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G-Frames Generated by Iterated Operators

Morteza Rahmani

ABSTRACT. Assuming that A is a bounded operator on a Hilbert
space H, this study investigate the structure of the g-frames gener-
ated by iterations of A. Specifically, we provide characterizations
of g-frames in the form of {A"}52; and describe some conditions
under which the sequence {A"}52, forms a g-frame for H. Addi-
tionally, we verify the properties of the operator A when {A"}52,
is a g-frame for H. Moreover, we study the g-Riesz bases and dual
g-frames which are generated by iterations. Finally, we discuss the
stability of these types of g-frames under some perturbations.

1. INTRODUCTION

A frame for a Hilbert space is a generalization of a basis of a vector
space to sets that may not be linearly independent. The properties of
frames are highly valuable in many fields, including function spaces,
signal processing and and broader applications in_applied mathematics,
computer science and engineering. We refer to [3] for an introduction
to frame theory and along with its details and applications. Over time,
various types of frames have been introduced. One of them is the g-
frame. G-frames are generalized frames, which have been introduced by
W. Sun in [§].

In this paper, we focus on a very special class of the g-frames for a
Hilbert space, which are generated by iterations of a bounded operator
on the underlying Hilbert space. In other words, if A is a bounded
operator on Hilbert space H, we aim to answer the following questions:

(i) What conditions on the operator A are necessary or sufficient
to {A"}5° | constitute a g-frame for H?
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(ii) If {A™}o°, is a g-frame for H, then what can be derived about
the operator A?

We address these questions and explore additional properties of g-frames
and g-Riesz bases generated by iterated operators. Some other papers
dealing with iterated actions of operators include [I}, 2, 6].

The paper is structured as follows. In Section 2, we provide some
new results on all kinds of g-frames. In Section 3, we characterize the
g-frames which are generated by iterated operators. Specifically, we in-
vestigate the properties of operators on a Hilbert space whose iterations
generate a g-frame. Furthermore, some other features of these g-frame
such as associated frame operators and eigenvalues are verified. Section
4 focuses on to the g-Riesz bases from iterated operators. Eventually,
in Section 5, we study the stability of g-frames obtained from iterated
operators.

Throughout this paper, H is a separable Hilbert space and {H;}ics
represent a sequence of separable Hilbert spaces, where the index set [
is a subset of Z. Also, B(H, H;) denotes the set of all bounded linear
operators from H into H; and B(H) is the set of all bounded linear
operators on H.

Definition 1.1. We call a sequence {A; € B(H, H;) : i € I} a general-
ized frame, or simply a g-frame, for H with respect to {H;}iey, if there
exist two positive constants A and B such that

(1.1) AIFIP <D INFIP < BIFI?,  feH.
i€l
We call A and B the lower and upper frame bounds, respectively.
{A; € B(H,H;) : i € I} is called a A-tight g-frame if A = B = X and
is called a Parseval g-frame if A = B = 1. If only the right hand-side of

(IL.1) holds, we call it a g-Bessel sequence.
For a sequence {H,};cs of Hilbert spaces, define

(Z 69H¢> = {{fi}ie[ | fi€Hy, il and Y |Ifil*< 00} :
l2

el el

It is easy to show that with pointwise operations and with the inner
product defined by

{fitier, {gitier) =Y _{fir 9i);

iel

<Z GBHZ) is a Hilbert space.
el Iy
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If for each i € I, H; = H, then we show the Hilbert space <Z EBHZ)
icl lo

by (?(H,I).
The synthesis operator for a g-Bessel sequence {A; € B(H, H;) :i € I}

is defined as follows:
T: <:£:<9]3§> —H
lo

icl

(1.2) T({fitier) = > _ A (f).
i€l
It is proved in [7], T" is well defined, bounded and the adjoint operator

of Ty is given by
T : H — (Z EBHZ)
lo

iel
(1.3) T*(f) = {Aif tier-

The operator T* is called the analysis operator of {A;}icr. Also, the
g-frame operator of {A;};cs is defined as follows:

(1.4) S:H—H,  Sf=TT"f=)Y A\,
el
which is a bounded, self-adjoint, positive and invertible operator on H

and
Al < S < BI,

where I is identity operator on H (see [[]).

