
 

 
 

Some Basic Results on Fuzzy Strong 𝝓-b-
Normed Linear Spaces 

 

 

 

 

 

 

 

 

-

 

 

Bayaz Daraby, Mortaza Tahmourasi and Asghar Rahimi 

Sitaru-Schweitzer Type Inequality for Fuzzy and Pseudo-

Integrals 

Sahand Communications in 

Mathematical Analysis 

 

Print ISSN: 2322-5807 

Online ISSN: 2423-3900 

Volume: 21 

Number: 1 

Pages: 31-45 

 

Sahand Commun. Math. Anal. 

DOI: 10.22130/scma.2023.2003349.1344 



Sahand Communications in Mathematical Analysis (SCMA) Vol. 21 No. 1 (2024), 31-45

http://scma.maragheh.ac.ir

DOI: 10.22130/scma.2023.2003349.1344

Sitaru-Schweitzer Type Inequality for Fuzzy and
Pseudo-Integrals

Bayaz Daraby1∗, Mortaza Tahmourasi2 and Asghar Rahimi3

Abstract. In this paper, we have proved and stated the Sitaru-
Schweitzer type inequality for fuzzy integrals and also we state this
inequality for pseudo-integrals in two classes. The first one is for
pseudo-integrals where pseudo-addition and pseudo-multiplication
are constructed by a monotone continuous function g : [0,∞] →
[0,∞]. Another one is given by the semiring ([a, b],max,⊙) where
an increasing function generates pseudo-multiplication.

1. Introduction

Fuzzy measure and fuzzy integral (Sugeno integral), which were ini-
tially introduced by Sugeno in 1974 [24], are essential analytical meth-
ods of measuring uncertain information [12]. Several papers discussed
the study of inequalities for the fuzzy integral, initiated by Román-
Flores-Flores et al., was discussed in several papers. Recently, the fuzzy
integral counterparts of several classical inequalities, including Cheby-
shev’s, Markov’s and Hardy’s inequalities, were given by Flores-Franulič
and Román-Flores (see [13], [14], [22]). Also, many researchers have
investigated fuzzy integral inequalities and generalized some of those,
such as H. Agahi et al. in [1, 2] and D. Zhang and E. Pap (see [25]).

The concept of pseudo-analysis is derived from classical analysis, which
is one of the most widely used and interesting generalizations of classical
analysis, which is based on the structure of semirings on the real inter-
val [a, b] ⊆ [−∞,+∞] with pseudo-addition and pseudo-multiplication
operators (see [17–19]).

2020 Mathematics Subject Classification. 03E72, 26E50, 28E10.
Key words and phrases. Fuzzy integrals, Schweitzer type inequality, Fuzzy integral

inequality, Pseudo-integrals.
Received: 27 May 2023, Accepted: 17 July 2023.
∗ Corresponding author.

31

http://scma.maragheh.ac.ir


32 B. DARABY, M. TAHMOURASI AND ASGHAR RAHIMI

One of the advantages of pseudo-analysis is its broader scope, which
can include nonlinear and indeterminate problems from different branches,
as well as the use of mathematical tools in various fields. Based on the
semiring structure in pseudo-analysis, the concepts of pseudo-measure
and pseudo-integral have been developedand accordingly, many classical
integral inequalities relative to pseudo-sum have been extended. Daraby
et al. have popularized some fuzzy integral inequalities for the Sugeno
integrals and pseudo-integrals in [3–11, 15]. In the classical mathemati-
cal analysis, the Sitaru-Schweitzer type inequality is as follows:

Theorem 1.1 ([23]). If f : [a, b] → [l, L], with l > 0 is an integrable
function such that 1

f
is also integrable, then∫ b

a
fdx ·

∫ b

a

1

f
dx ≤ (l + L)2

4lL
(b− a)2,

holds.

