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Generalized Ostrowski-Grüss Like Inequality on Time Scales

Faraz Mehmood1∗, Asif Raza Khan2 and Muhammad Awais Shaikh3

Abstract. In this paper, we present a generalization of the Mont-
gomery Identity to various time scale versions, including the dis-
crete case, continuous case, and the case of quantum calculus. By
obtaining this generalization of Montgomery Identity we establish
results about the generalization of Ostrowski-Grüss like inequality
to the several time scales, namely discrete case, continuous case and
the case of quantum calculus. Additionally, we recapture several
published results from different authors in various papers, thus uni-
fying the corresponding discrete and continuous versions. Further-
more, we demonstrate the applicability of our derived consequence
to the case of quantum calculus.

1. Introduction

Dragomir et. al. have derived the Ostrowski−Grüss like inequality
with the help of Grüss & Ostrowski inequalities in 1997, (see [8]) which
is stated as below:

Theorem 1.1. Suppose function g : I → R is differentiable in the
open interval I ⊂ R; κ, ℓ ∈ I and ℓ > κ. If for real constants γ,Γ;
γ ≤ g′(θ) ≤ Γ ∀θ ∈ [κ, ℓ]. Then∣∣∣∣g(θ)− 1

ℓ− κ

∫ ℓ

κ
g(τ)dτ − g(ℓ)− g(κ)

ℓ− κ

(
θ − κ+ ℓ

2

)∣∣∣∣ ≤ ℓ− κ

4
(Γ− γ),

∀θ ∈ [κ, ℓ].
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The above inequality has a relationship between Ostrowski [23] &
Grüss inequality [22]. It may be used for the estimation of error bounds
for some special means and some numerical quadrature formulae. For
other closed consequences of similar inequalities (see [7, 14, 16, 24]).

The main objective of the paper is to drive a generalization of Ostrowski-
Grüss like inequality to an arbitrary time scales.

2. Essentials of Time Scales

The idea of time scales calculus’ theory was initiated and introduced
by Hilger (1988) in his PhD thesis [11], supervised by Aulbach, to unify
discrete & continuous analysis and expand the theories to cases “in be-
tween”. Since then, mathematical research in this field has exceeded
more than 1000 publications and numerous applications in various sci-
entific fields, including operations research, economics, physics, engineer-
ing, statistics, finance and biology [6]. The time scale calculus theory
finds applications in most branches of science where dynamic processes
are explained by discrete-time or continuous-time models. For an intro-
duction to single-variable time scale calculus and its implementations,
we recommend the book by Bohner & Peterson [2].

In 2004, Bohner introduced the variations’ calculus on time scale,
employing the delta derivative and delta integral [3]. Since then, it
has been further developed by several authors in various publications
(see [1, 10, 12, 13, 17, 18]). Many classical results of the calculus of
variations, such as necessary or sufficient conditions of optimality, have
been generalized to arbitrary time scales. The following definitions and
propositions are extracted from [2].

Definition 2.1. A time scale is an arbitrary nonempty closed subset of
the real numbers.

The most important examples of time scales are R,Z and qN0 :=
{qℓ|ℓ ∈ N0}.

Definition 2.2. If T is a time scale, then we define the forward jump
operator σ : T → T by σ(θ) := inf{τ ∈ T|τ > θ} for all θ ∈ T, the
backward jump operator ρ : T → T by ρ(θ) := sup{τ ∈ T|τ < θ} for
all θ ∈ T. If σ(θ) > θ, then we say that θ is right-scattered, while if
ρ(θ) < θ then we say that θ is left-scattered.

Points that are right-scattered and left-scattered at the same time are
called isolated. If σ(θ) > θ, the θ is called right-dense, and if ρ(θ) < θ
then θ is called left-dense. Points that are right-dense and left-dense at
the same time are called dense.
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Definition 2.3. Suppose θ ∈ T, then two mappings u, v : T → [0,+∞)
satisfying

u(θ) := σ(θ)− θ, v(θ) := θ − ρ(θ)

are called the graininess functions.

We now introduce the set Tc which is derived from the time scales T
as follows. If T has a left-scattered maximum θ, then Tc := T − {t},
otherwise Tc := T. Furthermore for a function g : T → R, we define the
function gσ : T → R by gσ(θ) = g(σ(θ)) for all θ ∈ T.

Definition 2.4. Suppose g : T → R is a function on time scales. Then
for θ ∈ Tc, we define g∆(θ) to be the number, if one exists, such that
for all 0 < ε there is a neighborhood U of θ such that for all τ ∈ U∣∣gσ(θ)− g(τ)− g∆(θ)(σ(θ)− τ)

∣∣ ≤ ε|σ(θ)− τ |.

