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ABSTRACT. In this article, we define generalized (¢, o, )-rational
contraction, generalized (af, @0, F)-rational contraction and es-
tablish some new fixed point results in (¢, )-metric space. We
also present instances to support our main results. We will use the
results we obtained to investigate the existence and uniqueness of
solutions to first-order differential equations.

1. INTRODUCTION

In metric spaces, fixed point theory is a branch of mathematical anal-
ysis intimately linked linked to the existence and uniqueness of integral
and differential equation solutions. One of the most important theorems
in fixed point theory is the Banach Contraction Principle (see[22] ). The
notions of metric spaces have been extended in many directions (see[8-
10, 18, 19, 28]), for example, controlled metric spaces [21] and double-
controlled metric spaces [24]. Bakhtin [15] introduced b-metric spaces
as a metric space generalisation. Kamran et al.[25] gave the notion of
extended b-metric spaces. F-metric space was introduced by Jalili and
Samet [19] as a generalization of metric space. Some researchers intro-
duced an extension (or generalizations) of F-metric space like Chuanxi
et al.[7], Kushal Roy et al.[16], and Eskandar Ameer et al.[11] named
(¢,v)-metric space. In this paper, we will present new results for the
fixed point theorems in (¢,1))-metric space under some generalisation
rational contractions we defined.
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2. PRELIMINARIES

Definition 2.1 ([19]). Consider the family F consisting of each func-
tions f: (0, 4+00) — R, such that:
(F1) f is non decreasing .

(F2) V {ta} C (0,+00), we have

lim t, =0 <  lim f(t,) = —o0.

n—-+o0o n—-+o0o

Definition 2.2 ([19]). Let Z # 0 be a set , and let the function D :
Z x Z — [0,00) be a given. If 3 f in F, 7 € [0,00), such that,
(®1) (k,v) € Zx Z, Dr(k,v) =0 if and only if kK = v.
(D2) Dr(k,v) =Dr(v,k),V (k,v) € Z X Z.
(D3) For every (k,v) € Z x Z, ¥V N in N and N > 2, and also for
each (Uj)j\;l in Z with (v1,0y5) = (k, ), we have

N-1
Dr(k,v)>0 = §(Dr(kv) <f Z Dr(0y,0)41) | + 7.
7=1
Then (Z, Dr) is called F-metric space.

In 2020, Eskander et al.[11], introduced an extension or (generaliza-
tion) of F-metric spaces named (¢,1))-metric spaces. This means that
(¢, 1)-metric spaces are generalizations of metric spaces and are more
significan than F-metric spaces.

Definition 2.3 ([11]). Let ® be the class of functions ¢ : (0,00) —
(0, 00) such that :

(¢1) ¢ is non-decreasing,
(¢2) for all {t,} in (0, 0c0),

lim 6(t) =0 < lim (t,) =0.

n—oo

Definition 2.4 ([11]). Let ¥ be the set of functions v : (0,00) — (0, c0)
such that :

(1) k < v implies ¥(k) < P(v),

() (1) < t, V> 0.

They (see[l1]) introduced (¢, 1))-metric space as:

Definition 2.5 ([11]). Let Z # 0, Dy : Z x Z — [0,00) be a function.
If 3 a functions ¢ € ® and 1 € ¥ such that for each k ,v € Z, the
following hold:

(0.) Dy(k,v) =0 & K=v,

(0,) Dy(k,v) = Dy(v, k),
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(0;) for every (k,v) € Zx Z, ¥V N in N, N > 2, and for each
(v,)Y | in Z with (b1,0x) = (k, V), we have

71=1
N-1
D¢(K7V)>0 = ¢<D¢>(/€7V)>§w ¢ ZD¢(UJ7U]+1>
1=1

Then the pair (Z, Dy) is called a (¢, 1)-metric space.

Example 2.6 ([11]). Let Z be the set of natural numbers and Dy :
Z x Z — [0,00) be the mapping define by
i (m) € 0.2) < [0,2),
|H_l/|a if (/1,1/) ¢ [072] X [072]7
for all (k,v) € Z x Z. Then Dy is an (¢, 1)-metric on Z.
Definition 2.7 ([11]). Let (Z, Dy) be a (¢,1))-metric space.
(1) Let {kn} be a sequence in Z , k € Z. We say that {k,} is
(¢,1)-convergent to k if li_)m Dy(kn, k) = 0.
n—oo
(2) {Kn} is (¢, 1)-Cauchy if lig Dy (kn, km) = 0.
n,m—00

(3) (Z,Dy) is (¢,1)-complete, if any (¢,1))-Cauchy sequence in Z
is (¢, 1)-convergent to some element in Z.

