lι

[
2yϵ(t)

]
−Θ2yϵ0 −2 zϵ0 = (η + βΘ)Lι[

2yϵ(t)]− b2yϵ0 + λ.
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By consequence{
Ψϵ

1(Θ) = Lι

[
1yϵ(t)

]
=

(Θ−β)1yϵ0+
1zϵ0+λ

Θ2−βΘ−η
,

Ωϵ
1(Θ) = Lι

[
2yϵ(t)

]
=

(Θ−β)2yϵ0+
2zϵ0+λ

Θ2−βΘ−η
.

(2) Case (I.2): If η ≥ 0 and β < 0, then (5.2) is equivalent to the system:{ (
Θ2 − η

)
Lι

[
1yϵ(t)

]
− βΘLι

[
2yϵ(t)

]
= Θ1yϵ0 +

1 zϵ0 − β2yϵ0 + λ,(
Θ2 − η

)
Lι

[
2yϵ(t)

]
+ βΘLι

[
1yϵ(t)

]
= Θ2yϵ0 +

2 zϵ0 − β1yϵ0 + λ.

Denote

(5.6)
{

Λϵ(Θ) = Θ1yϵ0 +
1 zϵ0 − β2yϵ0 + λ,

∆ϵ(Θ) = Θ2yϵ0 +
2 zϵ0 − β1yϵ0 + λ.

Hence  Ψϵ
1(Θ) = L[yϵϵ(t)] =

(Θ2−η)Λϵ(Θ)+βΘ∆ϵ(Θ)

(Θ2−η)2+(βΘ)2
,

Ωϵ
1(Θ) = Lι[y

ϵ
ϵ(t)] =

(Θ2−η)∆ϵ(Θ)−βΘΛϵ(Θ)

(Θ2−η)2+(βΘ)2

(3) Case (I.3): If η < 0 and β ≥ 0, then (5.4) is equivalent to the system:{ (
Θ2 − βΘ

)
Lι[

1yϵ(t)]− ηLι[
2yϵ(t)] = Θ1yϵ0 +

1 zϵ0 − β1yϵ0 + λ,(
Θ2 − βΘ

)
Lι[

2yϵ(t)]− ηLι[
1yϵ(t)] = Θ2yϵ0(ϵ) +

2 zϵ0 − β1yϵ0 + λ.

Therefore  Ψϵ
1(Θ) = Lι[

1yϵ(t)] =
(Θ2−βΘ)Λϵ(Θ)+η∆ϵ(Θ)

(Θ2−βΘ)2+η2
,

Ωϵ
1(Θ) = Lι[

2yϵ(t)] =
(Θ2−η)∆ϵ(Θ)+ηΛϵ(Θ)

(Θ2−βΘ)2+η2
.

(4) Case (I .4): If η < 0 and β < 0, then (5.5) is equivalent to the
system:{

Θ2Lι[
1yϵ(t)]− (η + βΘ)Lι[

2yϵ(t)] = Θ1yϵ0 +
1 zϵ0 − β2yϵ0 + λ,

Θ2Lι[
2yϵ(t)]− (a+ bΘ)Lι[

1yϵ(t)] = Θ2yϵ0 +
2 zϵ0 − β1yϵ0 + λ.

Therefore {
Ψϵ

1(Θ) = Lι

[
1yϵ(t)

]
= Θ2Λϵ(Θ)+(η+βΘ)∆ϵ(Θ)

Θ4+(η+βΘ)2
,

Ωϵ
1(Θ) = Lι

[
2yϵ(t)

]
= Θ2∆ϵ(Θ)+(η+βΘ)Λϵ(Θ)

Θ4+(η+βΘ)2
.

Here Λϵ(Θ) and ∆ϵ(Θ) are given by (5.6).
Similarly, the respective expressions of Ψϵ

2(Θ), Ωϵ
2(Θ), Ψϵ

3(Θ), Ωϵ
3(Θ),

Ψϵ
4(Θ), Ωϵ

4(Θ) can be computed.

Example 5.1 ([5]). Consider the simple harmonic vibration equation y(2ι)(x) + ω2y(x) = σ0,
y(0, ϵ) = (ϵ− 1, 1− ϵ),
y′(0, ϵ) = (ϵ− 1, 1− ϵ).
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where σ0 = (ϵ, 2− ϵ), 1 < 2ι ≤ 2 and ω = 1.

Case I: If y(t) and y(ι)(t) are (ι1)-differentiable, then{ (
1yϵ

)(2ι)
(t) +

(
1yϵ

)
(t) = ϵ,(

2yϵ
)(2ι)

(t) +
(
2yϵ

)
(t) = 2− ϵ.

Therefore  Lι

[(
1yϵ

)(2ι)
(t)

]
+ Lι[

(
1yϵ

)
(t)] = ϵ

Θ ,

Lι

[(
2yϵ

)(2ι)
(t)

]
+ Lι

[(
2yϵ

)
(t)

]
= 2−ϵ

Θ .

