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Fractional Ostrowski Type Inequalities via ϕ− λ−Convex
Function

Ali Hassan1∗ and Asif R. Khan2

Abstract. In this paper, we aim to state well-known Ostrowski
inequality via fractional Montgomery identity for the class of ϕ−λ−
convex functions. This generalized class of convex function contains
other well-known convex functions from literature, allowing us to
derive Ostrowski-type inequalities as specific instances. Moreover,
we present Ostrowski-type inequalities for which certain powers of
absolute derivatives are ϕ − λ− convex using various techniques,
including Hölder’s inequality and the power mean inequality. Con-
sequently, various established results would be captured as special
cases. Moreover, we provide applications in terms of special means,
allowing us to derive many numerical inequalities related to special
means from Ostrowski-type inequalities.

1. Introduction

In almost every field of science, inequalities play an important role.
Although it is a very vast discipline, our focus is mainly on Ostrowski-
type inequalities. In 1938, Ostrowski established the following interest-
ing integral inequality for differentiable mappings with bounded deriva-
tives. Additionally , one can find the numerous variants and applications
in [1, 5, 9–11, 19, 23, 27, 28, 30, 33, 34, 37]. This inequality is well known
in the literature as Ostrowski inequality, which is stated as:
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Theorem 1.1 ([32]). Let ς : [a, b] → R be differentiable with |ς ′(t)| ≤M
∀t ∈ (a, b). Then

(1.1)
∣∣∣∣ς(x)− 1

b− a

∫ b

a
ς(t)dt

∣∣∣∣ ≤ (b− a)M

1
4
+

(
x− a+b

2

b− a

)2
 ,

∀x ∈ (a, b). The constant 1
4 is the best possible in the sense that it cannot

be replaced by a smaller quantity.
Nowadays, with the increasing demand of researchers to study natural

phenomena, the use of fractional differential operators and fractional
differential equations has become an effective means to achieve this goal.
Compared with integer-order operators, Fractional operators, which can
simulate natural phenomena better, are a class of operators developed in
recent years. These operators have expanded and have been widely used
in modeling real-world phenomena such as biomathematics, electrical
circuits, medicine, disease transmission and control.

On the other hand, convexity is a simple and ordinary concept with
massive applications in industry and business, greatly influencing our
daily life. In solving many real-world problems, the concept of convexity
plays a decisive role. In the solution of many real world problems the
concept of convexity is very decisive. Problems faced in constrained
control and estimation are often convex. Geometrically, a real valued
function is said to be convex if the line segment segment joining any
two of its points lies on or above the graph of the function in Euclidean
space.

An important area in the field of applied and pure mathematics is the
integral inequality. Inequalities aim to develop different mathematical
methods. Nowadays, there is a need to seek accurate inequalities for
proving the existence and uniqueness of the mathematical methods. The
concept of convexity plays a strong role in the field of inequalities due to
its definition and properties. Furthermore, there is a strong correlation
between convexity and symmetry concepts.

In recent years, the generalization of classical convex function have
emerged resulting in applications in the field of Mathematics. From
literature, we recall some definitions for different types of convex.
Definition 1.2 ([4]). The η : I ⊂ R → R is said to be convex, if

η (tx+ (1− t)y) ≤ tη(x) + (1− t)η(y), ∀x, y ∈ I, t ∈ [0, 1].

Definition 1.3 ([4]). The η : I ⊂ R → R is said to be MT−convex, if
η(x) ≥ 0 and

η (tx+ (1− t)y) ≤
√
t

2
√
1− t

η(x) +

√
1− t

2
√
t
η(y), ∀x, y ∈ I, t ∈ (0, 1).
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Definition 1.4 ([20]). The η : I ⊂ R → R is a P−convex, if η(x) ≥ 0
and

η (tx+ (1− t)y) ≤ η(x) + η(y), ∀x, y ∈ I and t ∈ [0, 1]

Definition 1.5 ([22]). The η : I ⊂ R → R is a GL convex, if η(x) ≥ 0
and

η (tx+ (1− t)y) ≤ 1

t
η(x) +

1

1− t
η(y), ∀x, y ∈ I and t ∈ (0, 1).