Dy(k,v) =

Definition 2.8 ([20]). If a function ¢ : [0,400) — [0, 400) satisfies the
following axioms:

(¢1) @ is non-decreasing,
(p2) () =0 & t=0,
then is called an altering distance function.

Let € be the set of each altering distance function that satisfies the
conditions:

(3) S @"(t) < 00, V £ > 0.
n=1

(1) ©t) < t, V> 0.
We direct the reader to [2, 6, [7, 13, 17, 26, 27] for more information on
the set Q.

Example 2.9. The below functions ¢ : [0, +00) — [0, 400) are elements
of ) for all 0 < t < oo.

(1) p(t) =kt, 0<k <1,

(2) o(t) = 77
Definition 2.10 ([{, 14, 23]). The continuous function F' : [0, 00) X
[0,00) — R that satisfies the below conditions:

(c1) F(t,5) <t, Vts>0
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(¢c2) F(t,5) =t implies either t=00rs =0, Vt,5>0
(¢c3) F(0,0) =0, Vt,5>0,

is called C-class functions.
The set of all functions F' is denoted by C' .
Example 2.11. The following functions F' : [0,00) X [0,00) — R are
elements of C, V s,t € [0, 00)
(1) F(t75) =t—s,
(2) F(t,s) = kt, k€ (0,1).
Definition 2.12 ([[l]). A function € : [0,00) — [0, 00) such that:

(61) 6 is continuous,
(f2) 6(t) >0, t> 0 and 6(0) > 0.

is called an ultra altering distance function.

Let © denote the class of all ultra altering distance function.

The concept of (o — p)-contractions and a-admissible mapping was
introduced by Samet et al.in 2012 (see[6]). The concept of a-admissible
mappings was defined as follows:

Definition 2.13 ([6]). Let H : Z — Z and o : Z x Z — [0,00) be a
mapping. Then H is called a-admissible mapping if:

alk,v)>1 = «(Hk,Hr)>1,
VK, VvELZ.
In 2020, Hamed et al. [12] introduced the concepts of twisted («, /3)-

admissible in F-metric space, introduced some generalized contractions,
and provided new fixed point results.

Definition 2.14 ([12]). Let H : Z - Z and «, 5 : Z X Z — [0, +00).
Then H is called twisted (a, 8)-admissible if:

a(k,v) >1 a(Hk,Hv)
Bzt

3. MAIN RESULTS

In 2021, Bhavana Deshpande et al.[p] established the coincidence
point theorem under generalized (¢, o,y)-contraction on partially or-
dered metric spaces. In this section, we present a definition of gen-
eralized (g, o,7)-rational contraction and establish a new fixed point
theorem in (¢, ¥)-metric space.
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3.1. Fixed Point Results for Generalized (¢, 0,v)-Rational Con-
traction.

Definition 3.1. Let (Z, Dy) be an (¢,1)-metric space. The mapping
H : Z — Z is said to be a generalized (¢, 0,7)-rational contraction
if 3 an upper and a lower semi-continuous functions o, : [0, +00) —
[0, 4+00) respectively, and an altering distance function ¢, such that:

(3.1)

o (Dy(Hr, Hv)) < o (max {D¢,(H, V),

)

(o [yt Pl
Y #,v € Z, where o(0) = ~4(0) = 0.

Theorem 3.2. Let (Z,Dy) be an (¢,v)-complete (¢,1))-metric space
and H : Z — Z be a generalized (p,0,v)-rational contraction. If the
below conditions holds:

(z7) 3 X in (0,1) such that: A\p(t) — o(t) +~(t) > 0 for all t > 0,
(1) p(s+1) < ps) + (1), ¥ 5,t > 0.

Then H has a unique fized point in Z.

