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Fuzzy µ∗-Open Set and Fuzzy µ∗-Continuous Function

Pankaj Chettri1∗ and Bishal Bhandari2

Abstract. The prime goal of this article is to initiate the notion of
fuzzy µ∗-open(closed) sets and fuzzy µ∗-continuous functions and
characterize them. These concepts are defined in a fuzzy topological
space in presence of a generalized fuzzy topology, which becomes a
new tool to study fuzzy topological spaces. It is observed that this
class of fuzzy sets fail to form a fuzzy topology but it form a gener-
alized fuzzy topology. Furthermore, the relationship of these fuzzy
sets and fuzzy continuity with some existing fuzzy notions are es-
tablished. Also the notion of fuzzy (τ, µ∗)-open(closed) functions is
introduced and their equivalent conditions with fuzzy µ∗-continuous
functions are established.

1. Introduction

Based on L.A Zadeh’s concept of fuzzy sets [10], C.L. Chang [2] pre-
sented the idea of fuzzy topological spaces (fts for short). Also, sev-
eral topological properties has been generalized successfully by different
mathematicians in fuzzy settings. In 2008, G. P. Chetty has extended
the concept of generalized topological spaces in fuzzy environment and
named it as generalized fuzzy topological spaces (gfts, for short) [5]. In
2017 Chakraborty et al. defined fuzzy (µX, µY )-continuous functions
between two gfts[1]. The idea of µ∗-open [8] and µ∗-continuity [9] in
generalized topological space (gts, for short) were initiated and studied
by B. Roy et al. in 2015 and by R. K. Tiwari et al. in 2020 respec-
tively. Recently, P. Chettri et al. [3] studied further decomposition of
these sets and continuity. Also, P.chettri et al. studied a new type of
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fuzzy sets callled ps-ro β-open(closed) fuzzy sets and related continuity
in year 2022 [4].

2. Preliminaries

Lists of some notations used in this paper.

I [0,1]
IX Set of all fuzzy sets in X
fts Fuzzy topological spaces
gfts Generalized fuzzy topological space
Space (X,µX, τ) Triplet where X is a non void set with the gener-

alized fuzzy topology µX and the fuzzy topology
τ defined on it.

i(P ) Interior a of fuzzy set P
iµ(P ) µ-interior of a fuzzy set P
cµ(P ) µ-closure of a fuzzy set P
cl(P ) Closure of a fuzzy set P
xα Fuzzy point
µ∗O(Xτ ) Set of all fuzzy µ∗-open sets in a space

(X,µX, τ)
µ∗C(Xτ ) Set of all fuzzy µ∗-closed sets in a space

(X,µX, τ).

A function from a non void set X into I is termed as fuzzy set in X[10].
The fuzzy sets taking value 0 and 1 ∀ x ∈ X are denoted by 0 and 1,
respectively. The complement of fuzzy set P is denoted by 1−P and is
given as (1− P )(t) = 1− P (t), where t ∈ X. For a function f between
two sets X to Y , if P and Q are fuzzy sets in X and Y respectively, then
f(P ) and f−1(Q) are fuzzy sets in Y and X respectively and defined as

f(P )(t) =

{
supr∈f−1(t) P (r),

0,
if f−1(t) ̸= ∅,
if otherwise,

and f−1(Q)(t) = Q(f(t)), ∀ t ∈ X[2].
In X, a family τ ⊆ IX is called a fuzzy topology if 0, 1 ∈ τ and τ is

closed under arbitrary union and finite intersection. The ordered pair
(X, τ) is a fuzzy topological space (fts for short). Each element of τ
is called a fuzzy open set and its complement as fuzzy closed. In a fts
(X, τ), the interior and the closure of a fuzzy set P (denoted by i(P )
and cl(P ) respectively) are defined by i(P ) = ∨{V : V ≤ P, V ∈ τ} and
cl(P ) = ∧{F : P ≤ F, 1 − F ∈ τ}. A function g from fts (X, τ) to
(Y, σ) is called fuzzy continuous if g−1(A) ∈ τ ∀A ∈ σ [2].
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A fuzzy set xα in X termed as fuzzy point takes the value α at x and
0 elsewhere, where (0 < α ≤ 1). xα ∈ P if α ≤ P (x). Clearly, P is the
union of all the fuzzy points that belong to A [7]. A function f between
fts (X, τ) and (Y, σ) is said to be fuzzy open(fuzzy closed) [6] iff for any
fuzzy open(closed) set P in X, f(P ) is fuzzy open(closed) set in Y .