Definition 1.2. Let {A;}ic; and {O;}icr be g-frames for H with respect
to {H;}icr- Then {©;};cr is called a dual g-frame for {A;};er, if it
satisfies
f=>_A6f feH.
i€l
Definition 1.3. Consider the sequence {A; € B(H, H;), i € I}.
(i) If {f : Asf =0, i € I} = {0}, then we say that {A;}ier is
g-complete.
(ii) If {A;}ier is g-complete and there are positive constants A and
B such that for any finite subset J C I and g; € Hj, j € J,

2
(1.5) A Mgl < | Yo Arg|| < B sl
JjeJ Jj€J JjeJ

then we say that {A;}icr is a g-Riesz basis for H with respect
to {Hi}ier-



246 M. RAHMANI

The next proposition is applied in the following of paper.

Proposition 1.4. If T is an operator on the Hilbert space H such that
both T and T* are bounded below, then T is invertible.

Proof. See to proof of [5, Corollary 4.9]. O

2. SOME NEW RESULTS ON ALL g-FRAMES

In this section, we present some new results on all kind of g-frames
which are also held in case of ordinary frames.

The following Lemma helps us to find the sequence {¢;}7°; with mini-
mal /2-norm among all sequences representing an element f by a g-frame.

Lemma 2.1. Let {A;}52, be a g-frame for H with respect to { H; }icr and
with frame operator S. Suppose that f € H and f has a representation

f= 2" Ai(pi) for some {p;}2, € (Z @®H; | . Then
1=1 el Iy

Do lleill =3 llei = As (ST + - A (s NI
i=1 i=1 i=1

Proof. We can write
o = {2 — (A (ST +{M (ST 1L

Since f = > Af(pi) = > A7 (A:S71f), So
i=1 i=1

> A — NS =0
=1

That is, {¢i}32, — {Ai (S_lf) }Zl € Np = R%*, where T is the synthesis
operator of {A;}°,. Also, {Ai (S_lf) }Zl € Rp+. Therefore

o lleil* = a2 — {A: (SN2 + (A (S ISP

= e — {8 (ST + A (ST O
Now, we obtain an explicit expression for the pseudo-inverse of syn-
thesis operator of a g-frame.

Theorem 2.2. Assume that {A;}°, is a g-frame for H with synthesis

operator T and frame operator S. Then TT : H — EBH,') the
i€l ls
pseudo-inverse of T is given by

Tf={ASf}2,, feH.
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o
Proof. By definition of T', if for f € H, f = > Af(¢;), then T{p;}°, =
i=1
f. By [B, Lemma 2.5.3], the unique solution of minimal norm of the
equation T{p;}2°, = f is {¢;}32, = T'f. So by Lemma EI, we have
Tl ={NST 2. O

Similar to (ordinary) frames, the optimal frame bounds of a g-frames
can be expressed in terms of its synthesis and frame operators and their
inverses and pseudo-inverses.

Proposition 2.3. The optimal frame bounds A, B for a g-frame {A;}2,
are given by

a=|s7 =zt B=lsi= 1T

where T and S are the synthesis operator and frame operator of {A;}2,,
respectively.

Proof. The optimal upper frame bound is given by

B= sup > [Aif]?

lf1=1 =1

= sup (Sf, f)
Ifl=1

= [I5]
= 177"l
= ||TI*.

Since the frame operator of the dual frame {A;S71}%°; is S~! and

B lr<st<Aly

so the optimal upper frame bound of {A;S™1}%2, is A~!. Then, ac-
cording to what we’ve just proved, we have A™! = HS‘lH. Thus, by
Theorem P.2,

[~ = sup 3~ s~

IflI=1523
= sup ‘TTfH
[l fl=1
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3. PROPERTIES OF g-FRAMES GENERATED BY ITERATED OPERATORS

Consider the sequence {A"}>° , as a g-frame for H, where A : H — H
is a bounded operator. We want to investigate the properties of A. In
other words, we try to find some conditions on A such that {A"}7°, be-
comes a g-frame. Characterizing these kinds of g-frames is our purpose.