In this paper, we have also organized the article as the following: In
Section 2, we have described the definitions, properties and results of
fuzzy measure, fuzzy integrals and pseudo-integrals. In Section 3, we
have stated and proved the Sitaru-Schweitzer type inequality for the
fuzzy integrals. In Section 4, we have stated and proved the Sitaru-
Schweitzer type inequality for pseudo-integrals. In Section 5, we deal
with it through further discussionsand finally, this paper has finished
with a short conclusion.

2. Preliminaries

In this section, we provide some definitions and concepts for the next
sections.

2.1. Sugeno integrals. We denote by R, the set of all real numbers.
Let X be a non-empty set and Σ be a σ−algebra of subsets of X.
Throughout this paper, all considered subsets are supposed to be in
Σ.

Definition 2.1 ([21]). A set function µ : Σ → [0,+∞] is called a fuzzy
measure if the following properties are satisfied:
(FM1) µ(∅) = 0,
(FM2) A ⊆ B ⇒ µ(A) ≤ µ(B),

(FM3) A1 ⊆ A2 ⊆ . . . ⇒ limµ(Ai) = µ

( ∞∪
i=1

Ai

)
,

(FM4) A1 ⊇ A2 ⊇ . . . and µ(A1) <∞ ⇒ limµ(Ai) = µ

( ∞∩
i=1

Ai

)
.
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When µ is a fuzzy measure, the triple (X,Σ, µ) is called a fuzzy measure
space.

For the non-negative real-valued function f on X, we will denote
Fα = Lαf = {x ∈ X | f(x) ≥ α} = {f ≥ α} ,

the α-level of f , for α > 0. The support of f is L0f = {x ∈ X | f(x) > 0} =
supp(f). We know that:

α ≤ β ⇒ {f ≥ β} ⊆ {f ≥ α} .

If µ is a fuzzy measure on (X,Σ), assume
Fµ(X) = {f : X → [0,∞)|f is µ−measurable} .

Definition 2.2 ([24]). Let µ be a fuzzy measure on (X,Σ). If f ∈
Fµ(X) and A ∈ Σ, then the fuzzy integral of f on A, with respect to
the fuzzy measure µ, is defined as

−
∫
A
fdµ =

∨
α≥0

[α ∧ µ(A ∩ Fα)] .

Where ∨ and ∧ denote the operations sup and inf on [0,∞], respectively.
In particular, if A = X then

−
∫
X
fdµ = −

∫
fdµ =

∨
α≥0

[α ∧ µ(Fα)] .

The following properties of the fuzzy integral can be found in [24].

Proposition 2.3 ([24]). Let (X,Σ, µ) be a fuzzy measure space and
A,B ∈

∑
and f, g ∈ Fµ(X). We have

(i) −
∫
A fdµ ≤ µ(A).

(ii) −
∫
A kdµ = k ∧ µ(A), for non-negative constant k.

(iii) If A ⊆ B, then −
∫
A fdµ ≤ −

∫
B fdµ.

(iv) If f ≤ g on A, then −
∫
A f(x)dµ ≤ −

∫
A g(x)dµ.

(v) −
∫
A∪B fdµ ≥ −

∫
A fdµ ∨ −

∫
B fdµ.

(vi) If µ(A) <∞, then −
∫
A fdµ ≥ α ⇔ µ(A ∩ {f ≥ α}) ≥ α.

2.2. Pseudo integrals. Let [a, b] be a closed or semiclosed subinterval
of [−∞,∞]. The full order on [a, b] will be denoted by ⪯.

Let [a, b]+ = {x|x ∈ [a, b],0 ⪯ x}. In [17], the operations ⊕ and ⊙
are defined. Those operations are named pseudo-addition and pseudo-
multiplication, respectively. The operation ⊕ is a commutative, non-
decreasing function (with respect to ⪯), associative and with a zero
(neutral) element indicated by 0. The operation ⊙ is a commutative,
positively non- decreasing function, associative and for each x ∈ [a, b],
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1 ⊙ x = x. Also, we assume 0⊙ x = 0 that ⊙ is a distributive pseudo-
multiplication with respect to ⊕.

Case I: The pseudo-addition is an idempotent operation and the pseudo-
multiplication is not.