Proof. Let kg € Z. Define {k,} in Z by

(32) Rn4+1 = Hﬁna

where n in N. Now if for some n, Dy(fn, knt1) = 0, then s, is a fixed
point of H, the proof has been completed. Suppose that Dy (kq, kny1) >
0 vn € N. Using (El]), we get

® (D¢(“n+17 Knt2))
=@ (Dqﬁ(H”m Hrqi1))

<o <max {D¢(Kfn7 Knt1),

Dy (n, Hbn) Do (K1, Hbns1) })
1 +D¢(“na’in+1)
Dy(kn, Hin)Dy(kny1, Hi
(e, P e et ),
ny v
D¢</€ﬂ7 Hn+1)D¢("€n+17 Hn+2) })
1 +D¢(’€n7’fn+1)

qu(/{na Kn+1)D¢(/{n+17 Kn+2) })
1 +D¢("3n7/‘5n+1) '

<o <max {D¢(f€n, Knt1),

— (max {D¢(Hn, Kn41)s

If

Dy (kns ng1) Do (Kng1, ng2) }

max {D(z)(/fn, "fn+1)’ 1 + D¢</‘&n /in-i-l)
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_ Dy (kns knt1) Do (Kng1; Knt2)
1+ qu("'fn, "fn—i-l)

Then, we get
Dy (Fn, fint1) Dy (Knt1, Knt2)
D <
0 (Dplinsr,nya)) < o (P ne ) el

PN (Dqﬁ(“na Hn+1)D¢(Hn+la Hn+2)>
1+ Dy(Kn, fnt1) '

Since
Dy (Kny nt1) D (Knt1, kint2)
1+ Dd’(’%ﬂa Hﬂ+1>

< D¢>("fn+1> Kny2)-

Then we have

(3:3)  ¢(Dg(knt1, hint2)) < 0(Dg(Kns1, knr2)) = 7(Dg(hnt1, bnt))-
By using (i), we have
(3.4)
/\<P(D¢(Hn+1» /‘in+2)) - U(Dqs("fnﬂa Hn+2)) + V(qu(/fnﬂ» ﬁn+2)) > 0.
By (.d).(.4). we have
@ (Dg(knt1, kint2)) > Ap (Dg(Knt1, kint2))
> 0 (Dg(kns1; fnv2)) =¥ (Do (Fnt1, fny2))
2 ¢ (Dg(Knt1, kint2)) -
Since ¢ is non-decreasing, we have Dy(kni1, Knt2) > Dg(Knt1, fny2),
which is a contradiction, and hence
D(b("‘ina ﬁn+1)D¢(“n+1a Knt2)
1+ ‘DQS(K/\’U ’%-1—1)

max {Dd)(mn, Knt+l), } = Dy(Kn, Fnt1)-

Then, we get
(35) @ (Dolins1s kne2)) < 0 (Dyltins ias1)) — 7 (Dol ns1).
By (i), we have
(3.6)  Ap (Dg(kn; kint1)) — 0 (Dg(Kns kng1)) + 7 (Dg(n, fng1)) > 0.
Using (@),(@), we obtain

Ap (Dg (K, fint1)) > 0 (Dg(kn; fnt1)) =7 (Dg(Fn, fns1))

> ¢ (Dg(Kn+1, kint2)) -

Then

(3.7) @ (Dg(Knt1; nt2)) < Ap (Dg (K, fint1)) -
Since ¢ is non-decreasing, therefore

(38) D¢(I€n+1, I€n+2) < )\D¢(I€n, I<&n+1).
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Similarly by using (@)
@ (Dg(kn,s Fnt1))

= @(Dd;(HK/n—laHH’ﬂ))
Dy (kn— 7H’% —1) Dy (K ’HK
<o <max{D¢(/<an_1,/<an), s n11+ D;(;) 1¢,i ; n)}>
n—1,"vn
Dy(kn—1, Hhn—1)Dg(kn, HK
- <max{D¢(/€n_17,§n)’ A “1 +D¢n(/€1) 1¢/i 1)1 n) }) )
n—1,"vn

Dy(kn—1,kn)Dgy(kn, K
o (e { Do, Dot Dl
n—1,n

Dy(kn_1,kn)Dy(Kn, K
- (max{D¢>(/€n—1,/€n), o 1n+ D(:()H ¢§ ’: )nH) }) .
n—1yvn

Also, we get

(3.9) Dy (kns ng1) < ADg(Ka—1, fn)-
Using (@), (@) and continuing in this way we get
(3.10) D¢(Hn+1a Kny2) < )\qu("fm Knt1)

<A ()\Dqg(lﬁn_l, Hn))

§ )\nD¢(I{0, Iil),
for all n in N. Thus

m—1
(3.11) Z Dy(ry, yp1) < 1-x
7=n
By (¢1), we have
m—1 AP
10) (Z Dy(k,, I€]+1)> <o <1 - )\D¢(/<;0, /<;1)> , m>n.