The first question is if such an operator can be found. Next examples
show that the answer is positive.

Example 3.1. Consider the orthonormal basis {e; }3°, for H. We define
the operator A : H — H as below:

1
Ae; = 56i+17 1 € N.

So for each f € H,
Af=A <Z<f, >)
i=1

Z<f7 €i)eit1.
i—1

N | —

Then for each n € N, we have

1 o0
A = S e
i=1
and
n 1 -
A" f]|* = QWZKJ?,G@'HQ
i=1
1
= 71
Therefore
[e e} o0 1
S A = (Z 2) 171
n=1 n=1
1 2
=S, fem

that is, {A"}7° , is a (tight) g-frame for H.

Example 3.2. Let {e;}°; be an orthonormal basis for H. Now, con-
sider the operator A : H — H as below:

1 1 1
Aep = 562, Aey = 361, Ae; = §€i+17 1> 3.
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Then for each n € Nand f € H,

A" f = A" <Z<f, >)

=1

1 1 &
3 (<fael>e2+<fae2 e1 2; f?e’L €itn-

So

||f||2 <IAFIP < P feH

S
which implies

NE

1 1 >
SlrP = gn> 1F12 < 3 A g2
n=1

(
< ( n) I1£11?

1
= SIfI e

So {A"}22, is a g-frame for H.

I
—_

n

NE
.&‘H

Il
—

n

The next step is verifying the features of the operator A : H — H.
First, consider the following examples. These examples show that the
norm of A has no any effect on {A"}>°, to be a g-frame for H.

Example 3.3. Assume that {e;}$°, is an orthonormal basis for H and
a > 1. Define the operator A : H — H by

Ae; = ae;q, €N
So for each f € H,
IAFI12 = o®[I£I1%,
and
A" FII? = o2 £
Then

oA = (Z 042”) If]? = o0, feH
n=1 n=1

Example 3.4. Let {e;}°; be an orthonormal basis for H and o > 1.
Define the operator A : H — H by

1 .
Aep = aes, Ae; = —ejp1, ©12>2.
o
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So for each f € H and n € N, we obtain

1 1
A"f=(f,e1) o 26n+1+z faez 5 Gitns

1=2
and

I < A7 <
Then
1Al 2 a>1,
and {A"}° | is a g-frame for H.
According to the preceding examples, we conjecture that the assump-
tion ||Al| < 1 is a sufficient (but not necessary) condition on the operator

A to {A"}9° | be a g-frame for H. In the following proposition, we give
a sufficient condition for A, so {A"}>°, is a g-frame.

Proposition 3.5. Let A be an operator on H such that for each f € H,

af fIl < [[AfIF< BIFIS

where a, B € (0,1). Then {A"}32 is a g-frame for H with bounds 1%
and 2
1-382-

Proof. For each f € H and n € N, we have
oL FI < AT FI < BT

(ia) 112 < f_oj JAm S < (fjﬁ) LA

n=1

Hence {A"}72; is a g-frame for H with bounds - and = ,32

The next theorem indicates an interval for the range of ||A]l.

Theorem 3.6. Let A € B(H) be such that {A"}>° is a g-frame for H
with bounds A and B. Then

<|IAf|| < H.
Il < IRl < 2l e
Proof. By assumption, we have
(3.1) AlFIP <Y IARFIP < BIIFIP, f € H.

n=1

Considering A f instead of f in (@), we obtain

(3.2) AIASIP < Y IA™ P < BIASIP, f € H.

n=1
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By taking away (@) from (@) we have

2< 2 2 .
I S IAFIP < T, feH

So the proof is complete. O

(3.3)

Similar to previous theorem, we have another main result.