In a nonnull set X, µX ⊆ IX is called a generalized fuzzy topology
(in short, gft) if it contains 0 and is closed under arbitrary union. Here,
(X,µX) is termed as generalized fuzzy topological space (in short, gfts)
and the members of µX are called the fuzzy µ-open and their comple-
ments as fuzzy µ-closed sets. The µ-interior and µ-closure of a fuzzy
subset P are denoted by iµ(P ) and cµ(P ) respectively and defined sim-
ilarly as defined in fts [5]. A function g : (X,µX) → (Y, µY ) is called
fuzzy (µX, µY )-continuous [1] if ∀ A ∈ µY , g−1(A) ∈ µX.

3. Fuzzy µ∗-Open Set

In this section, we introduce the notion of fuzzy µ∗-open(closed) sets.

Definition 3.1. A fuzzy set P in a space (X,µX, τ) is called fuzzy a µ∗-
open set if P ≤ cl(iµ(P )). We call its complement as a fuzzy µ∗-closed
set.

Theorem 3.2. In a space (X,µX, τ), A ∈ µ∗C(Xτ ) iff i(cµ(A)) ≤ A.

Proof. Straightforward. □

Theorem 3.3. In a space (X,µX, τ), P ∈ µ∗O(Xτ ) iff ∃ Q ∈ µX
satisfying Q ≤ P ≤ cl(Q).

Proof. Let P ∈ µ∗O(Xτ ). Then P ≤ cl(iµ(P )). Taking Q = iµ(P ),
Q ∈ µX and Q ≤ P ≤ cl(iµ(P )) = cl(Q).

Conversely, let ∃ Q ∈ µX satisfying Q ≤ P ≤ cl(Q). Now, Q ≤ iµ(P )
and cl(Q) ≤ cl(iµ(P )) . So, P ≤ cl(iµ(P )), showing P ∈ µ∗O(Xτ ). □

Theorem 3.4. The collection µ∗O(Xτ ) forms a gft in X.

Proof. Clearly, 0 ∈ µ∗O(Xτ ). Let {Aδ : δ ∈ Λ} be the family of µ∗-fuzzy
open sets. For each δ ∈ Λ, Uδ ≤ Aδ ≤ cl(Uδ), where Uδ ∈ µX. Thus,
∨{Uδ : δ ∈ Λ} = P (say) ≤ ∨{Aδ : δ ∈ Λ} ≤ cl(P ), where P ∈ µX. □

However, µ∗O(Xτ ) does not form a fuzzy topology in X is shown in
the example below:

Example 3.5. Let us take a space (X,µX, τ) with

X = {a, b, c}, µX = {0, P,Q,R}, τ = {0, 1, A,B},
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where,
A =

(
0.2
a , 0b ,

0
c

)
,

B =
(
0.2
a , 0b ,

0.5
c

) P =
(
0
a ,

0
b ,

0.8
c

)
,

Q =
(
0.2
a , 0b ,

0.5
c

)
,

R =
(
0.2
a , 0b ,

0.8
c

)
.

Here, D =
(
r
a ,

s
b ,

t
c

)
means a fuzzy set D in X defined as D(a) = r,

D(b) = s, D(c) = t. Here, µ∗O(Xτ ) = {0, P,Q,R,U1, U2, U3}, where
U1, U2, U3 are fuzzy sets in X satisfying P ≤ U1 ≤ 1−A,Q ≤ U2 ≤ 1−B
and R ≤ U3 ≤ 1 − A. Now, P ∧ Q =

(
0
a ,

0
b ,

0.5
c

)
/∈ µ∗O(Xτ ). Hence,

(X,µ∗O(Xτ )) is not a fts.

Theorem 3.6. In a space (X,µX, τ) if P ∈ µ∗O(Xτ ) satisfying P ≤
B ≤ cl(P ), then B ∈ µ∗O(Xτ ).