We say that g is ∆−differentiable on Tc provided g∆(θ) exists for all
θ ∈ Tc.

Definition 2.5. A function g : T → R is called rd-continuous (denoted
by Crd) provided if it satisfies

(i) g is continuous at each right-dense point or maximal element of
T.

(ii) The left-sided limit lim
τ→θ−

g(τ) = g(θ−) exists at each left-dense
point θ of T.

Remark 2.6. It follows from [2, Theorem 1.74] that every rd-continuous
function has an anti-derivative.

Definition 2.7. A function G : T → R is called a ∆−antiderivative
of g : T → R provided G∆(θ) = g(θ) holds for all θ ∈ Tc. Then the
∆−integral of g is defined by∫ ℓ

κ
g(θ)∆θ = G(ℓ)−G(κ).

Proposition 2.8. Suppose g, h are rd-continuous, κ, ℓ, l ∈ T and α, β ∈
R. Then

(i)
∫ ℓ
κ [αg(θ) + βh(θ)]∆θ = α

∫ ℓ
κ g(θ)∆θ + β

∫ ℓ
κ h(θ)∆θ ,

(ii)
∫ ℓ
κ g(θ)∆θ = −

∫ κ
ℓ g(θ)∆θ,

(iii)
∫ ℓ
κ g(θ)∆θ =

∫ l
κ g(θ)∆θ +

∫ ℓ
l g(θ)∆θ ,

(iv)
∫ ℓ
κ g(θ)h∆(θ)∆θ = (gh)(ℓ)− (gh)(κ)−

∫ ℓ
κ g∆(θ)h(σ(θ))∆θ ,

(v)
∫ κ
κ g(θ)∆θ = 0.

Definition 2.9. Suppose fc : T2 → R, c ∈ N0 is defined by
f0(θ, τ) = 1, ∀τ, θ ∈ T
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and then recursively by

fc+1(θ, τ) =

∫ θ

τ
fc(s, τ)∆s, ∀τ, θ ∈ T.

The present paper is motivated by the following results: Grüss in-
equality on time scales and Ostrowski inequality on time scales by Bohner
& Matthews and also generalized Grüss inequality and generalized Os-
trowski inequality on time scales by authors in papers [19, 20].

In 2007, Bohner & Matthews proved the Grüss inequality on time
scales in [4, Theorem 3.1] which is stated as:

Theorem 2.10. Suppose κ, ℓ, τ ∈ T, g, h ∈ Crd and g, h : [κ, ℓ] → R.
Then for

m1 ≤ g(τ) ≤ M1, m2 ≤ h(τ) ≤ M2,

we have∣∣∣∣ 1

ℓ− κ

∫ ℓ

κ
gσ(τ)hσ(τ)∆τ − 1

ℓ− κ

∫ ℓ

κ
gσ(τ)∆τ · 1

ℓ− κ

∫ ℓ

κ
hσ(τ)∆τ

∣∣∣∣
≤ 1

4
(M1 −m1)(M2 −m2).

In 2008, Bohner & Matthews also proved the Ostrowski inequality on
time scales in [5, Theorem 3.5] which is stated as:

Theorem 2.11. Suppose κ, ℓ, τ, θ ∈ T, κ < ℓ and g : [κ, ℓ] → R is
differentiable. Then

(2.1)
∣∣∣∣∣g(θ)− 1

ℓ− κ

∫ ℓ

κ
gσ(τ)∆τ

∣∣∣∣∣ ≤ M

ℓ− κ
(f2(θ, κ) + f2(θ, ℓ)),

where
M = sup

κ<θ<ℓ

∣∣g∆(θ)∣∣ .
This inequality is sharp in the sense that the right-hand side of (2.1)
cannot be replaced by a smaller one.

In 2009, Liu et. al. derived an inequality of Ostrowski-Grüss like
on time scales and obtained unified results for discrete & continuous
versions. They also extended the result to the case of quantum calculus.
In this paper, we will establish a generalized inequality of Ostrowski-
Grüs like on time scales by Theorem 2.10. Additionally, we will recapture
the results from different papers [5, 9, 15, 21]. Moreover, we will apply
our established result to the case of quantum calculus.
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3. Generalized Ostrowski-Grüss Like Inequality on Time
Scales

To prove the our main Theorem 3.9, we require the following gener-
alized Montgomery Identity.