Theorem 3.7. Suppose that A is a bounded operator on H such that
{A™}2°, is a g-frame for H with bounds A and B. Then for each i € N,

A 2 2 - 2
< ‘ .
(1 B> 17 < IATFI" < (1 A) LIS, feH
Proof. For each f € H, we have

(3-4) AIFIZ < DA™ < Bl

n=1

Let ¢ > 1, by putting Alf and A1 f instead of f in (@), we get

(3.5) IATEAP < AP < o IATTHIR, fe

1+ A 14 B
By repeating the above inequality and Theorem B8, we have

A (2
(i25) e <wse < (F2) e sem o

Corollary 3.8. If A is a bounded operator on H such that {A"}5° ;| is
a g-frame for H, then for each n € N, the operator A™ has closed range.

Proof. By Theorem B7, for each n € N, A" is bounded below and so it
has closed range. Il

Corollary 3.9. Let A be a bounded operator on H so that {A"}>° is
a g-frame for H. If A is self-adjoint, then A is invertible.

Proof. By Theorem BZ2 and Proposition @, A is invertible. O

Proposition 3.10. Let A € B(H) and {A"}° be a tight g-frame for
H. Then ||A]] < 1.

Proof. If {A"}> | is a A-tight g-frame for H, then by Theorem @, we
have

2 2
IAFI? = 1% e
So [|A]| < 1. 0

Using [5, Theorem 2.38], we can estimate the spectral radius of A.
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Proposition 3.11. Suppose that A is a bounded operator on H such
that {A™}22 | is a g-frame for H with bounds A and B. Then the spectral
radius r(A) of A satisfies

A B
N <r(A) <2
Ty A S Vi

Proof. By Theorem B7, for each n € N, we have

n

A \?2 . B \:2
(7)== () Wl fen

So

which implies

A 2 il B 2
<1+B> < Jlim A" < <1+A>

A B
N <r(A) < 4 ——. 0
5 ="M=

Proposition 3.12. If A € B(H) and {A"}2, is a g-frame for H, then

Al = int IAf] <1

Proof. Suppose that |[Ally = inf) s = [[Af]| > 1. For each f € H, we
have

Therefore

(AR I < A £,
Since Z (IIA[[Z)" is divergent, so {A"}2, can not be a g-frame for H.

This contradlctlon shows that

Ao = I [Af] < 1. O

Proposition 3.13. If A € B(H) is invertible, {A"}5° | is a g-frame for
H and S be the frame operators of {A"}22 1, then ||S| > 1.

n=1>

Proof. For each g € H, let f = A~'g, then

ZHA” ) H9H2+ZHA” 1

> [lgl*.

So A > 1, where A is the optimal lower frame bound. Proposition @
implies that HS‘IH < 1. So ||S|| > 1. O
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One of the other properties of A is as below:

Proposition 3.14. If {A"}>°, is a g-frame for H, where A is a bounded
operator on H and ||A|| < 1, then

lim A" =0.
n—oo
Proof. Since lim [|A"| < lim ||A]|™ = 0, the proof is complete. O
n—oo n—oo

Under some conditions, we can find an explicit expression for frame
operator.

Proposition 3.15. Suppose that A is a bounded operator on H such
that ||Al| < 1, A is a normal operator and {A"}5° | is a g-frame for H.
Then the frame operator of {A™}2° is given by

S=(I-ANANT-T,
where I is the identity operator on H.
Proof. By ||A]| < 1, we have
[IAAf = ([T = (I = A*A)[| < 1,

where I is the identity operator on H. Then by [3, Theorem 2.2.3],
I — A*A is invertible and

(3.6) (I-A*A)" =) (A" A)"
n=0
If S is the frame operator of {A"}>° | then for each f € H,

Sf=> (A")A"f
n=1

=S (AT A f

n=

—

By (B®), for each f € H,

(1= A7) = (Z(A*A)”> (f)

Therefore
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Corollary 3.16. If A is a bounded self-adjoint operator on H such that
Al < 1 and {A"}5°, is a g-frame for H, then the frame operator of
{A™}>° | is given by

S=(I—-A)"1-1,

where I is the identity operator on H.