J=n

n
D¢(K0,H1), m>n.

Using (¢1) , (12), we obtain

(312) (¢ (ni D¢<m],mj+1>>> <o (o ({55 Patnn) )

<o ( A" D¢(I<,0,I<,1)> , m>n.

1— A
Since lim %ng(/io, k1) = 0, then by (¢2), we have

n—oo

(3.13) lim gb( A D¢(mo,m)> = 0.

n—o00 1—X

53
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Using (93), we get Dg(kn,km) > 0, m > n then

m—1
¢ (Dg(n, km)) <1 <¢ <Z Dy(r,, "JH)))

J=n

)\n
(125 Dot

IN

Then implies that

n

6 (Delinin)) < 0 (125 Do 1))
by (), we get

o o{putasa) -0
and using (¢2), we get,

lim  Dg(kn, km) = 0.

n,m—o0

This proves that {ky} is (¢, 1)-Cauchy in Z. Since Z is (¢, 1))-complete,
then there exists a point k* € Z such that

(3.14) nlg(r)lo Dy(kn, k") = 0.

Now we prove that Hk* = k*. We use proof by contradiction. So we
will assume that Dy(Hk*,x*) > 0. By using (93), we have

(315)  6(Dy(H" 5")) < 1 (6 (Dg(HA®, Hrn) + Dy(Hrin, )
< ¢ (Dy(HK*, Hky) + Dy(HEn, K¥)) .

From (¢1), we get Dy(Hr*, k") < Dy(HK*, Hky) + Dg(Hkn, £*). By

(p1) , (ii), we obtain
SO(D(ZS(HI{*’KI*)) (’O(D¢(H'%*7H’Qn) +D¢(H/€mfi*))

<
< ¢ (Dy(HE", Hkn)) + ¢ (Do (Hin, 7)) ,
and using (@)

o (Du(t 1) < o (max { Do ).

Dy(k*, HK*) Dy (kn, Hky)
1+ Dy(r*, kn) }

Dy(k*, HK*) Dy (kn, Hky)
1—|—D¢/£ Kn)

~ (max { Do )
+ ¢ (Dy(Hrn, )

<o (max {D¢(m*, Kn),

)

14 Dy(K*, kn)
Dy(k*, HK*) Dy (Kn, Fntr
1+ Dy(Kr*, kn)

)
|
Dy(k*, HE*) Dy ( /fn,/fnﬂ })
)

- <max {D(b(lﬁ*, Kn),

)
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+ @ (Dg(Kny1, 57)) -
Now if

Dy (%, HE*)Dg(Kn, Kntr)

D *

max{ (b('% 7"{11)’ 1 —'—D(z)(,‘ﬁj*’/{n)

_ Dy(k*, HK*)Dg(Kn, Fnt1)
14 Dy(k*, kn)

)

then we get
v (Dy(HK", "))
<D¢(/<;*,H/@*)D¢(/£n,/€n+l)> <D¢(/€*,HI€*)D¢(HH,HH+1)>
14 Dy(K*, kn) 14 Dy(K*, kn)
+ ¢ (Dg(Knt1,£7)) -
Taking nh—>Holo’ by () and for o(0) = v(0) = 0, we get

<o

lim ¢(Dy(Hr*, %)) =0 = ¢(Dg(HK* £")) = 0.

n—oo
By (p2) we have,
(3.16) Dy(HK*, k") = 0.
And this contradicts our assumption that, Dg(Hr*,x*) > 0, and hence
Dy(Hr*, k*) = 0.
If
Dy(k*, HK*)Dg(Kn, Kny1)
14 Dy(K*, kn)

maX{D¢(Ii*,Iin), } = Dy(K", En),

then we get

¢ (Dg(Hr", k7)) < 0 (Dg(k", in)) =7 (Dg (K", kin)) + @ (Dg(Fnya, £7)) -
Taking lim , by () and for o(0) = v(0) = 0, we get
n—oo

lim ¢ (Dy(HR" K%)= 0 = ¢ (Dy(Hr", k")) = 0.
By (p2) we have,
(3.17) Dy(HK*, k") = 0.

Also contradicts our assumption that, Dyg(Hrk*,£*) > 0. Therefore
Dy(Hr*,k*) =0 = Hr*=r"1ie. H has a fixed point k* € Z.