Proof. Let P ∈ µ∗O(Xτ ). So, ∃ Q ∈ µX satisfying Q ≤ P ≤ cl(Q).
Thus, Q ≤ B. Also, cl(P ) ≤ cl(Q) which implies B ≤ cl(Q). So,
Q ≤ B ≤ cl(Q). Hence, B ∈ µ∗O(Xτ ). □

Theorem 3.7. In a space (X,µX, τ), if A ∈ µX then A ∈ µ∗O(Xτ ).

Proof. Let A ∈ µX. Then, iµ(A) = A, hence A ≤ cl(iµ(A)). Thus,
A ∈ µ∗O(Xτ ). □

However, the converse does not hold. In Example 3.5, E=
(
0.8
a , 0.2b , 1c

)
∈

µ∗O(Xτ ) but E /∈ µX.

Remark 3.8. In Example 3.5, A =
(
0.2
a , 0b ,

0
c

)
∈ τ but A /∈ µ∗O(Xτ ).

Also, the fuzzy set S =
(
0.1
a , 0b ,

0.7
c

)
∈ µ∗O(Xτ ) but S /∈ τ .

Hence, fuzzy µ∗-open fuzzy open./
/

Note: However, one sided implication is given by the theorem below:

Theorem 3.9. In a space (X,µX, τ), if τ ≤ µX, then every member of
τ is a member of µ∗O(Xτ ).

Proof. Let A ∈ τ . Since τ ≤ µX, by Theorem 3.7, A ∈ µ∗O(Xτ ). □

Theorem 3.10. In a space (X,µX, τ), A ∈ µ∗O(Xτ ) iff cl(Q) =
cl(iµ(Q)).

Proof. Let Q ∈ µ∗O(Xτ ). Then, Q ≤ cl(iµ(Q)) which gives cl(Q) ≤
cl(cl(iµ(Q))) = cl(iµ(Q)). Also, cl(iµ(Q)) ≤ cl(Q). Therefore, cl(Q) =
cl(iµ(Q)). Conversely, let cl(Q) = cl(iµ(Q)). Since, Q ≤ cl(Q), Q ∈
µ∗O(Xτ ). □

Theorem 3.11. In a space (X,µX, τ), Q ∈ µ∗O(Xτ ) iff for every
xα ≤ Q, ∃ U ∈ µ∗O(Xτ ) such that xα ≤ U ≤ Q.
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Proof. Let xα ≤ Q, where Q is a fuzzy set in X. By the given condition
∃ Uα ∈ µ∗O(Xτ ) such that xα ≤ Uα ≤ Q. Then, Q = ∨{Uα : xα≤ Q}
and by Theorem 3.4, Q ∈ µ∗O(Xτ ). The converse part is trivial. □
Theorem 3.12. In a space (X,µX, τ), Q ∈ µ∗C(Xτ ) iff i(Q) = i(cµ(Q)).
Proof. Let Q ∈ µ∗C(Xτ ). Then, i(cµ(Q)) ≤ Q and i(cµ(Q)) ≤ i(Q).
Also, Q ≤ cµ(Q) and hence, i(Q) = i(cµ(Q)). Conversely, let i(Q) =
i(cµ(Q)). As, i(Q) ≤ Q, the result follows.

□
Theorem 3.13. In a space (X,µX, τ), if A ∈ µ∗C(Xτ ) then it can be
expressed as A = U ∧ V for some U ∈ τ and i(V ) = i(cµ(V )).
Proof. Let A ∈ µ∗C(Xτ ). By Theorem 3.12, i(A) = i(cµ(A)). As,
A = 1 ∧A, choosing U = 1 and V = A, the result follows. □

4. Fuzzy µ∗-Continuous Function

Definition 4.1. A function g between a space (X,µX, τ) and fts (Y, σ)
is a fuzzy µ∗-continuous function if g−1(V ) ∈ µ∗O(Xτ ) ∀ V ∈ σ.

