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Ternary Generalized Jordan Ring Homomorphisms on
Ternary Non-Archimedean Banach Algebras

Ismail Nikoufar1∗ and Hossein Rahimpoor2

Abstract. In this paper, we introduce the notion of the ternary
generalized Jordan ring homomorphism on ternary non-Archimedean
Banach algebras. Utilizing alternative fixed point methods, we es-
tablish the generalized Hyers-Ulam stability of ternary generalized
Jordan ring homomorphisms on ternary non-Archimedean Banach
algebras associated with the generalized additive functions in sev-
eral variables.

1. Introduction

The first stability problem concerning group homomorphisms was
raised by Ulam [30] and an answer to this problem has been given af-
firmatively in Banach spaces by Hyers [12] in 1941. Since then, many
researchers were interested in Ulam-type stability. A generalization of
Hyers’ problem with unbounded Cauchy differences has been considered
by Rassias [27], Bourgin [2] and Găvruta [11]. Moreover, Rassias [28]
considered the Cauchy difference controlled by a product of different
powers of norm. For the history and various aspects of stability theory
we refer to [16, 23].

Bourgin [2, 3] is the first mathematician dealing with stability of
the (ring) homomorphism. The stability of the approximate homomor-
phism, the approximate generalized homomorphism, and the derivation
on some suitable Banach spaces was studied by a number of mathe-
matician. For more insights, refer to [1, 8, 9, 20, 24, 25] and references
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100 I. NIKOUFAR AND H. RAHIMPOOR

therein. Stability of Jordan homomorphisms on Banach algebras was
studied by Miura [26]. The concept of approximate n-Jordan homomor-
phisms from a normed algebra to a Banach algebra was established in
[7, 14, 16]. Further properties of these Jordan homomorphisms, as well
as their automatic continuity, are discussed in [6, 10].

A linear spaceA over a scalar field K with a nontrivial non-Archimedean
absolute value | · | is called a non-Archimedean space [21, 29]. Note that
by induction |n| ≤ 1 for every integer n. A non-Archimedean space is
a complete non-Archimedean space whenever every Cauchy sequence is
convergent. Many applications of this theory can be found in quantum
physics, p-adic strings and superstrings [15, 19].

A linear space A over a scalar field K = R or C with a trilinear
mapping or ternary product [·, ·, ·] : A× A× A → A is called a ternary
algebra whenever it is associative in the sense that

[[a, b, c] , d, e] = [a, [b, c, d] , e] = [a, b, [c, d, e]] , ∀a, b, c, d, e ∈ A.

We call a complete ternary non-Archimedean algebra A a ternary non-
Archimedean Banach algebra whenever the norm satisfies the following
property

∥[a, b, c]∥ ≤ ∥a∥ ∥b∥ ∥c∥ , ∀a, b, c ∈ A.

Let (A, [·, ·, ·]) and (B, [·, ·, ·]) be two ternary non-Archimedean Ba-
nach algebras. A function f : A → B is a ternary Jordan ring homo-
morphism or a ternary Jordan additive homomorphism if f is additive
and satisfies the following property

f ([x, x, x]) = [f (x) , f (x) , f (x)] , ∀x ∈ A.

We now introduce the notion of a ternary generalized Jordan ring ho-
momorphism between two ternary non-Archimedean Banach algebras
A and B as follows. We say that a function g : A → B is a ternary
generalized Jordan ring homomorphism if g is additive and there exits
a ternary Jordan ring homomorphism f : A→ B satisfying

g ([x, x, x]) =
1

3
[g (x) , g (x) , f (x)]

+
1

3
[g (x) , f (x) , g (x)] +

1

3
[f (x) , g (x) , g (x)] , ∀x ∈ A.

It is clear that every ternary Jordan ring homomorphism g is a ternary
generalized Jordan ring homomorphism by taking f = g but the converse
is not true in general. So, our results can recover the stability of the
ternary Jordan ring homomorphism.