Uniqueness:
Now we prove that x* is a unique. Assume that 3 v* € Z, k* £ v*, such
that Hv* = v*. By (@) we get

(3.18)
¢ (Dy(k",v")) = ¢ (Dy(HK", HV™))
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Dy(k*, HK*)Dg(v*, Hv*)
1+ D¢(l€*, V*)

« « Do(r*, H&*)Dy(v*, Hv*)
-7 (maX{D¢(H vV )a 2 1 —|—D¢(I€f V*)

< 0 (Dy(r",v7)) =7 (D (K7, v7)) -

<o (max {D¢(m*, v,

By (i) we get
(3.19) Ap (Dg(K*,v")) — 0 (Dg(K*, ")) + v (Dg(k*,v")) > 0.
From (B ),(), we obtain
(3.20) © (Dg(K*, V")) > Ap (Dg(K*, V7))
> 0 (Dy(k", V")) =7 (Dy(K", V7))
= ¢ (Dg(K",17)).

Then by (¢1), we have Dy (k*,v*) < Dg(x*,v*), which is a contradiction,
and hence k* = v*. g

Example 3.3. Let Z = [0, 1]. Defined Dy : Z x Z — [0,00) as

Dy(r,v) = <H g V>2

then Dy is a (¢, 9)-metric on Z with ¥(t) = % and ¢(t) = t . Define
t,

H:Z — Zby Hk = % and take o(t) = t, p(t) = t, and y(t) = % for

t>0.

Clearly, H is a generalized (¢, 0,~)-rational contraction, and all condi-
tion in theorem (B.2) are satisfied with + < A < 1. Hence 0 € Z is a
unique fixed point of H .

3.2. Fixed Point Results for Generalized (af,¢0, F')-Rational
Contraction. In b-metric spaces, several researchers proved fixed point
results for C-class functions, and they introduced the definition of gen-
eralized (p, 0, F)-contraction, where ¢ is the altering distance function,
6 is the ultra altering distance function (see[3, 1, 14, 23, 29)).

In this section, we define the concept of generalized (a3, 0, F')-rational
contraction in (¢, )-metric space, where ¢ € € and 6 is the ultra al-
tering distance function, and provenew fixed point theorems in (¢,1))-
metric space.

Definition 3.4. Let (Z, Dy) be a (¢,v)-metric space. The mapping
H :Z — Z is called a generalized (af3, 96, F')-rational contraction if 3 a
functions p € Q ,0 €0, F € Cand «, f:Z x Z — [0,+00), such that

(3.21) a(k,v)B(k,v)Dy(Hr, Hv) < F (¢(B(k,v)),0 (B(k,v))),
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where

B(k,v)

= max {D¢(/§, v),

Dy(k, Hk)Dy(v, Hv) Dy(v,Hv)[1+ Dy(k, HE)]
14 Dy(k,v) ' 1+ Dy(k,v) ’
for k,v € Z.

Theorem 3.5. Let (Z,Dgy) be a (¢,1)-metric space and H : Z — Z
be both generalized (af3, 0, F)-rational contraction and twisted (v, 3)-
admissible. If the below hypotheses are satisfied:
(a) (Z,Dy) is (¢,1))-complete,
(b) 3 ko € Z such that a(ko, Hko) > 1 and B(ko, Hro) > 1,
(c) if {kn} is a sequence in Z such that a(kn, knyr) > 1 and
B(Kn, kng1) > 1 for all n, and ky — K* € Z as n — oo, then
a(kn, k%) > 1 and B(kn,k*) > 1, VneN.
Then there exists a fixed point k* € Z such Hk* = k*.

Proof. Let kg € Z such that a(ko, Hko) > 1 and S(ko, Hkg) > 1. De-
fined a sequence {k,} in Z by

(3.22) K1 = Hky, Ve N

If kKn11 = Ky for some n in N then k, is a fixed point of H. As a result,
the proof is complete. So suppose that kni1; # Ky V nin N. Since H is
twisted (a, )-admissible, we have

a(ko, k1) = a(ko, Hrg) > 1 = a(ky,ke) = a(Hko, Hry) > 1,

and

ﬁ(/@o,/ﬂ) = ﬁ(/io,HHo) >1 = 5(%1,,‘{2) = ﬁ(Hlﬁo,Hlfl) > 1.
By induction, we get, a(kn,kn+1) > 1 and B(Kn, knty) > 1 implies
o(Hbkn—y,Hky) > 1 and B(Hkn—y, Hky) > 1, ¥V n € N. By inequal-
ity (@l) with kK = k4, and v = k,, we have