Lemma 3.1 (Generalized Montgomery Identity). Suppose κ, ℓ, τ, θ ∈ T,
κ < ℓ and g : [κ, ℓ] → R is differentiable and λ ∈ [0, 1]. Then
(3.1)

(1−λ)g(θ)+λ
g(κ) + g(ℓ)

2
=

1

ℓ− κ

∫ ℓ

κ
gσ(τ)∆τ+

1

ℓ− κ

∫ ℓ

κ
p(θ, τ)g∆(τ)∆τ,

where

p(θ, τ) =

 τ −
(
κ+ λ ℓ−κ

2

)
,

τ −
(
ℓ− λ ℓ−κ

2

)
,

κ ≤ τ < θ,

θ ≤ τ ≤ ℓ.

Proof. Apply Proposition 2.8 (iv), we have∫ θ

κ

(
τ −

(
κ+ λ

ℓ− κ

2

))
g∆(τ)∆τ

=

(
θ −

(
κ+ λ

ℓ− κ

2

))
g(θ) + λ

ℓ− κ

2
g(κ)−

∫ θ

κ
gσ(τ)∆τ

and similarly∫ ℓ

θ

(
τ −

(
ℓ− λ

ℓ− κ

2

))
g∆(τ)∆τ

= −
(
θ −

(
ℓ− λ

ℓ− κ

2

))
g(θ) + λ

ℓ− κ

2
g(ℓ)−

∫ ℓ

θ
gσ(τ)∆τ.

Therefore
1

ℓ− κ

∫ ℓ

κ
gσ(τ)∆τ +

1

ℓ− κ

∫ ℓ

κ
p(θ, τ)g∆(τ)∆τ

=
1

ℓ− κ

∫ ℓ

κ
gσ(τ)∆τ +

1

ℓ− κ

[
(ℓ− κ)(1− λ)g(θ)

+ λ
ℓ− κ

2
(g(κ) + g(ℓ))−

∫ ℓ

κ
gσ(τ)∆τ

]

= (1− λ)g(θ) + λ
g(κ) + g(ℓ)

2
,

i.e., (3.1) holds. □

Remark 3.2. If put λ = 0 in Lemma 3.1, then we recapture the Mont-
gomery Identity on time scales which are cited in [5, Lemma 3.1] and
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[15, Lemma 1].

Discrete Case:

Corollary 3.3. We suppose T = Z. Let κ = 0, ℓ = n, τ = b, θ = a and
g(c) = yc. Then

(1− λ)ya + λ

(
y0 + yn

2

)
=

1

n

n∑
b=1

yb +
1

n

n−1∑
b=0

p(a, b)∆yb,

where p(a, 0) = 0 and

p(a, b) =

 b− λn
2 ,

b− n
(
1− λ

2

)
,

0 ≤ b ≤ a− 1,

a ≤ b ≤ n− 1.

as we just require 1 ≤ a ≤ n, 0 ≤ b ≤ n− 1.

Remark 3.4. If put λ = 0 in Corollary 3.3, then we recapture [5,
Corollary 3.2] and [9, Theorem 2.1].

Continuous Case:

Corollary 3.5. We suppose T = R. Then

(1−λ)g(θ)+λ

(
g(κ) + g(ℓ)

2

)
=

1

ℓ− κ

∫ ℓ

κ
g(τ)dτ+

1

ℓ− κ

∫ ℓ

κ
p(θ, τ)g′(τ)dτ.

Remark 3.6. If put λ = 0 in Corollary 3.5, then we recapture Mont-
gomery identity in the continuous case which may be seen in [21, p. 565]
and [9, Theorem 2.1].

Quantum Calculus Case:

Corollary 3.7. We suppose T = qN0, q > 1, κ = qm, ℓ = qn and τ = qc

with m < n. Then

(1− λ)g(θ) + λ

(
g(qn) + g(qm)

2

)
=

1

qn − qm

n−1∑
c=m

g
(
qc+1

)
+

1

qn − qm

n−1∑
c=m

[
g
(
qc+1

)
− g (qc)

]
p(θ, qc),

where

p (θ, qc) =


qc −

(
qm + λ qn−qm

2

)
,

qc −
(
qn − λ qn−qm

2

)
,

qm ≤ qc < θ,

θ ≤ qc ≤ qn.
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Remark 3.8. If put λ = 0 in Corollary 3.7, then we recapture [5,
Corollary 3.4].

Theorem 3.9. Suppose κ, ℓ, τ, θ ∈ T, κ < ℓ and g : [κ, ℓ] → R is
differentiable and λ ∈ [0, 1]. If g∆ is rd-continuous and

γ ≤ g∆(θ) ≤ Γ, ∀θ ∈ [κ, ℓ].