Throughout this paper we suppose that (A, [·, ·, ·]) and (B, [·, ·, ·]) rep-
resent two ternary non-Archimedean Banach algebras. For convenience
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and for two given functions f1 : A → B and f2 : A → B we use the
following abbreviations

Γf (x1, . . . , xm)

:=

m∑
k=2

 k∑
i1=2

k+1∑
i2=i1+1

. . .

m∑
in−k+1=im−k+1


× f

 m∑
i=1,i ̸=i1,...,im−k+1

xi −
m−k+1∑
r=1

xir


+ f

(
m∑
i=1

xi

)
− 2m−1f (x1)

and

Df1 (x) = f1 ([x, x, x])− [f1 (x) , f1 (x) , f1 (x)] ,

Df1,f2 (x) = f2 ([x, x, x])−
1

3
[f2 (x) , f2 (x) , f1 (x)]

− 1

3
[f2 (x) , f1 (x) , f2 (x)]

− 1

3
[f1 (x) , f2 (x) , f2 (x)] , ∀x, x1, . . . , xm ∈ A,m ≥ 2.

In this paper, using fixed point methods, we prove the generalized
Hyers-Ulam stability of ternary generalized Jordan ring homomorphisms
on ternary non-Archimedean Banach algebras associated with the gen-
eralized additive functional equation in several variables

Γf (x1, . . . , xm) = 0,

which was introduced by Khodaei et al. [13], see also [22] for this mat-
ter. Note that each function satisfying this generalized multi-variate
functional equation is additive [13].

2. Nearly Ternary Generalized Jordan Ring Homomorphisms

In this section, our focus lies on the generalized Hyers-Ulam stabil-
ity of ternary generalized Jordan ring homomorphisms on ternary non-
Archimedean Banach algebras.

Consider a generalized metric space (X, d), where the range of the
generalized metric is allowed to include infinity Now, let’s recall a fixed
point theory result by Diaz and Margolis, which we will apply in our
main results.
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Theorem 2.1 ([5, 17, 18]). Let (X, d) be a complete generalized metric
space and let H : X → X be a strictly contractive mapping with Lipschitz
constant L. Then for each x ∈ X, either

d
(
Hmx,Hm+1x

)
= ∞, ∀m ≥ 0

or there exists a natural number k0 such that
1. d

(
Hmx,Hm+1x

)
<∞ for all m ≥ k0,

2. {Hmx} is convergent to a fixed point a∗ of H,
3. a∗ is the unique fixed point of H in the set

Λ =
{
a ∈ X : d

(
Hk0x, a

)
<∞

}
,

4. d (a, a∗) ≤ 1

1− L
d (a,Ha) for all a ∈ Λ.

In the following two theorems we give the conditions which imply the
stability of ternary generalized Jordan ring homomorphisms on ternary
non-Archimedean Banach algebras.

Theorem 2.2. Let f1 : A → B and f2 : A → B be two functions for
which there exist some functions φ : Am → [0,∞) and ψ : A → [0,∞)
such that

max {∥Γf1 (x1, . . . , xm)∥ , ∥Γf2 (x1, . . . , xm)∥}(2.1)
≤ φ (x1, . . . , xm) , ∀x1, . . . , xm ∈ A,

max {∥Df1 (x)∥ , ∥Df1,f2 (x)∥} ≤ ψ (x) , ∀x ∈ A.(2.2)
If there exists a constant 0 < L < 1 such that

φ
(x1
2
, . . . ,

xm
2

)
≤ L

|2|
φ (x1, . . . , xm) , ∀x1, . . . , xm ∈ A,(2.3)

ψ
(x
2

)
≤ L

|2|
ψ (x) , ∀x ∈ A,(2.4)

then there exist a unique ternary Jordan ring homomorphism g1 : A→ B
and a unique ternary generalized Jordan ring homomorphism g2 : A→ B
such that

(2.5) ∥f1 (x)− g1 (x)∥ ≤ 1

|2|m−1

L

1− L
φ (x, x, 0, . . . , 0) ,

(2.6) ∥f2 (x)− g2 (x)∥ ≤ 1

|2|m−1

L

1− L
φ (x, x, 0, . . . , 0) , ∀x ∈ A.

Proof. Put x1 = x2 = x and x3 = x4 = . . . = xn = 0 in (2.1) to reach

(2.7)
∥∥∥α
2
fi (2x)− αfi (x)

∥∥∥ ≤ φ (x, x, 0, . . . , 0) , ∀x ∈ A,
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where α = 2m−1, m ≥ 2. By substituting x
2

with x and then multiplying
both sides of the resulting inequalities by |2| we get

(2.8)
∥∥∥2fi (x

2

)
− fi (x)

∥∥∥ ≤ |2|
|α|

φ
(x
2
,
x

2
, 0, . . . , 0

)
.