(3.23) D¢(/€n,/‘én+1) = D¢(Hlin_l,H,‘<an)
< Oé(ﬁn—la ﬁn)ﬁ(ﬁn—la Hn)DqS(HHn—l, H“n)
< F(ap(B(/in_l, kn)), 0(B(Kn—1, ﬁn)))7

where

Dy(kn—1, Htn—1)Dg(kn, Hkn)
B(kn— = D _
(’fn v ’{n) max{ ¢(’{n b ’{n)’ 1+ D(ﬁ(“n—la Hn)

Dy(kn, Hrn) [1 4+ Dg(kn—1, Hkq—1)] }
14 Dy(Kn—1, kn)

)

Dq&(’in—la ’Qn)Dqﬁ(’in; Hl‘l-i—l)
1+ Dy(kn—1,kn)

i

= maX{Dqs(Hn_l, Hn),
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D(b("fm ’in+1) [1 + Dd)(“nfl» Kn)] }
1+ D¢(Iin_1, Hn)

< max {D(b('%n—la ’%n)7 D(b('%na Hn—&-l)} .

Now if max {Dy(kn—1,kn); Dg(Kn, knt1)} = Dg(kn, Kntr), from ()
we get

Dy(kn, kintr) < F (9(Dg(kns kinta)), 0(Dg(Kns hingr)))
< @(Dg(kn, kntr)), (by c1)
< Dg(kn, kinta),  (by pa)

which is a contradiction, and hence max { Dy (kn—1, kn), Dg(Kn, Kngr)} =
Dy (kn—1, Kn), we have,

(3.24) D (kin; kintr) < F (@(Dg(kin-1, n)), 0(Dg (kn-1, kn)))
< @(Dg(kn-1,6q)). (by c1)

Consequently, we get

(3.25) Dy (s finta) < 0" (Dg (Ko, K1))-
Thus
m-—1 m—1
(3.26) ZD¢(’€]’KJ+1) < ZQOJ(DQS(’{Ov’il))v m>n.
7=n 7=n
Let € > 0 be fixed. By (¢2), 3 § > 0 such that
(3.27) 0<t<d = o) <oe).
Let n(e) € N such that
(3.28) 0< Z D¢ Ko, Hl)) < 6.
n>n(e)

By (B ),() and (¢1), we have
(329) 10} (Z D¢(I{],I{j+l ) Z QOJ D¢ 50,1’61 >
J=n

J=n

By 11 and (v2), we obtain

(3.30) <¢ (i Dyl fw)) < (0() < 6(), m>n>n(e).

Jj=n
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Using (95) and (), we get Dy(Kn, km) > 0 then

¢(Zﬂ%my@ﬂ0>

J=n
(¢)

¢ (D (K, Km)) <
¢

IN

then

(3.31) ¢ (Dg(kn, km)) < ¢(e), m>n>n(e).

By (¢1), we get Dy(kn, km) < €, m > n > n(e). This shows that {,}
is (¢,1))-Cauchy sequence. Since (Z,Dy) is (¢,1)-complete, 3 * € Z
such that {ky} is (¢, 1)-convergent to k* i.e.

(3.32) lim Dy(kn, k") = 0.

n—o00o
Since kn, — K* , by (¢) a(kn,k*) > 1 and B(kn,k*) > 1, V n € N.
Since H is twisted («,)-admissible, we get, a(Hkn, HK*) > 1 and
B(HEky, Hk*) > 1. Now we prove that Hk* = k*. We prove by con-
tradiction. Assume that Dg(Hk*,k*) > 0 and inequality () holed.
By (0;) and (¢1), we have

(3.33)
¢ (Dg(HE", k"))

—~

¢ (Dy(HE", Hin) + Dy(H ki, £7)))

Dy(HK", Hity) + Dy(Hrn, i) (by t2)

a(K*, kn)B(K", kn) Dg(HK", Hkyn) + Dy (HEn, £7))
F (@ (B(K", kn)) .0 (B(k", £n))) + Dg(Knt1, £7))

S S o =&

ININ N CIA

where

B(K*, kn) = max{Dd,(n*, Kn),

Dy(k*, HK*)Dg(kn, Hkn) Dg(kin, Hry) [1 + Dy(r*, Hr*)] }
1 + Dy(K*, kn) ’ 1+ Dy(K*, kn)

= max{D¢(/£*,/£n),

Dy(k*, HK*)Dg(kn, knt1) Dg(Kns kngr) [1 + Dy(r*, HK")]
1+ Dy(Kk*, Kn) ’ 1+ Dy(K*, kn) )