Now, we shall find the relationship of fuzzy µ∗-continuity with the
well known notion of fuzzy continuity.
Example 4.2. Let us consider a space (X,µX, τ) where

X = {a, b, c}, µX = {0, 1, P,Q,R}, τ = {0, 1, A,Q,C},
and

P =

(
0

a
,
0

b
,
0.8

c

)
, Q =

(
0.2

a
,
0

b
,
0.5

c

)
, R =

(
0.2

a
,
0

b
,
0.8

c

)
.

Also, A =
(
0.2
a , 0b ,

0
c

)
, C =

(
0.1
a , 0b ,

0
c

)
. Here,

µ∗O(Xτ ) = {0, 1, P,Q,R,U1, U2, U3},
where U1, U2, U3 satisfying P ≤ U1 ≤ 1 − A,Q ≤ U2 ≤ 1 − Q,R ≤
U3 ≤ 1 − A. Let us consider a fts (Y, σ) where Y = {m,n, t}, σ =
{0, 1, A1, B1} and A1 =

(
0.1
m , 0

n ,
0
t

)
, B1 =

(
0.1
m , 0

n ,
0.5
t

)
. Let us define a

function g : X → Y by g(a) = m, g(b) = n and g(c) = n. Clearly, g is
fuzzy continuous. As, B1 ∈ σ but g−1(B1) =

(
0.1
a , 0b ,

0
c

)
/∈ µ∗O(Xτ ), g is

not fuzzy µ∗-continuous.
Example 4.3. Let us consider a space (X,µX, τ) where

X = {a, b, c}, µX = {0, 1, P,Q,R, S}, τ = {0, 1, A,B,C}.
where

P =
(
0.1
a , 0.4b , 0c

)
,

Q =
(
0.2
a , 0b ,

0.5
c

)
,

R =
(
0.2
a , 0.4b , 0.5c

)
,

S =
(
0.1
a , 0b ,

0
c

)
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and

A =

(
0.2

a
,
0

b
,
0

c

)
, B =

(
0.2

a
,
0

b
,
0.5

c

)
, C =

(
0.1

a
,
0

b
,
0

c

)
.

Here, µ∗O(Xτ )= {0, 1, P,Q,R, S, U1, U2, U3, U4} where U1, U2, U3, U4

are fuzzy sets satisfying P ≤ U1 ≤ 1 − B,Q ≤ U2 ≤ 1 − B,R ≤ U3 ≤
1−B,S ≤ U4 ≤ 1−B. Let us consider a fts (Y, σ) where Y = {m,n, t},
σ = {0, 1, A1, B1} and

A1 =

(
0.1

m
,
0

n
,
0

t

)
, B1 =

(
0.1

m
,
0

n
,
0.5

t

)
.

We define a function g : X → Y , where X = {a, b, c} and Y = {m,n, t}
by g(a) = m, g(b) = t and g(c) = n. Clearly, g is fuzzy µ∗-continuous.
Now, B1 ∈ σ but g−1(B1) =

(
0.1
a , 0.5b , 0c

)
/∈ τ . Hence, the function is not

fuzzy continuous.
Hence, from Example 4.2 and Example 4.3 we have:

fuzzy µ∗-continuity fuzzy continuity./
/

Now if we consider µY = {O, 1, P1} where P1 =
(
0
m , 0

n ,
0.8
t

)
, then we see

that g−1(P1) =
(
0
a ,

0.8
b , 0c

)
/∈ µX. So g is not fuzzy (µX, µY )-continuous.

Theorem 4.4. Let (X,µX, τ) be a space and (Y, σ) be a fts such that
τ ≤ µX, then every fuzzy continuous function g from X to Y is fuzzy
µ∗-continuous.
Proof. Let V ∈ σ then g−1(V ) ∈ τ . Since τ ≤ µX, using Theorem 3.7,
g−1(V ) ∈ µ∗O(Xτ ). Hence, g is a fuzzy µ∗-continuous. □
Theorem 4.5. A fuzzy (µ, σ)-continuous function between a space
(X,µX, τ) and a fts (Y, σ) is fuzzy µ∗-continuous.
Proof. Straightforward. □

However, the converse does not hold as members of µ∗O(Xτ ) need
not be fuzzy µ-open.
Example 4.6. Let us consider two spaces (X,µX, τ) and (Y, µY, σ)
where
X = {a, b, c, d, e}, µX = {0, 1, P,Q,R, S}, τ = {0, 1, A,B,C,D},
and