Using (2.3) and (2.8) one has

(2.9)
∥∥∥2fi (x

2

)
− fi (x)

∥∥∥ ≤ L

|α|
φ (x, x, 0, . . . , 0) .

Consider Ω = {g : g : A → B, g is a map} and define the generalized
metric d on Ω for g, h ∈ Ω as follows

d (g, h) = inf {t ∈ (0,∞) : ∥g (x)− h (x)∥ ≤ tφ (x, x, 0, . . . , 0) , x ∈ A} .

The space (Ω, d) is a generalized complete metric space [4]. Let the
function F : Ω → Ω defined by (Fh) (x) = 2h

(x
2

)
for all x ∈ A and

all h ∈ Ω. Use [5, Lemma 1.3] to see that F is a strictly contrac-
tive mapping with the Lipschitz constant L. It follows from (2.9) that
d (Ffi, fi) ≤ L

|α|
. Therefore, according to Theorem 2.1, the sequence

{Fnfi} converges to a fixed point gi such that

gi (x) = lim
n→∞

2nfi

( x
2n

)
, ∀x ∈ A.(2.10)

Note that gi is the unique fixed point of F in the set ∆i = {g ∈ Ω :
d (fi, g) <∞} for each i ∈ {1, 2} and

d (gi, fi) ≤
1

1− L
d (Ffi, fi) ≤

L

|α| (1− L)
.

This entails that

∥fi (x)− gi (x)∥ ≤ 1

|2|m−1

L

1− L
φ (x, x, 0, . . . , 0) , ∀x ∈ A.

This implies that the inequalities (2.5) and (2.6) hold for all x ∈ A. On
the other hand, it follows from (2.1) and (2.3) that

∥Γgi (x1, . . . , xm)∥ = lim
n→∞

|2|n
∥∥∥Γfi

(x1
2n
, . . . ,

xm
2n

)∥∥∥
≤ lim

n→∞
|2|nφ

(x1
2n
, . . . ,

xm
2n

)
≤ lim

n→∞
|2|n L

n

|2|n
φ (x1, . . . , xm)

= 0.
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Hence, Γgi (x1, . . . , xm) = 0 for all x1, . . . , xm ∈ A. This indicates that
each gi is additive. By using (2.2) and (2.4) we deduce
∥Dg1 (x)∥ = ∥g1 ([x, x, x])− [g1 (x) , g1 (x) , g1 (x)]∥

= lim
n→∞

|2|3n
∥∥∥f1 ([ x

2n
,
x

2n
,
x

2n

])
−
[
f1

( x
2n

)
, f1

( x
2n

)
, f1

( x
2n

)]∥∥∥
= lim

n→∞
|2|3n

∥∥∥Df1

( x
2n

)∥∥∥
≤ lim

n→∞
|2|3nψ

( x
2n

)
≤ lim

n→∞
|2|3n L

n

|2|n
ψ (x)

= 0, ∀x ∈ A.

Therefore, g1 is a ternary Jordan ring homomorphism. It follows from
(2.2) and (2.4) that

∥Dg1,g2 (x)∥ =

∥∥∥∥g2 ([x, x, x])− 1

3
[g2 (x) , g2 (x) , g1 (x)]

− 1

3
[g2 (x) , g1 (x) , g2 (x)]−

1

3
[g1 (x) , g2 (x) , g2 (x)]

∥∥∥∥
= lim

n→∞
|2|3n

∥∥∥∥f2 ([ x2n , x2n , x2n ])
− 1

3

[
f2

( x
2n

)
, f2

( x
2n

)
, f1

( x
2n

)]
− 1

3

[
f2

( x
2n

)
, f1

( x
2n

)
, f2

( x
2n

)]
− 1

3

[
f1

( x
2n

)
, f2

( x
2n

)
, f2

( x
2n

)] ∥∥∥∥
= lim

n→∞
|2|3n

∥∥∥Df1,f2

( x
2n

)∥∥∥
≤ lim

n→∞
|2|3nψ

( x
2n

)
≤ lim

n→∞
|2|3n L

n

|2|n
ψ (x)

= 0, ∀x ∈ A.