Case II: The pseudo-addition and pseudo-multiplication are defined
by a monotone and continuous function g : [a, b] → [0,∞], i.e., pseudo-
operations are given with x ⊕ y = g−1

(
g (x) + g (y)

)
and x ⊙ y =

g−1
(
g(x)g(y)

)
.

Case III: Both operations are idempotent. For example x ⊕ y =
sup(x, y), x⊙ y = inf(x, y) on the interval [a, b].

In the sequel, we consider the semiring ([a, b],⊕,⊙) for two signifi-
cant cases. The first case is when pseudo-operations are produced by a
monotone and continuous function such as g : [a, b] → [0,∞). There-
fore, the pseudo-integral for a function f : [0, 1] → [a, b] scales down the
g−integral

(2.1)
∫ ⊕

[0,1]
f(x)dx = g−1

(∫ 1

0
g(f(x))dx

)
.

The second class is when x⊕ y = sup(x, y) and x⊙ y = g−1(g(x)g(y)),
the pseudo-integral for a function f : R → [a, b] be given as follows:∫ sup

R
f ⊙ dm = sup

x∈R
(f(x)⊙ ψ(x)) ,

where the function ψ : R → [a, b] defines a sup-measure m by m(A) =
supx∈A ψ(x).

Theorem 2.4 ([16]). Let m be a sup-measure on ([0,∞],B[0,∞]), where
B([0,∞]) is the Borel σ-algebra on [0,∞], m(A) = ess supµ(ψ(x)|x ∈ A)
and ψ : [0,∞] → [0,∞] is a continuous function. Then for any pseudo-
addition ⊕ with a generator g there exists a family mλ of ⊕λ-measure on
([0,∞],B), where ⊕λ is a generated by gλ (the function g of the power
λ, λ ∈ (0,∞)) such that lim

λ→∞
mλ = m.

Theorem 2.5 ([16]). Let ([0,∞], sup,⊙) be a semiring , when ⊙ is a
generated with g, i.e., we have x ⊙ y = g−1(g(x)g(y)) for every x, y ∈
(0,∞). Let m be the same as in Theorem 2.4, Then there exists a family
{mλ} of ⊕λ -measures, where ⊕λ is a generated by gλ, λ ∈ (0,∞) such
that for every continuous function f : [0,∞] → [0,∞],∫ sup

f ⊙ dm = lim
λ→∞

∫ ⊕λ

f ⊙ dmλ(2.2)

= lim
λ→∞

(
gλ
)−1

(∫
gλ(f(x))dx

)
.
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Theorem 2.6 ([20]). Let φ : [a, b] → [a, b] be a convex and non-
increasing function. If a generator g : [a, b] → [a, b] of the pseudo-
addition ⊕ and the pseudo-multiplication ⊙ is a convex and increasing
function, then for any measurable function f : [a, b] → [a, b], we have

(2.3) φ

(∫ ⊕

[0,1]
f(x)dx

)
≤
∫ ⊕

[0,1]
φ(f(x))dx.

Note that, if φ and g ane non-decreasing functions, then the reverse of
(2.3) holds.

Theorem 2.7. [20] Let φ : [a, b] → [a, b] be a convex and non-increasing
function and the pseudo-multiplication ⊙ is represented by a convex and
increasing generator g. Let m be the same as in Theorem 2.5. Then for
any continuous function f : [0, 1] → [a, b] we have

(2.4) φ

(∫ sup

[0,1]
f ⊙ dm

)
≤
∫ sup

[0,1]
φ(f)dm.

3. Sitaru-Schweitzer Type Inequality for Fuzzy Integrals

In this section, we investigate the Sitaru-Schweitzer’s inequality for
fuzzy integrals.

Lemma 3.1. Let L > 0 and l ≤ L, then (l + L)2

4lL
≥ 1.

Proof. If in the contrary, we suppose (l + L)2

4lL
< 1. Therefore

(l + L)2 < 4lL

l2 + 2mM + L2 − 4lL < 0

l2 − 2mM + L2 < 0

(l − L)2 < 0.