Using Theorem 4.4 , we get Lι[
1yϵ(t)] = (ϵ− 1) Θ+1

Θ2+1
+ ϵ

(
1
Θ − Θ

Θ2+1

)
,

Lι[
2yϵ(t)] = (1− ϵ) Θ+1

Θ2+1
+ (2− ϵ)

(
1
Θ − Θ

Θ2+1

)
.

By using the inverse Laplace transform, we deduce{
1yϵ(t) = ϵ

(
1 + sin( t

ι

ι )
)
− sin( t

ι

ι )− cos( t
ι

ι ),
2yϵ(t) = (2− ϵ)

(
1 + sin( t

ι

ι )
)
− sin( t

ι

ι )− cos( t
ι

ι ).

In this case, no solution exists, since y(ι)(t) is not an (ι1)-differentiable
fuzzy-valued function [1].

Case II: If y(t) is (ι1)-differentiable and y(ι)(t) is (ι2)-differentiable,
then  Lι

[(
2yϵ

)(2ι)
(t)

]
+ Lι

[
1yϵ(t)

]
= ϵ

Θ ,

Lι

[(
1yϵ

)(2ι)
(t)

]
+ Lι[

2yϵ(t)] = 2−ϵ
Θ .

Using Theorem 4.4 , we get{
Θ2Lι[

2yϵ(t)] + Lι[
1yϵ(t)] = (1− ϵ)(Θ + 1) + ϵ

Θ ,
Θ2Lι[

1yϵ(t)] + Lι[
2yϵ(t)] = (ϵ− 1)(Θ + 1) + 2−ϵ

Θ .

Thus Lι[
1yϵ(t)] = ϵ

(
1

2(Θ−1) −
1

2(Θ+1) +
1
Θ

)
+ 1

2(Θ+1) −
1

2(Θ−1) −
Θ

Θ2+1
,

Lι[
2yϵ(t)] = ϵ

(
1

2(Θ+1) −
1

2(Θ−1) −
1
Θ

)
+ 2

Θ + 1
2(Θ−1) −

1
2(Θ+1) −

Θ
Θ2+1

.

By using the inverse Laplace transform, we deduce{
1yϵ(t) = ϵ

(
1 + sinh( t

ι

ι )
)
− sinh( t

ι

ι ))− cos( t
ι

ι )),
2yϵ(t) = (2− ϵ)

(
1 + sinh( t

ι

ι ))
)
− sinh( t

ι

ι ))− cos( t
ι

ι )).

In case I, there is no solution [1].
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Case III: If y(t) is (ι2)-differentiable and y(ι)(t) is (ι1)-differentiable,
then Lι[

1yϵ(t)] = ϵ
(

1
2(Θ+1) −

1
2(Θ−1) +

1
Θ

)
+ 1

2(Θ−1) −
1

2(Θ+1) −
Θ

Θ2+1
,

Lι[
2yϵ(t)] = ϵ

(
1

2(Θ−1) −
1

2(Θ+1) −
1
Θ

)
+ 2

Θ + 1
2(Θ+1) −

1
2(Θ−1) −

Θ
Θ2+1

.

By using the inverse Laplace transform, we deduce{
1yϵ(t) = ϵ(1− sinh( t

ι

ι )) + sinh( t
ι

ι )− cos( t
ι

ι ),
2yϵ(t) = (2− ϵ)(1− sinh( t

ι

ι )) + sinh( t
ι

ι )− cos( t
ι

ι ).

In this case, since y(t) is (ι2)-differentiable and y(ι)(t) is (ι1)-differentiable,
the solution is acceptable for t ∈ (0, ln(1 +

√
2)) [1].

Case IV: If y(t) and y(ι)(t) are (ι2)-differentiable, then Lι[
1yϵ(t)] = (ϵ− 1)

(
Θ

Θ2+1
− 1

Θ2+1

)
+ ϵ

(
1
Θ − Θ

Θ2+1

)
,

Lι[
2yϵ(t)] = (1− ϵ)

(
Θ

Θ2+1
− 1

Θ2+1

)
+ (2− ϵ)

(
1
Θ − Θ

Θ2+1

)
.

By using the inverse Laplace transform, we deduce{
1yϵ(t) = ϵ(1− sin( t

ι

ι )) + sin( t
ι

ι )− cos( t
ι

ι ),
2yϵ(t) = (2− ϵ)(1− sin( t

ι

ι )) + sin( t
ι

ι )− cos( t
ι

ι ).

In this case, the solution is acceptable for t ∈
(
0, π2

)
[1].

6. Conclusion

This research aims to develop and prove some results regarding fuzzy
conformable differentiability of order 1 < ι ≤ 2. It also aims to establish
the relationship between a fuzzy function conformable Laplace trans-
forms. This study uses the fuzzy conformable Laplace transform method
to solve fuzzy conformable differential equations of order 0 < ι ≤ 2
(FDEs) under generalized conformable differentiability. The efficiency
of the suggested strategy is demonstrated by a numerical example.

We will solve fractional fuzzy conformable partial differential equa-
tions and use the conformable Laplace method to solve a large class of
Fuzzy Fractional differential equations FDEs in future studies.
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