This entails that g2 is a ternary generalized Jordan ring homomorphism.
This completes the proof. □
Remark 2.3. We remark that in the proof of Theorem 2.2 the equality
(2.10) implies that

gi ([x, x, x]) = lim
n→∞

23nfi

([ x
2n
,
x

2n
,
x

2n

])
, ∀x ∈ A.
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Since [x, x, x] ∈ A and the ternary product [·, ·, ·] is trilinear we find that

gi ([x, x, x]) = lim
k→∞

2kfi

(
[x, x, x]

2k

)
= lim

k→∞
2kfi

([ x

2k/3
,
x

2k/3
,
x

2k/3

])
= lim

n→∞
23nfi

([ x
2n
,
x

2n
,
x

2n

])
.

Theorem 2.4. Let f1 : A → B and f2 : A → B be two functions for
which there exist some functions φ : Am → [0,∞) and ψ : A → [0,∞)
satisfying (2.1) and (2.2). If there exists a constant 0 < L < 1 such that

φ (2x1, . . . , 2xm) ≤ |2|Lφ (x1, . . . , xm) ,(2.11)
ψ (2x) ≤ |2|3Lψ (x) , ∀x1, . . . , xm ∈ A, i ∈ {1, 2},(2.12)

then there exist a unique ternary Jordan ring homomorphism g1 : A→ B
and a unique ternary generalized Jordan ring homomorphism g2 : A→ B
such that

∥fi (x)− gi (x)∥ ≤ 1

|2|m−1

L

1− L
φ (x, x, 0, . . . , 0) , ∀x ∈ A.

Proof. Dividing both sides of (2.7) by |α| one has∥∥∥∥12fi (2x)− fi (x)

∥∥∥∥ ≤ 1

|α|
φ (x, x, 0, . . . , 0) .

Using (2.11) and since |2| < 1 we deduce∥∥∥∥12fi (2x)− fi (x)

∥∥∥∥ ≤ |2|L
|α|

φ
(x
2
,
x

2
, 0, . . . , 0

)
(2.13)

≤ L

|α|
φ
(x
2
,
x

2
, 0, . . . , 0

)
.

Define the generalized metric d on Ω, the set of all mappings g, h : A→
B, as follows

d (g, h) = inf
{
t ∈ (0,∞) : ∥g (x)− h (x)∥ ≤ tφ

(x
2
,
x

2
, 0, . . . , 0

)
, x ∈ A

}
.

This space is a generalized complete metric space [4]. Let the function
G : Ω → Ω defined by (Gh) (x) =

1

2
h (2x) for all x ∈ A and all h ∈ Ω.

The function G is a strictly contractive mapping with the Lipschitz con-
stant L by [5, Lemma 1.2]. It follows from (2.13) that d (Gfi, fi) ≤

L

|α|
.

Therefore, according to Theorem 2.1, the sequence {Gnfi} converges to
a fixed point gi such that

gi (x) = lim
n→∞

1

2n
fi (2

nx) .
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The function gi is the unique fixed point of G in the set ∆i = {g ∈ Ω :
d (fi, g) <∞} for each i ∈ {1, 2} and

d (gi, fi) ≤
1

1− L
d (Gfi, fi) ≤

L

|α| (1− L)
.

This means that

∥fi (x)− gi (x)∥ ≤ 1

|2|m−1

L

1− L
φ
(x
2
,
x

2
, 0, . . . , 0

)
, ∀x ∈ A

and hence the desired results follow. Now we show that each gi is addi-
tive and g2 is a ternary generalized Jordan ring homomorphism. Using
(2.1) and (2.11) one can deduce

∥Γgi (x1, . . . , xm)∥ = lim
n→∞

1

|2|n
∥Γfi (2

nx1, . . . , 2
nxm)∥

≤ lim
n→∞

1

|2|n
|2|nLnφ (x1, . . . , xm)

= 0.