Now we have three cases:
(1) If

B(K*, kn) = Dg(K*, kn),
then from (), we get
¢ (Dy(Hr", 7)) < ¢ (F (@ (Dg(K", n)) 0 (D (K" kn))) + D (Fna, £7))
< ¢ (@ (Do(k"s k) + Dy (knsa, £7))  (by 1)
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< @ (Dg(K"; kn) + Dy(knta; £7)) . (by ©4)
Taking the li)m and using (), (p2), we get
n—oo

lim 6 (Dy(HR",£%)) < 1 6 (Dy(*, ka) + Do(ns,5"))

n—oo
=0,

then we have Dy(H~K*, k*) = 0.

(2) If

Dy(k*, HK*) Dy (Kn, nt1)
14 Dy(K*, kn)

B(K*, kn) =
then from (), we get
Dy(k*, HK*) Dy (Kn, Iin+l))

¢ (Dy(Hr", ")) < ¢<F (90 ( L+ Dy (K", fin)

Dy(k*, HK*)Dgy(Kn, Knt1)
0 D *
< 14 Dy (K*, kn) FDgln, )

Dy(k*, HK*)Dg(Fn, Kny1) .
<o (o (P D g ) * Do)

<4 Dy(k*, HE*) Dy (Kn, Kngr)
14 Dy(K*, kn)

Taking the li_>m and using (), (p2), we get
n—o0o
Tim 6 (Dg(Hr" 1)
Dy(k*, HE*)Dg(Kn, Kntr)

+ D¢(/‘3n+17 I{*)> .

< Ii *
- ulggo¢ ( 1+ D¢(K§*, Hn) + D¢(Kn+l’ & )>
then we have Dy(Hr*,r*) = 0.
(3) It

B(k™, kin) = Dy (tin, finsa) [1 + Dy (", Hr")]

1+ Dy(r*, kn)

also we get Dy(H~r*,x*) = 0. In all cases (1,2,3) we got a contradiction
to our assumption that Dg(Hk*,x*) > 0, hence, Dy(Hr*,x*) = 0 i.e.
Hk* = k", g

Uniqueness. We now show that * is a unique fixed point of H. So,
we take the following property:
(P) a(k,v) > 1 and B(k,v) > 1 for all fixed point k,v € Z.

Theorem 3.6. Consider the hypotheses of theorem (@), and let the
property (P) satisfied, then H has unique fized point.
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Proof. Let k*,v* € Z be such that Hx* = k* and Hv* = v*, g* # v*.
Then by (P), we have a(k*,v*) > 1 and S(k*,v*) > 1. By inequality
() with k = k* and v = v*, we have

Dy(k*, V") = Dg(HK*, Hv") < a(r*, V") B(K*, V") Dy(HK", HV™)
< F(p(B(k",v")),0(B(k",v"))),
< o(B(x",v7)),

where

B(k*,v*) = max{D¢(ﬁ*, v,

Dy(k*, HK*)Dg(v*, Hv*) Dg(v*, Hv*)[1 + Dy(r*, Hr")]
1+ Dy(k*, %) ’ 1 + Dy(k*,v*)
= Dy(k", V7).
Then
Dy(*,v") < p(B(K*,v")) = @(Dg(r", ")) < Dy(r*, "),

which is a contradiction and hence Dy(k*,v*) =0 = r*=v*. [O

Example 3.7. Let Z = [0,1]. Defined Dy : Z x Z — [0,00) as

Dy(k,v) = (R g V>2,

then Dy is a (¢, 9)-metric on Z with ¥(t) = % and ¢(t) = t . Define
H:Z— Zby

Hk = 3 #20
0, wk<0.

Now define o, 5: Z x Z — [0,00) by

1, if k,vel0,1]
0, otherwise.

a(k,v)B(k,v) = {

Take F(s,t) = ks, k € [3,1), o(t) =% and 0(t) = t.

Clearly, H is a generalized (af.¢0, F')-rational contraction, and all
conditions in theorems (B.H) and (B.6) are satisfied. Hence H has unique
fixed point 0 € Z.