We can obtain new g-frames, which are generated by iterations, from
an existing one.

Proposition 3.17. Suppose that A is a bounded operator on H such
that {A"}2°, is a g-frame for H. Then for each real number r > 1,
there exists an operator I'y on H such that |I;|| = L and {T"}52, is a
g-frame for H.

Proof. By Theorem B, there exists a constant a > 0 such that
af fIl < IAFI < IANIALL f € H.
For each r» > 1, let

Af
I f=——, feH.
T rfIA]l
So
o 1
—— Il < I £l < =1L € H.
e L e T N
Therefore by Proposition B3, the proof is complete. O
For a g-frame {A"}2° ,, we can find a dual g-frame which is obtained

by iterations of an operator.

Proposition 3.18. Let A € B(H) and {A"}5%, be a g-frame for H.
Then there ezist an operator © € B(H) and p > 0, so that {p©O"}>2 is
a dual g-frame for {A™}2° .

Proof. By Theorem BZ1, for each n € N, A™ is bounded below and by
B, Lemma 2.4.1], (A™)* is onto. So for each n € N, the pseudo-inverse
operator ((A™)*)" of (A™)* exists and

(A (A f = f, fed,
specially, we have
(3.7) AN f=f feH.
So, for each f € H,

1 N
I < st ]|

and by (@), for each n € N, we obtain
(3.8) Wy () r=1 reH
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In case of |A]| < 1, we put
1

= g

AT,

then © € B(H) and

1 1
TP WAy © =1 fll, H.

By Proposition @, {©"}>° | is a g-frame for H. Let ¢ = i since

1
2[|(A*)

00 -1
0<g<1,8 4" = 1—3(1. Assuming p = (ﬁ) , the sequence
=1

{pO"}> | is a g—f;ame for H and for each f € H, we have
oo oo 1 n

(W07 =0 A (g A7)
2 Z 2[| (A=)

n=1
—PZ (A%)" <2H A*)T”(A*)T>nf'

Therefore by (@) ,

o o 1
A™)*(pO™) f = ——f =, .
2N =02 ey = S €

Hence {p©"}7, is a dual g-frame for {A"}0°
Now, suppose ||A]| > 1. By (@), for each n € N,

< 1.
[[A[[™{[(A*)T{™
In this case, put
1
0= (A,
TSR
so © € B(H) and
off < < sIfL fed.
10411 < g4I < 5141,

Let ¢ = W, then 0 < ¢ < 1 and the rest of proof is similar to
previous case. O

Next result states that if A is invertible, then the iterated dual g-frame
of {A"}2° , is unique.

Proposition 3.19. Let A,I' € B(H), {A"}%, be any g-frame for H and
{T"}22, be a dual g-frame of {A"}2,. Then A*T' = 31, where I is the
identity operator on H. Moreover, if A is invertible, then = %(A*)_1
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Proof. For each f € H, we have

F=) (AT f
n=1

= ATf+) (A")T"f
n=2
=ATf+AD> (A7) T YTy
n=2
— A¥ <Ff + Z (Anfl)* Fnl(rf)>
n=2
=A[Tf+Tf)
=2A'T'f.
So A*T" = %I. The rest of proof is obvious. O

e}

Under some conditions, the precise formula of frame operator of {A™}2° ;

is given as below:
Proposition 3.20. If A € B(H) is invertible, {A"}° | is a g-frame for
H and S is the frame operator of {A"}°, Then
1
S = -A"A.
2
Proof. Considering the canonical dual g-frame of {A"}7° | in Proposition
, we have I' = AS~™! = 1(A*)~!. Then
S = %A*A. O

Corollary 3.21. Let A € B(H) be invertible. If {A"}°, is a g-frame
for H, then for each f € H

1
TTf — {2An—1(A*)—1f}
i=1
Proof. By Theorem @ and Proposition , it is obvious.

In the following, we verify the eigenvalues of A. O
Proposition 3.22. If A € B(H), {A"}>2 is a g-frame for H and X is
any eigenvalue of A, then 0 < |A| < 1.