We observe that gi is additive. By applying (2.2) and (2.12) we get

∥Dg1 (x)∥ = ∥g1 ([x, x, x])− [g1 (x) , g1 (x) , g1 (x)]∥

= lim
n→∞

1

|2|3n
∥f1 ([2nx, 2nx, 2nx])− [f1 (2

nx) , f1 (2
nx) , f1 (2

nx)]∥

= lim
n→∞

1

|2|3n
∥Df1 (2

nx)∥

≤ lim
n→∞

1

|2|3n
ψ (2nx)

≤ lim
n→∞

1

|2|3n
|2|3nLnψ (x)

= 0, ∀x ∈ A.

Therefore, g1 is a ternary Jordan ring homomorphism. By using (2.2)
and (2.12) we have

∥Dg1,g2 (x)∥ =

∥∥∥∥g2 ([x, x, x])− 1

3
[g2 (x) , g2 (x) , g1 (x)]

− 1

3
[g2 (x) , g1 (x) , g2 (x)]−

1

3
[g1 (x) , g2 (x) , g2 (x)]

∥∥∥∥
= lim

n→∞

1

|2|3n

∥∥∥∥f2 ([2nx, 2nx, 2nx])
− 1

3
[f2 (2

nx) , f2 (2
nx) , f1 (2

nx)]
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− 1

3
[f2 (2

nx) , f1 (2
nx) , f2 (2

nx)]

− 1

3
[f1 (2

nx) , f2 (2
nx) , f2 (2

nx)]

∥∥∥∥
= lim

n→∞

1

|2|3n
∥Df1,f2 (2

nx)∥

≤ lim
n→∞

1

|2|3n
ψ (2nx)

≤ lim
n→∞

1

|2|3n
|2|3nLnψ (x)

= 0, ∀x ∈ A.

This entails that g2 is a ternary generalized Jordan ring homomorphism.
This completes the proof. □

We now verify the Hyers-Ulam-Rassias stability of the ternary gener-
alized Jordan ring homomorphisms on ternary non-Archimedean Banach
algebras.

Corollary 2.5. Let p, q and s be non-negative real numbers with s <
p < 1. Let f1 : A → B and f2 : A → B be two functions, ∈ {1, 2},
m ≥ 2 and

∥Γfi (x1, . . . , xm)∥ ≤ q (∥x1∥p + . . .+ ∥xm∥p) , ∀x1, . . . , xm ∈ A,

max{∥Df1 (x)∥ , ∥Df1,f2 (x)∥} ≤ q ∥x∥s , ∀x ∈ A.

Then there exist a unique ternary ring homomorphism g1 : A → B and
a unique ternary generalized ring homomorphism g2 : A→ B such that

∥fi (x)− gi (x)∥ ≤ 2q|2|1−p

|2|m−1 − |2|m−p
∥x∥p , ∀x ∈ A.

Proof. Define
φ (x1, . . . , xm) := q (∥x1∥p + . . .+ ∥xm∥p) ,

ψ (x) := q ∥x∥s .

It is enough to choose L = |2|1−p and apply Theorem 2.2. Note that in
a non-Archimedean space and for a non-Archimedean absolute value by
condition 3 we know that |2| ≤ 1. □
Corollary 2.6. Let p, q and s be non-negative real numbers with 1 <
p < s− 2. Let f1 : A → B and f2 : A → B be two functions, i ∈ {1, 2}
and m ≥ 2 such that

∥Γfi (x1, . . . , xm)∥ ≤ q (∥x1∥p + . . .+ ∥xm∥p) , ∀x1, . . . , xm ∈ A,

max {∥Df1 (x)∥ , ∥Df1,f2 (x)∥} ≤ q ∥x∥s , ∀x ∈ A.
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Then there exist a unique ternary Jordan ring homomorphism g1 : A→
B and a unique ternary generalized Jordan ring homomorphism g2 :
A→ B such that

∥fi (x)− gi (x)∥ ≤ 2q

|2|m−p − |2|m−1
∥x∥p , ∀x ∈ A.

Proof. Consider
φ (x1, . . . , xm) := q (∥x1∥p + . . .+ ∥xm∥p) ,

ψ (x) := q ∥x∥s .

It is sufficient to choose L = |2|p−1 and then apply Theorem 2.4. Note
that in a non-Archimedean space and for a non-Archimedean absolute
value by condition 3 we know that |2| ≤ 1. □
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