Definition 1.6 ([6]). Let s ∈ (0, 1]. The η : I ⊂ [0,∞) → R is said to
be s−convex in the 2nd kind, if

η (tx+ (1− t)y) ≤ tsη(x) + (1− t)sη(y), ∀x, y ∈ I, t ∈ [0, 1].

Definition 1.7 ([14]). The η : I ⊂ R → [0,∞) is of GL s−convex, with
s ∈ [0, 1], if

η (tx+ (1− t)y) ≤ 1

ts
η(x) +

1

(1− t)s
η(y), ∀t ∈ (0, 1) and x, y ∈ I.

Definition 1.8 ([38]). Let h : J ⊆ R → [0,∞) with h ̸= 0. The η : I ⊆
R → [0,∞) is an h−convex if ∀x, y ∈ I, we have

η (tx+ (1− t)y) ≤ h(t)η(x) + h(1− t)η(y), ∀t ∈ [0, 1].

Definition 1.9 ([15]). Let ϕ : (0, 1) → (0,∞), the η : I ⊂ R → [0,∞)
is a ϕ−convex if ∀x, y ∈ I we have

η (tx+ (1− t)y) ≤ tϕ(t)η(x) + (1− t)ϕ(1− t)η(y), ∀t ∈ (0, 1).

Definition 1.10. The Riemann-Liouville integral operator of order ψ >
0 with a ≥ 0 is defined as

Jψa ς(x) =
1

Γ(ψ)

∫ x

a
(x− t)ψ−1ς(t)dt,

J0
a ς(x) = ς(x).

In case of ψ = 1, the fractional integral reduces to the classical integral.

Definition 1.11 ([35]). The Riemann-Liouville integrals Iψ
a+
ς and Iψ

b−ς
of ς ∈ L1([a, b]) having order ψ > 0 with a ≥ 0, a < b are defined by

Iψ
a+
ς(x) =

1

Γ(ψ)

∫ x

a
(x− t)ψ−1 ς(t)dt, x > a

and
Iψ
b−ς(x) =

1

Γ(ψ)

∫ b

x
(t− x)ψ−1 ς(t)dt, x < b,

respectively. Here Γ(ψ) =
∫∞
0 e−uuψ−1du is the GammThe and I0a+ς(x) =

I0b−ς(x) = ς(x).
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Theorem 1.12. Let ς : I → R be differentiable mapping on I0, with
a, b ∈ I, with a < b, ς ′ ∈ L1[a, b] and for ψ > 1, Montgomery identity
for fractional integrals holds:

ς(x)− Γ(ψ)

b− a
(b− x)1−ψJψa ς(b)(1.2)

= Jψ−1
a (P1(x, b)ς(b)) + Jψa (P1(x, b)ς

′(b)),

where P1(x, t) is the fractional Peano Kernel defined by:

P1(x, t) =


t−a
b−a(b− x)1−ψΓ(ψ), if t ∈ [a, x],

t−b
b−a(b− x)1−ψΓ(ψ), if t ∈ (x, b].

Let [a, b] ⊆ (0,+∞), we may define special means as follows:
(a) The arithmetic mean

A(a, b) =
a+ b

2
;

(b) The geometric mean

G(a, b) =
√
ab;

(c) The harmonic mean

H(a, b) =
2

1

a
+

1

b

;

(d) The logarithmic mean

L(a, b) =

{
a, if a = b
b− a

ln b− ln a
, if a ̸= b

;

(e) The identric mean

I(a, b) =


a, if a = b

1

e

(
bb

aa

) 1
b−a

, if a ̸= b.
;

(f) The p−logarithmic mean

Lp(a, b) =


a, if a = b[
bp+1 − ap+1

(p+ 1)(b− a)