Y = {m,n, t}, µY = {0, 1, P1, Q1, R1}, σ = {0, 1, A1, B1}.
Here,

P =
(
0
a ,

0
b ,

0
c ,

0
d ,

0.7
e

)
,

Q =
(
0.2
a , 0.2b , 0c ,

0
d ,

0.6
e

)
,

R =
(
0.2
a , 0.2b , 0c ,

0
d ,

0.7
e

)
,

S =
(
0.5
a , 0.2b , 0.8c , 0.9d , 0.8e

)
,
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and
A =

(
0.2
a , 0b ,

0.3
c , 0d ,

0
e

)
,

B =
(
0.5
a , 1b ,

0.2
c , 0d ,

0
e

)
,

C =
(
0.5
a , 1b ,

0.3
c , 0d ,

0
e

)
,

D =
(
0.2
a , 0b ,

0.2
c , 0d ,

0
e

)
.

Also,

P1 =

(
0

m
,
0

n
,
0.7

t

)
Q1 =

(
0.2

m
,
0

n
,
0.6

t

)
, R1 =

(
0.2

m
,
0

n
,
0.7

t

)
,

and
A1 =

(
0.2

m
,
0

n
,
0.3

t

)
, B1 =

(
0.3

m
,
1

n
,
0.5

t

)
.

Now, µ∗O(Xτ ) = {0, 1, P,Q,R, S, U1, U2, U3, U4} where the fuzzy sets
Ui, i = 1, 2, 3, 4 are such that P ≤ U1 ≤ 1 − C,Q ≤ U2 ≤ 1 − C,R ≤
U3 ≤ 1, S ≤ U4 ≤ 1− A. Let us define a function g : X → Y by g(a) =
m = g(b), g(c) = n = g(d) and g(e) = t. Clearly, g is fuzzy (µX, µY )-
continuous. Now, A1 ∈ σ but g−1(A1) =

(
0.2
a , 0.2b , 0c ,

0
d ,

0.3
e

)
/∈ µ∗O(Xτ ).

Hence, g is not fuzzy µ∗-continuous.

Hence, from Example 4.2 and Example 4.6 we have:
fuzzy µ∗-continuity fuzzy (µX, µY )-continuity./

/

All results from above three examples can be seen at a time in the fol-
lowing table:

Examples fuzzy continuous fuzzy µ∗-continuous (µX, µY )-
continuous)

Example 4.2 ✓ ×
Example 4.3 × ✓ ×
Example 4.6 × ✓

Theorem 4.7. The following results are equivalent for a function g
between a space (X,µX, τ) and a fts (Y, σ)

(1) g is fuzzy µ∗-continuous.
(2) for each xα in X and each A ∈ σ containing g(xα), ∃ U ∈

µ∗O(Xτ ) containing xα such that g(U) ≤ A.
(3) g−1(F ) ∈ µ∗C(Xτ ) of each F such that 1Y − F ∈ σ.
(4) i(cµ(g

−1(F ))) ≤ g−1(cl(F )) for any fuzzy subset F of Y.
(5) g(i(cµ(N))) ≤ cl(g(N)) for any fuzzy subset N of X.

Proof. (1) ⇒ (2): For any xα in X and A ∈ τ with g(xα) ≤ A,
g−1(A) = U(say) ∈ µ∗O(Xτ ) we have xα ≤ U and g(U) ≤ A.
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(2) ⇒ (3): For any fuzzy closed set F in Y , 1 − F = V (say) ∈ σ.
Let xα ∈ g−1(V ). Then g(xα) ∈ V and by the given condition ∃
Uxα ∈ µ∗O(Xτ ) containing xα and g(Uxα) ≤ V . Clearly, xα ∈
Uxα ≤ g−1(V ) gives ∨xα∈g−1(V ){xα} ≤ ∨xα∈g−1(V ){Uxα} ≤
∨xα∈g−1(V )(g

−1(V )). So, g−1(V ) = ∨xα∈g−1(V ){Uxα} ∈ µ∗O(Xτ ).
Now, g−1(V ) = g−1(1 − F ) = 1 − g−1(F ). Hence, g−1(V ) ∈
µ∗C(Xτ ).