Which is a contradiction. Hence, the proof is complete. □

Theorem 3.2. Let f : [a, b] → [l, L] and 1

f
be a fuzzy measurable

functions. If l > 0 and µ is a regular fuzzy measure, then the inequality

(3.1) −
∫ b

a
fdµ · −

∫ b

a

1

f
dµ ≤ (l + L)2

4lL
(b− a)2

holds.
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Proof. From part (i) of Proposition 2.3, we have

−
∫ b

a
f(x)dµ ≤ µ[a, b] = b− a, −

∫ b

a

1

f(x)
dµ ≤ µ[a, b] = b− a.

Therefore

(3.2) −
∫ b

a
fdµ · −

∫ b

a

1

f
dµ ≤ (b− a) · (b− a) = (b− a)2.

Applying Lemma 3.1 and Inequality (3.2), we have

−
∫ b

a
fdµ · −

∫ b

a

1

f
dµ ≤ (l + L)2

4lL
(b− a)2.

Proof is now complete. □
In the following by some examples, we illustrate the validity of The-

orem 3.2.

Example 3.3. We define f : [0, 1] → [1, 2], by f(x) = 1+x and assume
that µ is a Lebesgue measure. Then by some simple calculations, we
have

−
∫ 1

0
f(x)dµ = −

∫ 1

0
(1 + x)dµ

= sup
α∈[0,1]

[α ∧ µ ([0, 1] ∩ {x : x+ 1 ≥ α})]

= sup
α∈[0,1]

[α ∧ µ ([0, 1] ∩ {x : x ≥ α− 1})]

= sup
α∈[0,1]

[α ∧ µ ([0, 1] ∩ [α− 1, 1])]

= sup
α∈[0,1]

[α ∧ µ ([α− 1, 1])]

= sup
α∈[0,1]

[α ∧ (1− (α− 1)]

= 1,

and

−
∫ 1

0

1

f(x)
dµ = −

∫ 1

0

1

1 + x
dµ

= sup
α∈[0,1]

(
α ∧ µ

(
[0, 1] ∩

{
x :

1

1 + x
≥ α

}))
= sup

α∈[0,1]

(
α ∧ µ

(
[0, 1] ∩

{
x : x ≤ 1− α

α

}))
= sup

α∈[0,1]

(
α ∧ µ

(
[0, 1] ∩

[
0,

1− α

α

]))
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= sup
α∈[0,1]

(
α ∧ µ

([
0,

1− α

α

]))
= sup

α∈[0,1]

(
α ∧ 1− α

α

)
= 0.6180,

also
(l + L)2

4lL
(b− a)2 =

(1 + 2)2

4(1)(2)
(1)2 =

9

8
.

Finally, 0.6180 ≤ 1.125.

Example 3.4. Let f : [0, 1] →
[
1

2
,
3

2

]
and f(x) =

3

2
− x and µ be a

Lebesgue measure. Then with simple calculation we have

−
∫ 1

0
f(x)dµ = −

∫ 1

0

(
3

2
− x

)
dµ

= sup
α∈[0,1]

[
α ∧ µ

(
[0, 1] ∩

{
x :

3

2
− x ≥ α

})]
= sup

α∈[0,1]

[
α ∧ µ

(
[0, 1] ∩

{
x : x ≤ 3

2
− α

})]
= sup

α∈[0,1]

[
α ∧ µ

(
[0, 1] ∩

[
0,

3

2
− α

])]
= sup

α∈[0,1]

[
α ∧ µ

([
0,

3

2
− α

])]
= sup

α∈[0,1]

[
α ∧

(
3

2
− α

)]
=

3

4
,

and

−
∫ 1

0

1

f(x)
dµ = −

∫ 1

0

1
3

2
− x

dµ

= sup
α∈[0,1]

α ∧ µ

[0, 1] ∩

x :
1

3

2
− x

≥ α





= sup
α∈[0,1]

α ∧ µ

[0, 1] ∩

x : x ≥

3

2
α− 1

α
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= sup
α∈[0,1]

α ∧ µ

[0, 1] ∩

 3

2
α− 1

α
, 1





= sup
α∈[0,1]

α ∧ µ


 3

2
α− 1

α
, 1





= sup
α∈[0,1]

α ∧

1−

3

2
α− 1

α




= 0.7807,

also
(l + L)2

4lL
(b− a)2 =

4

3
× 1 = 1.333,

finally,
0.5855 ≤ 4

3
= 1.333.