] 1
p

, if a ̸= b.
;

where p ∈ R \ {0,−1}.
We use this Lemma in [7] to prove our main results.
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Lemma 1.13. Let ς : [a, b] → R be a differentiable with a < b. If
ς ′ ∈ L1([a, b]), then ∀x ∈ (a, b),(

(x− a)ψ + (b− x)ψ

b− a

)
ς(x)− Γ(ψ + 1)

b− a

[
Iψ
x−ς(a) + Iψ

x+
ς(b)

]
=

(x− a)ψ+1

b− a

∫ 1

0
tψς ′(tx+ (1− t)a)dt

− (b− x)ψ+1

b− a

∫ 1

0
tψς ′(tx+ (1− t)b)dt.

Throughout this paper, we denote
σ(ς, x, a, b, ψ)

=

(
(x− a)ψ + (b− x)ψ

b− a

)
ς(x)− Γ(ψ + 1)

b− a

[
Iψ
x−ς(a) + Iψ

x+
ς(b)

]
.

We also make use of Euler’s beta function, which is for x, y > 0 defined
as

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt

=
Γ(x)Γ(y)

Γ(x+ y)
.

The main aim of our study is to generalize the Ostrowski inequality (1.1)
for ϕ−−convex functions, as given in Section 2. Additionally, we present
Ostrowski inequalities for which certain powers of absolute derivatives
are ϕ−−convex, using various techniques,including Hölder’s inequality
[40] and power mean inequality [39]. Furthermore, we provide the the
special cases of our results and applications of midpoint inequalities in
special means.

2. Fractional Ostrowski Inequality via ϕ− λ−Convex

In this section, we are introducing very first time the concept of ϕ−
λ−convex function, which contain many classes of convex functions in
literature.

Definition 2.1. Let λ ∈ (0, 1] and ϕ : (0, 1) → (0,∞), the η : I → [0,∞)
is a ϕ− λ−convex, if
(2.1) η (tx+ (1− t)y) ≤ tλϕ(t)η(x) + (1− t)λϕ(1− t)η(y),

∀x, y ∈ I, t ∈ (0, 1).

Remark 2.2. In Definition 2.1, one can see the following.
(i) If λ = 1 in (2.1), we get ϕ−convex.
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(ii) If λ = 1, l(t) = t, and by taking h = lϕ in (2.1), we get
h−convex.

(iii) If λ = 1, ϕ(t) = 1
ts+1 with s ∈ [0, 1] in (2.1), then class of GL

s−convex.
(iv) If λ = 1, ϕ(t) = 1

t2
in (2.1), then concept of GL convex.

(v) If λ = 1, ϕ(t) = ts−1 with s ∈ (0, 1] in (2.1), then concept of
s−convex in 2nd kind.

(vi) If λ = 1, ϕ(t) = 1
t in (2.1), then concept of P−convex.

(vii) If λ = 1, ϕ(t) = 1 in (2.1), then ordinary convex.
(viii) If λ = 1, ϕ(t) = 1

2
√
t(1−t)

in (2.1), then concept of MT−convex.

Theorem 2.3. Let λ ∈ (0, 1], ς : [a, b] → R be differentiable on (a, b),
ς ′ : [a, b] → R be integrable on [a, b] and η : I ⊂ R → R be a ϕ−λ−convex,
then we have the inequalities

η

[
ς(x)− Γ(ψ)

b− a
(b− x)1−ψJψa ς(b) + Jψ−1

a (P1(x, b)ς(b))

]
(2.2)

≤ (x− a)λ−1(b− x)1−ψ

(b− a)λ
ϕ

(
x− a

b− a

)[∫ x

a
η

[
(t− a)ς ′(t)

(b− t)1−ψ

]
dt

]
+

(b− x)λ−ψ

(b− a)λ
ϕ

(
b− x

b− a

)[∫ b

x
η

[
(t− b)ς ′(t)

(b− t)1−ψ

]
dt

]
,

∀x ∈ [a, b] .