Corollary 3.8. Let (Z, Dy) be a (¢,))-metric space and H : Z — Z be
twisted (o, B)-admissible, such that

(3.34) a(k,v)B(k,v)Dy(Hrk, Hv) < o(B(k,v)) — 0(B(k,v)),
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where

B(k,v)

= max {Dqﬁ(/ﬂ’,, v),

Dy(k, Hr)Dy(v, Hv) Dg(v, Hv)[1+ Dy(k, Hr)] }
14 Dy(k,v) ’ 14 Dy(k,v) ’

for k,v € Z. Suppose that the hypotheses below are satisfied:

(a) (Z,Dy) is (¢,1))-complete,

(b) 3 ko € Z such that a(ko, Hko) > 1 and B(ko, Hko) > 1,

(¢) if {kn} is a sequence in Z such that o(ky, knty) > 1 and
B(Kn, kng1) = 1 for all n, and ky — K* € Z as n — oo, then
a(kn, k%) > 1 and B(kn,k*) > 1, Vn € N.

Then there exists a fixed point k* € Z such Hr* = k*.

P@of. We get the required conclusion by using F'(t,s) = t—s in theorem
(B.9). O

4. APPLICATIONS

We will apply our results to solve the first-order periodic boundary
value problem:

K (t) =f(t, k), tel[0,T]=1I
(4.1) {H(O) = r(T).

Where f: I x R = R is a continuous function on / and 7' > 0. Problem
(K.1)), can be written as:

K(4) + ps(t) =ft, k(b)) + ps(t), te[0,T)=1
(4.2) {FL(O) = k(T).

The integral equation below is equivalent to the problem (@)

T
(43) k(0 = [ Glt8) (o, n(s) + () s
where G is given by
Y 0<s<t<T,
G(t7 5) =
eH(s—1t) 0<t<s<T
erT 19

Then we see that
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Let C(I) = S be the family of each continuous functions defined in I.
Define Dy : S x S — [0,00) by

2
(4.4) Dy, ) = <1sup/<;() y(t)|> , muES.

6 ter

Then (S, Dy) is a (¢,1)-complete (¢, 1))-metric space with ¢(t) = t and
P(t) = % Define the function H : S — S by

T
(4.5) Hr(t) = /0 G(t,5) ((s, w(s) + ure(s))) ds.

Now we will use theorem () to prove that H has a unique fixed point,
which solve problem (4.1)).

Theorem 4.1. Suppose that 3 u > 0 such that, for all k,v € S and
sel,

(46) 1L A()) + (V) — 1L (0) — p(t)
2
< (602 ( (Gt~ v ) 1o (5 ()~ (0 41)

- (- u(t»)Q))é.

Then the problem (@) has unique solution in S.

Proof. Let_Dg be a function given by (@), H be the operator function
given by (4.5).

Dy (Hr(t), Hy(t))

- <é sup |Hk(t) — HV(f)\>2

tel

T
- % <st1£) / G(t,5) [f(s, k(s)) + pr(s) — f(s,v(s)) — pv(s)] ds

s (s [ awore) (10 ( (G0 -v01)
1 1
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< (Dg(r(1), v(1) log (Dy(k(4), ¥(1)) + 1) = Dy (s(t), v(1)))

(4.7) Dy(Hrk(t), Hv(t)) < Dg(r(t), v(t) log(Dg(k(t), v(t))) + 1)
— Dy (k(t), v(1)).

Assuming

(4.8) o(t) = t, o(t) = tlog(t+ 1), y(t) =t

By (@),(@), we obtain
¢ (Dg(Hr(t), Hr(1))) < o (Dg(r(1),v(1)) =7 (Dg(r(t), v(1)))
A . Dy(k, Hr)Dy(v, Hv)
s (max{ D, 2R 5
Dy(k,Hk)Dy(v, Hv)
- (maX{D¢(”’”)’ IRy }>

Then H is a generalized (p,0,7)-rational contraction, with o(0) =
~v(0) = 0, all conditions in theorem (B.2) are_satisfied. Hence H has
unique fixed point in S which solve problem ({.1)). O

5. CONCLUSIONS

In this article, we provided definitions, generalized (p, o, ~)-rational
contraction, and generalized (af, ¢, F')-rational contraction in (¢, )-
metric space, and we established and proved some new fixed point re-
sults. We supported our results with examples, and we used our results
to prove the existence and uniqueness of a solution to a first-order pe-
riodic boundary value problem ({.1]). Our results have improved, devel-
oped, and generalized some results in metric space, b-metric space, and
F-metric space.

Acknowledgment. The authors are thankful to the editors and the
anonymous reviewers for their valuable suggestions and fruitful com-
ments to improve this manuscript.
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