(3) ⇒ (1): Straightforward.
(3) ⇒ (4): For the fuzzy set F ≤ Y , g−1(cl(F )) ∈ µ∗C(Xτ ). Hence,

i(cµ(g
−1(F ))) ≤ i(cµ(g

−1(cl(F )))) ≤ g−1(cl(F )). So,
i(cµ(g

−1(F ))) ≤ g−1(cl(F )).

(4) ⇒ (5): For N ≤ X, g(N) ≤ Y and
i(cµ(g

−1(g(N)))) ≤ g−1(cl(g(N))).

Also, i(cµ(N)) ≤ g−1(cl(g(N))). So, g(i(cµ(N))) ≤ cl(g(N).
(5) ⇒ (3): For S ≤ Y , g−1(S) ≤ X and g(i(cµ(g

−1(S)))) ≤
cl(g(g−1(S))) ≤ cl(S) = S. Hence, i(cµ(g

−1(S))) ≤ g−1(S),
showing g−1(S) ∈ µ∗C(Xτ ). □

Theorem 4.8. Let us consider two fts (Y, σ), (Z, ρ) and (X,µX, τ) be
a space. If g : Y → Z is fuzzy continuous and h : X → Y is fuzzy
µ∗-continuous then g ◦ h : X → Z is fuzzy µ∗-continuous.

Proof. For any P ∈ ρ, we have (g ◦ h)−1(P ) = h−1(g−1(P )). Now,
(g−1(P )) being fuzzy open in Y , h−1(g−1(P )) is fuzzy µ∗-open in X.
Hence, (g ◦ h) : X → Z is a fuzzy µ∗-continuous. □
Theorem 4.9. Let (X,µX, τ) be a space and (Xi, τi)(where i = 1, 2) be
fts. Consider the projection functions pi : X1 × X2 → Xi (i = 1, 2) of
X1 ×X2 in Xi. If g : X → X1 ×X2 is fuzzy µ∗-continuous, then pi ◦ g
is also fuzzy µ∗-continuous.

Proof. Proof: The projection function being fuzzy continuous, by The-
orem 4.8 the result follows. □
Theorem 4.10. Let (Xi, µXi, τi) for i = 1, 2 be two spaces. Let f :
X1 → X2 be a function. The sufficient condition for f to be fuzzy µ∗-
continuous is the graph g : X1 → X1 ×X2 of f is fuzzy µ∗-continuous.

Proof. For any fuzzy open set λ1 × λ2 in X1 ×X2, g−1(λ1 × λ2) = λ1,
which is fuzzy µ∗-open. Let us define a projection function p2 : X1 ×
X2 → X2. Clearly p2 is a fuzzy continuous function. Hence, by Theorem
4.8, p2 ◦g is fuzzy µ∗-continuous function. Now, (p2 ◦g)(a) = p2(g(a)) =
p2(a, f(a)) = f(a), ∀ a ∈ X1. So, we have (p2 ◦ g) = f . Thus, f is a
fuzzy µ∗-continuous function. □
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5. Fuzzy (τ, µ∗)-Closed (Open) Function

Definition 5.1. A function g between a fts (X, τ) and a space (Y, µY, σ)
is called fuzzy (τ, µ∗)-closed(open) if for any fuzzy closed(open) set P ,
g(P ) is fuzzy µ∗-closed(open) in Y .

Now we shall see that this (τ, µ∗)-open(closed) map is independent of
the existing fuzzy open (closed) map by the following examples.
Example 5.2. Let us consider a space (X,µX, τ) where X = {a, b, c},
µX = {0, 1, P,Q,R}, τ = {0, 1, A,Q,C} and P =

(
0
a ,

0
b ,

0.8
c

)
, Q =(

0.2
a , 0b ,

0.5
c

)
, R =

(
0.2
a , 0b ,

0.8
c

)
. Also, A =

(
0.2
a , 0b ,

0
c

)
, C =

(
0.1
a , 0b ,

0
c

)
.