Proof. Utilizing Theorem 1.12, we get

ς(x)− Γ(ψ)

b− a
(b− x)1−ψJψa ς(b) + Jψ−1

a (P1(x, b)ς(b))

= Jψa (P1(x, b)ς
′(b))

=
1

Γ(ψ)

∫ b

a
P1(x, t)

ς ′(t)

(b− t)1−ψ
dt

=

(
x− a

b− a

)[
(b− x)1−ψ

x− a

∫ x

a

{t− a} ς ′(t)
(b− t)1−ψ

dt

]
+

(
b− x

b− a

)[
(b− x)1−ψ

b− x

∫ b

x

{t− b} ς ′(t)
(b− t)1−ψ

dt

]
,

∀x ∈ [a, b] . Next by using the η : I ⊂ [0,∞) → R, is ϕ− λ−convex, we
get

η

[
ς(x)− Γ(ψ)

b− a
(b− x)1−ψJψa ς(b) + Jψ−1

a (P1(x, b)ς(b))

]
≤
(
x− a

b− a

)λ
ϕ

(
x− a

b− a

)
η

[
(b− x)1−ψ

x− a

∫ x

a

{t− a} ς ′(t)
(b− t)1−ψ

dt

]
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+

(
b− x

b− a

)λ
ϕ

(
b− x

b− a

)
η

[
(b− x)1−ψ

b− x

∫ b

x

{t− b} ς ′(t)
(b− t)1−ψ

dt

]
,

∀x ∈ [a, b] . Applying Jensen’s integral inequality [12], we get the desired
result. □

Corollary 2.4. In Theorem 2.3, one can see the following.
(i) If λ = 1 in (2.2), then Fractional Ostrowski type inequality for

ϕ−convex:

η

[
ς(x)− Γ(ψ)

b− a
(b− x)1−ψJψa ς(b) + Jψ−1

a (P1(x, b)ς(b))

]
≤ (b− x)1−ψ

(b− a)

[
ϕ

(
x− a

b− a

)∫ x

a
η

[
(t− a)ς ′(t)

(b− t)1−ψ

]
dt

+ϕ

(
b− x

b− a

)∫ b

x
η

[
(t− b)ς ′(t)

(b− t)1−ψ

]
dt

]
.

(ii) If λ = 1, l(t) = t and h = lϕ in (2.2), then Fractional Ostrowski
type inequality for h−convex:

η

[
ς(x)− Γ(ψ)

b− a
(b− x)1−ψJψa ς(b) + Jψ−1

a (P1(x, b)ς(b))

]
≤ h

(
x− a

b− a

)[
(b− x)1−ψ

x− a

∫ x

a
η

[
(t− a)ς ′(t)

(b− t)1−ψ

]
dt

]
+ h

(
b− x

b− a

)[
1

(b− x)ψ

∫ b

x
η

[
(t− b)ς ′(t)

(b− t)1−ψ

]
dt

]
.

(iii) If λ = 1, ϕ(t) = 1
ts+1 with s ∈ [0, 1] in (2.2), then Ostrowski

inequality for Godunova-Levin s−convex:

η

[
ς(x)− Γ(ψ)

b− a
(b− x)1−ψJψa ς(b) + Jψ−1

a (P1(x, b)ς(b))

]
≤ (b− a)s(b− x)1−ψ

(x− a)1+s

∫ x

a
η

[
(t− a)ς ′(t)

(b− t)1−ψ

]
dt

+
(b− a)s

(b− x)ψ+s

∫ b

x
η

[
(t− b)ς ′(t)

(b− t)1−ψ

]
dt.

(iv) If λ = 1, ϕ(t) = 1
t2

in (2.2), then Fractional Ostrowski type
inequality for Godunova-Levin convex:

η

[
ς(x)− Γ(ψ)

b− a
(b− x)1−ψJψa ς(b) + Jψ−1

a (P1(x, b)ς(b))

]
≤ (b− a)(b− x)1−ψ

(x− a)2

∫ x

a
η

[
(t− a)ς ′(t)

(b− t)1−ψ

]
dt
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+
(b− a)

(b− x)ψ+1

∫ b

x
η

[
(t− b)ς ′(t)

(b− t)1−ψ

]
dt.