4. Sitaru-Schweitzer Type Inequality for Pseudo-Integrals

In this section, we prove the Sitaru-Schweitzer’s inequality for pseudo
integrals.

Theorem 4.1. Let f : [a, b] → [l0, L0] be a measurable function, l0 > 0
and g : [l0, L0] → [l, L] be a continuous function. Then

(4.1)
∫ ⊕

[a,b]
f(x)dx⊙

∫ ⊕

[a,b]
(1 ⊘ f(x)) dx ≤ g−1

(
(l + L)2

4lL
(b− a)2

)
.

Proof. Based on pseudo-integrals definition, we have∫ ⊕

[a,b]
f(x)dx⊙

∫ ⊕

[a,b]
(1 ⊘ f(x)) dx

= g−1

(
g

∫ ⊕

[a,b]
f(x)dx · g

∫ ⊕

[a,b]
1 ⊘ f(x)dx

)

= g−1

[
g

(
g−1

∫ b

a
g(f(x))dx

)
· g
(
g−1

∫ b

a
g (1 ⊘ f(x)) dx

)]
= g−1

[
g

(
g−1

∫ b

a
g(f(x))dx

)
· g
(
g−1

∫ b

a
g

(
g−1

(
g(1)

g(f(x))

))
dx

)]
= g−1

[
g(1) ·

∫ b

a
g(f(x))dx ·

∫ b

a

1

g(f(x))
dx

]
.
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Now, by using the classical form, we have∫ ⊕

[a,b]
f(x)dx⊙

∫ ⊕

[a,b]
(1 ⊘ f(x)) dx ≤ g−1

[
g(1) ·

(
(l + L)2

4lL
· (b− a)2

)]
= 1 ⊙ g−1

[
(l + L)2

4lL
· (b− a)2

]
,

in continue, from 1 ⊙ x = x, we have∫ ⊕

[a,b]
f(x)dx⊙

∫ ⊕

[a,b]
(1 ⊘ f(x)) dx = g−1

[
(l + L)2

4lL
· (b− a)2

]
.

Proof is now complete. □

Example 4.2. Define the functions f : [0, 1] → [1,
√
2] as f(x) =

√
x+ 1

and g : [1,
√
2] → [1, 2] as g(x) = x2. With simple calculation, we have∫ ⊕

[0,1]
f(x)dx = g−1

∫ 1

0
g(f(x))dx

= g−1

∫ 1

0
(x+ 1)dx

= g−1

(
3

2

)
=

√
3

2
,

and ∫ ⊕

[0,1]
(1 ⊘ f(x)) dx = g−1

∫ 1

0
g (1 ⊘ g(x)) dx

= g−1

∫ 1

0
gg−1

(
g(1)

g(f(x))

)
dx

= g−1

∫ 1

0

(
1

x+ 1

)
dx

=
√
0.69315.

And for the right side of inequality, we have

g−1

(
(l + L)2

4lL
· (1− 0)2

)
= g−1

(
5.82

5.46

)
=

√
5.82

5.46
.

By replacing in inequality, we obtain√
3

2
⊙ 0.8325 ≤

√
5.82

5.46
.

Consequently,
1.0196 ≤ 1.0324.
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In the sequel, we generalize the Sitaru-Schweitzer type inequality by
the semiring ([a, b],max,⊙), where ⊙ is generated.

Theorem 4.3. Let f : [a, b] → [l0, L0] be a measurable function, l0 > 0
and g : [l0, L0] → [l, L] be a continuous function. Let m be the same as
in Theorem 2.4. Then

(4.2)
∫ sup

[a,b]
f(x)⊙dm⊙

∫ sup

[a,b]
(1⊘f(x))⊙dm ≤ g−λ

(
(l + L)2

4lL
(b− a)2

)
.