Here, µ∗O(Xτ ) ={0, 1, P,Q,R, U1, U2, U3} where U1, U2, U3 satisfy P ≤
U1 ≤ 1 − A,Q ≤ U2 ≤ 1 − Q,R ≤ U3 ≤ 1 − A. Let us consider
another space (Y, µY, σ) where Y = {m,n}, σ = {0, 1, A1, B1, C1} and
A1 =

(
0.2
m , 0

n

)
, B1 =

(
0.1
m , 0

n

)
, and C1 =

(
0.2
m , 0.5n

)
. µY = {0, 1, P1} where,

P1 =
(
0.7
m , 0.5n

)
. Let us define a function f : X → Y by f(a) = m, f(b) =

f(c) = n. Clearly, f is a fuzzy open map. But U1 =
(
0.6
a , 0.5b , 0.8c

)
∈

µ∗O(Xτ ) and f(U1) /∈ µ∗O(Yσ). Hence, f is not a fuzzy (τ, µ∗)-open
map.
Example 5.3. Considering the space (X,µX, τ) and the function f
same as in Example 5.2 and taking (Y, µY, σ) as µY = {0, 1, Q1} where,
Q1 =

(
0.1
m , 0

n

)
and σ = {0, 1,

(
0.2
m , 0

n

)
,
(
0.2
m , 0.5n

)
} we get µ∗O(Yσ) =

{0, 1, Q1 ≤ V1 ≤ 1 − C}. Clearly, f(C) =
(
0.1
m , 0

n

)
is not fuzzy open

in Y hence f is not fuzzy open, but f is (τ, µ∗)-open map.
Hence, from Example 5.2 and Example 5.3 we have:

fuzzy open map fuzzy(τ, µ∗)-open map./
/

Similarly, we can show,
fuzzy closed map. fuzzy(τ, µ∗)-closed map/

/

Theorem 5.4. The following results are equivalent in a space (Y, µY, σ)
and in a fts (X, τ) with a function g : X → Y .

(1) g is a fuzzy (τ, µ∗)-open function.
(2) g(i(N)) ≤ iµ∗(g(N)), for all fuzzy sets N in X.
(3) g−1(cµ∗(Q)) ≤ cl(g−1(Q)), for all fuzzy sets Q in Y .
(4) i(g−1(Q)) ≤ g−1(iµ∗(Q)), for each fuzzy set Q in Y

Proof. (1) ⇒ (2): Let g be fuzzy (τ, µ∗)-open function. Let N
be a fuzzy set then g(i(N)) ≤ g((N)), g(i(N)) ∈ µ∗O(Yσ) so,
g(i(N)) = iµ∗(g(i(N))) ≤ iµ∗(g(N)).

(2) ⇒ (1): Let N ∈ τ then N = i(N) which gives g(N) = g(i(N)) ≤
iµ∗(g(N)) ≤ g(N). Hence, g(N) = iµ∗(g(N)) which shows
g(N) ∈ µ∗O(Yσ).
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(2) ⇒ (3): For any fuzzy set Q in Y , g−1(1Y − Q) = N(say) is a
fuzzy set in X. We have, i(g−1(1Y − Q)) ≤ g−1(i∗µ(1Y − Q)).
So, i(1X − g−1(Q)) ≤ g−1(1Y − cµ∗(Q)) = 1X − cl(g−1(Q)) ≤
1X − g−1(cµ∗(Q)) which gives g−1(cµ∗(Q)) ≤ cl(g−1(Q)).

(3) ⇒ (4): Let S be any fuzzy set in Y and let R = 1Y − S. We
have, g−1(cµ∗(R)) ≤ cl(g−1(R)) which gives g−1(cµ∗(1Y −S)) ≤
cl(g−1(1Y − S)) ⇒ g−1(1Y − iµ∗(S)) ≤ cl(1X − g−1(S)) which
gives 1X − g−1(iµ∗(S)) ≤ 1X − i(g−1(S)), hence i(g−1(S)) ≤
g−1(iµ∗(S)).