(v) If λ = 1, ϕ(t) = ts−1 with s ∈ (0, 1] in (2.2), then Fractional
Ostrowski type inequality for s−convex in 2nd kind:

η

[
ς(x)− Γ(ψ)

b− a
(b− x)1−ψJψa ς(b) + Jψ−1

a (P1(x, b)ς(b))

]
≤ (x− a)s−1(b− x)1−ψ

(b− a)s

∫ x

a
η

[
(t− a)ς ′(t)

(b− t)1−ψ

]
dt

+
(b− x)s−ψ

(b− a)s

∫ b

x
η

[
(t− b)ς ′(t)

(b− t)1−ψ

]
dt.

(vi) If λ = 1, ϕ(t) = 1
t in (2.2), then Fractional Ostrowski type

inequality for P−convex:

η

[
ς(x)− Γ(ψ)

b− a
(b− x)1−ψJψa ς(b) + Jψ−1

a (P1(x, b)ς(b))

]
≤ (b− x)1−ψ

(x− a)

∫ x

a
η

[
(t− a)ς ′(t)

(b− t)1−ψ

]
dt+

1

(b− x)ψ

∫ b

x
η

[
(t− b)ς ′(t)

(b− t)1−ψ

]
dt.

(vii) If λ = ϕ(t) = 1 in (2.2), then Fractional Ostrowski type inequal-
ity for convex:

η

[
ς(x)− Γ(ψ)

b− a
(b− x)1−ψJψa ς(b) + Jψ−1

a (P1(x, b)ς(b))

]
≤ (b− x)1−ψ

b− a

[∫ x

a
η

[
(t− a)ς ′(t)

(b− t)1−ψ

]
dt+

∫ b

x
η

[
(t− b)ς ′(t)

(b− t)1−ψ

]
dt

]
.

(viii) If ψ = λ = ϕ(t) = 1 in (2.2), then we get inequality (2.1) of
Theorem 2.1 in [12].

(ix) If λ = 1, ϕ(t) = 1

2
√
t(1−t)

in (2.2), then Fractional Ostrowski
type inequality for MT−convex:

η

[
ς(x)− Γ(ψ)

b− a
(b− x)1−ψJψa ς(b) + Jψ−1

a (P1(x, b)ς(b))

]
≤ (b− x)

1
2
−ψ

2
√
(x− a)

[∫ x

a
η

[
(t− a)ς ′(t)

(b− t)1−ψ

]
dt+

∫ b

x
η

[
(t− b)ς ′(t)

(b− t)1−ψ

]
dt

]
.

Theorem 2.5. Suppose all the assumptions of Lemma 1.13 hold. Ad-
ditionally, assume that λ ∈ (0, 1], |ς ′| is ϕ− λ−convex function on [a, b]
with ϕ(t) ̸= 1

t2
and |ς ′(x)| ≤M. Then

|σ(ς, x, a, b, ψ)|(2.3)
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≤M

(∫ 1

0

[
tψ+λϕ(t) + tψ(1− t)λϕ(1− t)

]
dt

)
ψκba(x),

∀x ∈ (a, b), where ψκba(x) =
(x−a)ψ+1+(b−x)ψ+1

b−a .

Proof. From the Lemma 1.13 we have
|σ(ς, x, a, b, ψ)|(2.4)

≤ (x− a)ψ+1

b− a

∫ 1

0
tψ
∣∣ς ′(tx+ (1− t)a)

∣∣ dt
+

(b− x)ψ+1

b− a

∫ 1

0
tψ
∣∣ς ′(tx+ (1− t)b)

∣∣ dt.
Since |ς ′| is ϕ− λ−convex on [a, b] and |ς ′(x)| ≤M, we have
(2.5)∫ 1

0
tψ
∣∣ς ′(tx+ (1− t)a)

∣∣ dt ≤M

∫ 1

0
tψ
[
tλϕ(t) + (1− t)λϕ(1− t)

]
dt

and similarly
(2.6)∫ 1

0
tψ
∣∣ς ′(tx+ (1− t)b)

∣∣ dt ≤M

∫ 1

0
tψ
[
tλϕ(t) + (1− t)λϕ(1− t)

]
dt.