Proof. Based on definition, we have∫ sup

[a,b]

f(x)⊙ dm⊙
∫ sup

[a,b]

(1 ⊘ f(x))⊙ dm

=

(
lim
λ→∞

∫ ⊕λ

[a,b]

f ⊙ dmλ

)
⊙

(
lim
λ→∞

∫ ⊕λ

[a,b]

(1⊘ f)⊙ dmλ

)

= lim
λ→∞

(
gλ
)−1

∫ b

a

gλ(f(x))dx⊙ lim
λ→∞

(
gλ
)−1

∫ b

a

gλ(1⊘ f)dx

= lim
λ→∞

(
gλ
)−1

∫ b

a

gλ(f(x))dx⊙ lim
λ→∞

(
gλ
)−1

∫ b

a

gλ
(
g−λ(

gλ(1)

gλ(f)

)
dx

= g−λ

(
gλ lim

λ→∞

(
gλ
)−1

∫ b

a

gλ(f(x))dx · gλ lim
λ→∞

(
gλ
)−1

∫ b

a

gλ(1)

gλ(f(x))
dx

)

= g−λ

(
lim
λ→∞

gλ
(
gλ
)−1

∫ b

a

gλ(f(x))dx · lim
λ→∞

gλ ·
(
gλ
)−1

∫ b

a

gλ(1)

gλ(f(x))
dx

)

= g−λ

(
lim
λ→∞

∫ b

a

gλf(x)dx · lim
λ→∞

∫ b

a

gλ(1)

gλ(f(x))
dx

)

= lim
λ→∞

(
g−λ

) [∫ b

a

gλ(f(x))dx ·
∫ b

a

gλ(1)

gλ(f(x))
dx

)

= lim
λ→∞

(
g−λ

) [
gλ(1) ·

∫ b

a

gλ(f(x))dx ·
∫ b

a

1

gλ(f(x))
dx

]

≤ lim
λ→∞

(
g−λ

) [
gλ(1) ·

(
(l + L)2

4lL

)
· (b− a)2

]
=
(
gλ
)−1

[
gλ(1) · (l + L)2

4lL
· (b− a)2

]
= 1⊙ g−λ

[
(l + L)2

4lL
· (b− a)2

]
= g−λ

[
(l + L)2

4lL
· (b− a)2

]
, (Because 1 ⊙ x = x).
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Therefore, we have∫ sup

[a,b]
f(x)⊙ dm⊙

∫ sup

[a,b]
(1 ⊘ f(x))⊙ dm ≤ g−λ

[
(l + L)2

4lL
· (b− a)2

]
.

Proof is now complete. □
Example 4.4. Let gλ(x) = eλx and ψ(x) be the same as Theorem 2.4.
Then

x⊕ y = lim
λ→∞

1

λ
ln
(
eλx + eλy

)
= max(x, y)

and
x⊙ y = lim

λ→∞

1

λ
ln
(
eλx · eλy

)
= x+ y.

Therefore, we get

sup

(
sup(f(x)⊙ ψ(x))⊙ sup

(
1

f(x)
⊙ ψ(x)

))
dx

≤ g−λ

(
(l + L)2

4lL
· (b− a)2

)
.

Note that the third important case ⊕ = max and ⊙ = min has been
studied in Theorem 3.2 and the pseudo-integral in such a case yields the
Sugeno integrals.

5. Further Discussions

In this section, we provide a strengthened version of Sitaru-Schweitzer
type integral inequalities for pseudo-integrals.

Theorem 5.1. Let f : [a, b] → [l0, L0] be a measurable function and
let a generator g : [l0, L0] → [l, L) of the pseudo addition ⊕ and the
pseudo-multiplication ⊙ be a monotone function. If φ : [l0, L0] → [l, L]
is a continuous and strictly increasing function such that φ commutes
with ⊙, then the inequality

φ−1

((
φ

∫ ⊕

[a,b]
fdµ

)
⊙

(
φ

∫ ⊕

[a,b]
(1⊘ f) dµ

))

≤ φ−1

(
g−1

(
(l + L)2

4lL
(b− a)2

))
holds.