Then we have∣∣∣∣∣(1− λ)g(θ) + λ
g(κ) + g(ℓ)

2
− 1

ℓ− κ

∫ ℓ

κ
gσ(τ)∆τ(3.2)

− g(ℓ)− g(κ)

(ℓ− κ)2
(f2(θ, κ)− f2(θ, ℓ))

∣∣∣∣∣ ≤ 1

4
(ℓ− κ)(Γ− γ),

for all θ ∈ [κ, ℓ].

Proof. By Lemma 3.1, we obtain

(1− λ)g(θ) + λ
g(κ) + g(ℓ)

2
− 1

ℓ− κ

∫ ℓ

κ
gσ(τ)∆τ(3.3)

=
1

ℓ− κ

∫ ℓ

κ
p(θ, τ)g∆(τ)∆τ.

It is clear that ∀θ ∈ [κ, ℓ] and τ ∈ [κ, ℓ] we have
θ − ℓ ≤ p(θ, τ) ≤ θ − κ,

using Theorem 2.10 to the mappings p(θ, ·) & g∆(·), we obtain

∣∣∣∣ 1

ℓ− κ

∫ ℓ

κ
p(θ, τ)g∆(τ)∆τ − 1

ℓ− κ

∫ ℓ

κ
p(θ, τ)∆τ · 1

ℓ− κ

∫ ℓ

κ
g∆(τ)∆τ

∣∣∣∣
(3.4)

≤ 1

4
[(θ − κ)− (θ − ℓ)](Γ− γ)

≤ 1

4
(ℓ− κ)(Γ− γ),

by usual calculation we obtain∫ ℓ

κ
p(θ, τ)∆τ =

∫ θ

κ
τ −

(
κ+ λ

ℓ− κ

2

)
∆τ +

∫ ℓ

θ
τ −

(
ℓ− λ

ℓ− κ

2

)
∆τ

=

∫ θ

κ
τ −

(
κ+ λ

ℓ− κ

2

)
∆τ −

∫ θ

ℓ
τ −

(
ℓ− λ

ℓ− κ

2

)
∆τ

= f2(θ, κ)− f2(θ, ℓ)

and
1

ℓ− κ

∫ ℓ

κ
g∆(τ)∆τ =

g(ℓ)− g(κ)

ℓ− κ
.
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By combining (3.3), (3.4) and the above two equalities, we obtain (3.2).
□

Remark 3.10. If put λ = 0 in Theorem 3.9, then we recapture [15,
Theorem 4].

Corollary 3.11. Under all the assumptions of Theorem 3.9 with λ = 1.
Then∣∣∣∣g(θ)2

+
g(κ) + g(ℓ)

4
− 1

ℓ− κ

∫ ℓ

κ
gσ(τ)∆τ − g(ℓ)− g(κ)

2(ℓ− κ)

(
θ − κ+ ℓ

2

)∣∣∣∣
≤ 1

4
(ℓ− κ)(Γ− γ),

for all θ ∈ [κ, ℓ].

Corollary 3.12. Under all the assumptions of Theorem 3.9 with λ = 1.
Then ∣∣∣∣∣g(κ) + g(ℓ)

2
− 1

ℓ− κ

∫ ℓ

κ
gσ(τ)∆τ

∣∣∣∣∣ ≤ 1

4
(ℓ− κ)(Γ− γ),

for all θ ∈ [κ, ℓ].

If g∆ is bounded in the interval [κ, ℓ] then we have the corollary below:

Corollary 3.13. Under all the assumptions of Theorem 3.9, if |g∆(θ)| ≤
M for all θ ∈ [κ, ℓ] and some positive constant M . Then∣∣∣∣∣(1− λ)g(θ) + λ

g(κ) + g(ℓ)

2
− 1

ℓ− κ

∫ ℓ

κ
gσ(τ)∆τ(3.5)

− g(ℓ)− g(κ)

(ℓ− κ)2
(f2(θ, κ)− f2(θ, ℓ))

∣∣∣∣∣ ≤ 1

2
(ℓ− κ)M,

∀θ ∈ [κ, ℓ].

Remark 3.14. If put λ = 0 in Corollary 3.13, then we recapture [15,
Corollary 4].

Furthermore, choosing θ = (κ+ ℓ)/2 and θ = ℓ, respectively, in (3.2),
we have the corollary below.

Corollary 3.15. Under all the assumptions of Theorem 3.9. Then∣∣∣∣∣(1− λ)g(
κ+ ℓ

2
) + λ

g(κ) + g(ℓ)

2
− 1

ℓ− κ

∫ ℓ

κ
gσ(τ)∆τ

∣∣∣∣∣(3.6)

≤ 1

4
(ℓ− κ)(Γ− γ) if κ+ ℓ

2
∈ T
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and

∣∣∣∣(1− λ)g(ℓ) + λ
g(κ) + g(ℓ)

2
− g(ℓ)− g(κ)

(ℓ− κ)2
f2(ℓ, κ)−

1

ℓ− κ

∫ ℓ

κ
gσ(τ)∆τ

∣∣∣∣
(3.7)

≤ 1

4
(ℓ− κ)(Γ− γ).