(4) ⇒ (2): Let U be any fuzzy set n X. Let S = g(U), then
we have i(U) ≤ i(g−1(g(U))) ≤ g−1(iµ∗(g(U))), so g(i(U)) ≤
g(g−1(iµ∗(g(U)))) ≤ iµ∗(g(U)). Hence, the result follows. □

Theorem 5.5. Let (X, τ) be a fts and (Y, µY, σ) be a space. The function
g : X → Y is fuzzy (τ, µ∗)-closed iff for any fuzzy set S in X, cµ∗(g(S)) ≤
g(cl(S)).
Proof. Let g be fuzzy (τ, µ∗)-closed and S be any fuzzy set in X. Then
g(cl(S)) ∈ µ∗C(Yσ). Now, cµ∗(g(S)) ≤ cµ∗g(cl(S)), which gives cµ∗(g(S))
≤ g(cl(S)) as g(cl(S)) ∈ µ∗C(Yσ).
Conversely, let S be a fuzzy closed set in X. Then cµ∗(g(S)) ≤ g(cl(S)) =
g(S) ≤ cµ∗g(S), which shows that g(S) ∈ µ∗C(Yσ). Hence, g is (τ, µ∗)-
closed. □
Theorem 5.6. The following results are equivalent for a function g
from fts (X, τ) to a space (Y, µY, σ).

(1) g is a (τ, µ∗)-closed function.
(2) ∃ V ∈ µ∗O(Yσ) with B ≤ V and g−1(V ) ≤ U for each B ≤ Y ,

U ∈ τ such that g−1(B) ≤ U .
Proof. (1) ⇒ (2): Let f be a (τ, µ∗)-closed function. Let B be a

fuzzy set in Y and U ∈ τ such that g−1(B) ≤ U . Let V =
1Y − g(1X − U). Clearly, V ∈ µ∗O(Yσ). Since f is a (τ, µ∗)-
closed function, g(1 − U) ∈ µ∗C(Yσ). Now, 1X − U ≤ 1X −
g−1(B) = g−1(1Y − B), which gives g(1X − U) ≤ (1Y − B).
Hence, B ≤ 1Y − g(1X − U) = V , further g−1(V ) = g−1(1Y −
g(1X − U)) = 1X − g−1(g(1X − U)) ≤ 1X − (1X − U) = U .
Therefore, g−1(V ) ≤ U .

(2) ⇒ (1): Let g satisfies the given condition. Let P be any fuzzy
closed set in X, then B = (1X−P ) ∈ τ . Now, g−1(1Y −g(P )) =
1X−g−1(g(P )) ≤ 1X−P = B. By hypothesis there exists a V ∈
µ∗O(Yσ) such that 1Y − g(P ) ≤ V and g−1(V ) ≤ B = 1X − P .
Hence, 1Y − V ≤ g(P ). Also P ≤ 1X − g−1(V ) = g−1(1Y − V ).
So, g(P ) ≤ g(g−1(1Y − V )) ≤ 1Y − V . Thus, g(P ) = 1Y − V
∈ µ∗C(Yσ). Hence, g is a (τ, µ∗)-closed function. □
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Theorem 5.7. The following results are equivalent for a bijective func-
tion g from a fts (X, τ) to a space (Y, µY, σ).

(1) g−1 : Y → X is fuzzy µ∗-continuous.
(2) g is a fuzzy (τ, µ∗)-open function.
(3) g is a fuzzy (τ, µ∗)-closed function.

Proof. (1) ⇒ (2): Let A ∈ τ and for bijective function g, g−1 :
Y → X is a fuzzy µ∗-continuous. Then (g−1)−1(A) = g(A) ∈
µ∗O(Yσ). Hence, g is fuzzy (τ, µ∗)-open function.

(2) ⇒ (3): Consider a fuzzy closed set V in X and let P = 1X −V .
g being a fuzzy (τ, µ∗) open bijective function, g(P ) = g(1X −
P ) = 1Y − g(V ) ∈ µ∗C(Yσ). So, g is a fuzzy (τ, µ∗)-closed
function.

(3) ⇒ (1): Let g be a fuzzy (τ, µ∗)- closed bijective function and
S be a fuzzy closed set in X, then g(S) ∈ µ∗C(Yσ). Also,
g(S) = (g−1)−1(S). Thus, g−1 : Y → X is fuzzy µ∗-continuous.

□
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