Proof. From the Inequality (2.3), we obtain
(5.1)(
φ

∫ ⊕

[a,b]
fdµ

)
⊙φ

(∫ ⊕

[a,b]
(1⊘ f) dµ

)
≤
∫ ⊕

[a,b]
φ(f)dµ⊙

∫ ⊕

[a,b]
φ(1⊘f)dµ.
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Applying Theorem 4.1 and the Inequality (5.1), we have
(5.2)(

φ

∫ ⊕

[a,b]
fdµ

)
⊙ φ

(∫ ⊕

[a,b]
(1⊘ f) dµ

)
≤ g−1

(
(l + L)2

4lL
(b− a)2

)
.

It follows that

φ−1

((
φ

∫ ⊕

[a,b]
fdµ

)
⊙ φ

(∫ ⊕

[a,b]
(1⊘ f) dµ

))

≤ φ−1

(
g−1

(
(l + L)2

4lL
(b− a)2

))
.

Therefore, the theorem is proved. □

Corollary 5.2. Assuming φ(x) = xs that ∞ > s ≥ 0 and by considering
the condition Theorem 5.1, the inequalty((∫ ⊕

[a,b]
fdµ

)s

⊙

(∫ ⊕

[a,b]
(1⊘ f) dµ

)s) 1
s

≤
(
g−1

(
(l + L)2

4lL
(b− a)2

)) 1
s

.

holds for all ∞ > s ≥ 0 where (.)s commutes with ⊙.

Now we consider the second class, when x⊕y = max(x, y) and x⊙y =
g−1
(
g(x)g(y)

)
.

Theorem 5.3. Let f : [a, b] → [l0, L0] be a measurable function and ⊙ be
represented by a monotone multiplicative generator g and m be the same
as in Theorem 2.4. If φ : [l0, L0] → [l, L] is a continuous and strictly
increasing function such that φ commutes with ⊙, then the following
inequality

φ−1

((
φ

∫ sup

[a,b]
f ⊙ dm

)
⊙

(
φ

∫ sup

[a,b]
(1⊘ f)⊙ dm

))

≤ φ−1

(
g−λ

(
(l + L)2

4lL
(b− a)2

))
holds.

Proof. From the Inequality (2.4), we obtain(
φ

∫ sup

[a,b]
f ⊙ dm

)
⊙ φ

(∫ sup

[a,b]
(1⊘ f)⊙ dm

)
(5.3)

≤
∫ ⊕

[a,b]
φ(f)⊙ dm⊙

∫ sup

[a,b]
φ(1⊘ f)⊙ dm.
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Applying Theorem (4.3) and Inequality (5,3), we have(
φ

∫ sup

[a,b]
f ⊙ dm

)
⊙

(
φ

∫ sup

[a,b]
(1⊘ f)⊙ dm

)
(5.4)

≤ g−λ

(
(l + L)2

4lL
(b− a)2

)
.

It follows that

φ−1

((
φ

∫ sup

[a,b]
f ⊙ dm

)
⊙

(
φ

∫ sup

[a,b]
(1⊘ f)⊙ dm

))

≤ φ−1

(
g−λ

(
(l + L)2

4lL
(b− a)2

))
.

Therefore, the theorem is proved. □

6. Conclusion

The classical Sitaru-Schewitzer type integral inequality is one of the
most important inequalities and it is deeply connected with the study of
singular integral theory. In this paper, we indicated Sitaru-Schewitzer
type inequality for the fuzzy integral and generalized this inequality
for the pseudo-integrals. In the sequel, several illustrated examples are
given. Moreover, a strengthened version of Sitaru-Schewitzer inequality
for pseudo-integrals is proved.

Acknowledgment. The author would like to gratefully thank the
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