Remark 3.16. If put λ = 0 in (3.6) and (3.7), then we recapture
inequalities (13) and (14) of [15] respectively.

If we implement the Ostrowski-Grüss like inequalety to various time
scales, we would obtain some well-known and new results.

Discrete Case:

Corollary 3.17. We suppose T = Z. Let κ = 0, ℓ = n, τ = b, θ = a
and g(c) = yc. With these, since fc(θ, τ) =

(
θ−τ
c

)
, ∀θ, τ ∈ Z. Therefore,

f2(θ, 0) =

(
θ − λ ℓ

2

2

)
=

(θ − λ ℓ
2)(θ − λ ℓ

2 − 1)

2

f2(θ, n) =

(
θ − n+ λn

2

2

)
=

(θ − n+ λn
2 )(θ − n+ λn

2 − 1)

2

Thus, we have∣∣∣∣∣(1− λ)ya + λ

(
y0 + yn

2

)
− 1

n

n∑
b=1

yb −
(yn − y0)

n
(1− λ)

(
a− 1 + n

2

)∣∣∣∣∣
≤ 1

4
n(Γ− γ),

for all a = 1, . . . , n, where γ ≤ ∆ya ≤ Γ.

Remark 3.18. If put λ = 0 in Corollary 3.17, we recapture the [15,
Corollary 2].

Continuous Case:

Corollary 3.19. We suppose T = R. Then our delta integral is the
common Riemann integral. Hence, fc(θ, τ) = (θ−τ)2

2 , ∀θ, τ ∈ R.
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This guides us to describe the inequality below:∣∣∣∣∣(1− λ)g(θ) + λ
g(κ) + g(ℓ)

2
− 1

ℓ− κ

∫ ℓ

κ
g(τ)dτ

− g(ℓ)− g(κ)

(ℓ− κ)
(1− λ)

(
θ − κ+ ℓ

2

) ∣∣∣∣∣
≤ 1

4
(ℓ− κ)(Γ− γ),

∀θ ∈ [κ, ℓ], where γ ≤ g′(θ) ≤ Γ.

Remark 3.20. If put λ = 0 in Corollary 3.19, we recapture the [15,
Corollary 1], which is the Ostrowski-Grüss like integral inequality.

Quantum Calculus Case:

Corollary 3.21. We suppose T = qN0, q > 1, κ = qm and ℓ = qn with
m < n. In this situation, one has

fc(θ, τ) =
c−1∏
v=0

θ − qvτ∑v
u=0 q

u
, ∀θ, τ ∈ T.

Therefore,

f2(θ, q
m) =

(
θ − qm − λ qn−qm

2

)(
θ − qm+1 − λ qn−qm+1

2

)
1 + q

,

f2(θ, q
n) =

(
θ − qn + λ qn−qm

2

)(
θ − qn+1 + λ qn+1−qm

2

)
1 + q

.

Then ∣∣∣∣∣
(
1− λ

2

)
θ −

(
1− λ

2

)
(qm+1 + qn+1)− λθ

(qm + qn)

(1 + q)(qn − qm)

+ λ2 (q
m + qn)

4(1 + q)

∣∣∣∣∣
≤ 1

4
(Γ− γ),

where ∀ θ ∈ [κ, ℓ].

Remark 3.22. If put λ = 0 in Corollary 3.21, we recapture the [15,
Corollary 3].



GENERALIZED OSTROWSKI-GRÜSS LIKE INEQUALITY ON TIME SCALES201

4. Conclusion

We proved the generalized Montgomery Identity for various time scale
versions, including the discrete case, continuous case, and the case of
quantum calculus. Through this generalization, we obtain results re-
garding the generalization of the Ostrowski-Grüss-like inequality to sev-
eral time scales. As a result, our findings unify corresponding discrete
and continuous versions of previously proven results by different re-
searchers in various papers [5, 9, 15, 21]. Furthermore, we apply our
derived result to the case of quantum calculus.

Limitations and Advantages/Future of the Work.
(i) This work only for the bounded functions.
(ii) Function must be differentiable.
(iii) Function must be rd-continuous.
(iv) We will enhance our work for weighted version.
(v) We will also enhance our work for three steps and five steps

kernels.
(vi) We can do same work for Lp space.
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