Proof. Let A be an eigenvalue of A. Then there exists a f # 0 such that
Af = Af. Therefore

oo

[e.e]

AIFIZ < D IAMIP =Y (™A1

n=1 n=1
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< B| f|*.

o0
Since 0 < Y (J]A%|?) is convergent, so 0 < |A| < 1. O
n=1

4. G-RI1ESZ BASES IN THE FORM OF ITERATED OPERATORS

In this section, we study the properties of g-Riesz bases generated by
iterations of a bounded operator on H. The main result is the following.

Theorem 4.1. Let A be a bounded operator on H such that {A"}7°
is a g-frame for H. If {A"}5° | is a g-Riesz basis for H, then A is
invertible.

Proof. Let {A™}2°; be a g-Riesz basis for H. Putting J = {1} C N in
Definition =3, we obtain that

Allgl* < [A*gll* < Blgll*, g€ H,

where A and B are the constants in Definition IZ3. So A* is one-to-one.
Since {A"}22, is a g-frame for H, so by Theorem BM, A is bounded
below. Therefore by [3, Lemma 2.4.1], A* is onto. Hence A is invertible.

O

The following example shows that the converse of above theorem is
not true always.

Example 4.2. Assume that the operator A : H — H is defined by

Af=3f fel

It is obvious that A is bounded and [|A|| = 3. Also, A is self-adjoint
and invertible operator. By Proposition BH, {A"}9°; is a g-frame for
H. Now, we show that {A"}°°, in not a g-Riesz basis for H. Let e be

a fix element in H and put
1
g1 = 567 g2 = —¢€, gn = 07 n 2 3

It is clear that {g,}°°, € [*(H,N) and

S TA"gy = Agi+ A%+ A"y,

n=1 n=3
1 1
= 16 — 16 + 0
=0.

So by [L0, Theorem 2.8], {A™}>°; is not a g-Riesz basis for H.



258 M. RAHMANI

5. STABILITY OF g-FRAMES FROM ITERATED OPERATOR

The stability of g-frames and their duals has been investigated by W.
Sun in [9]. In this section, we study the stability of g-frames obtained
from iteration. In the following, one case of perturbations of these g-
frames is stated.

Proposition 5.1. Let A,I' € B(H) and {A"}3°, be a g-frame for H
with bounds A and B. Assume that there exist constants A1, Aa, b > 0

such that max {\/ +\/ A= , A2, } < 1, and the following condition

18 satisfied,
JA™ = D) FI < A A" F2 4+ XD FI2 + o FI2, f € H, n> 1.
Then {I™}2° , is a g-frame for H with bounds

2
Ay VAL VA2 + S ads

1+ ’
2
VALV ot
Bl1+ (1—4) .
1—VA

Proof. For each f € H, we have

1

(ZH - f||2>

< </\1 D OIATFIZ 4+ A2 > ITfIP + (Z u") Hf\|2>
n=1 n=1 n=1
< (D) + v (i)
n=1

[T

So by [9, Theorem 3.1}, the proof is complete. O

Next result is another case of stability for generating g-frames via
iterated operators.

Theorem 5.2. Let A,I' € B(H) and {A"}>2, be a g-frame for H with
bounds A and B. Suppose that there exist positive constants o, 3 such
that B <1 — ||A]| and

all /Il <A =T)fIF < Bl f € H
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Then {I"™}2°, is a g-frame for H.
Proof. By Theorem BZ4, we can write
A
1+ B
So for each f € H,

TSI < A =TI+ IAFI < (B + [[ADILF,

IFIF<IAFT < IANIAAL - f e A

also
DA 1AL =Tl = IAF > | /=2 1]
— — a— | — :
- - 1+ B
Let’s suppose without loss of generality that o # H%’ (otherwise
we just take a smaller below bound for A). Therefore Proposition B3
implies that {I'""}>° , is a g-frame for H. O
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