We get the desired result.
□

Corollary 2.6. In Theorem 2.5, one can see the following.
(i) If λ = 1, then Fractional Ostrowski type inequality for ϕ−convex:

|σ(ς, x, a, b, ψ)|

≤M

(∫ 1

0

[
tψ+1ϕ(t) + tψ(1− t)ϕ(1− t)

]
dt

)
ψκba(x).

(ii) If λ = 1, l(t) = t and h = lϕ, then Fractional Ostrowski type
inequality for h−convex:

|σ(ς, x, a, b, ψ)| ≤M

(∫ 1

0
tψ [h(t) + h(1− t)] dt

)
ψκba(x).

(iii) If λ = 1, ϕ(t) = 1
ts+1 with s ∈ [0, 1), then Ostrowski inequality

for GL s−convex:

|σ(ς, x, a, b, ψ)| ≤M

(
1

1 + ψ − s
+

Γ(1 + ψ)Γ(1− s)

Γ(2 + ψ − s)

)
ψκba(x).

(iv) If If λ = 1, ϕ(t) = ts−1 with s ∈ (0, 1], then inequality (2.6) of
Theorem 7 in [36].

(v) If λ = ψ = 1, ϕ(t) = ts−1 with s ∈ (0, 1], then inequality (2.1) of
Theorem 2 in [2].
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(vi) If λ = 1, ϕ(t) = 1
t , then Ostrowski inequality for P−convex via

fractional integrals:

|σ(ς, x, a, b, ψ)| ≤ 2M

1 + ψ
ψκba(x).

(vii) If λ = 1, ϕ(t) = 1, then inequality of Corollary 1 in [36].
(viii) If λ = ψ = ϕ(t) = 1, then one has inequality (1.3) of Theorem

3 in [36].
(ix) If λ = 1, ϕ(t) = 1

2
√
t(1−t)

, then Fractional Ostrowski type in-
equality for MT−convex:

|σ(ς, x, a, b, ψ)| ≤M

(√
π Γ

[
1
2 + ψ

]
2 Γ[1 + ψ]

)
ψκba(x).

Theorem 2.7. Suppose all the assumptions of Lemma 1.13 hold. Ad-
ditionally, assume that λ ∈ (0, 1], |ς ′|q is ϕ − λ−convex function on
[a, b], q ≥ 1 with ϕ(t) ̸= 1

t2
and |ς ′(x)| ≤M. Then

|σ(ς, x, a, b, ψ)|

(2.7)

≤ M

(1 + ψ)
1− 1

q

(∫ 1

0

[
tψ+λϕ(t) + tψ(1− t)λϕ(1− t)

]
dt

) 1
q
ψκba(x),

∀x ∈ (a, b), where ψκba(x) =
(x−a)ψ+1+(b−x)ψ+1

b−a .

Proof. From the Lemma 1.13 and using power mean inequality [39], we
have

|σ(ς, x, a, b, ψ)|

(2.8)

≤ (x− a)ψ+1

b− a

(∫ 1

0
tψdt

)1− 1
q
(∫ 1

0
tψ
∣∣ς ′ (tx+ (1− t)a)

∣∣q dt) 1
q

+
(b− x)ψ+1

b− a

(∫ 1

0
tψdt

)1− 1
q
(∫ 1

0
tψ
∣∣ς ′ (tx+ (1− t)b)

∣∣q dt) 1
q

.

Since |ς ′|q is ϕ− λ−convex on [a, b]. and |ς ′(x)| ≤M, we get∫ 1

0
tψ
∣∣ς ′ (tx+ (1− t)a)

∣∣q dt(2.9)

≤M q

∫ 1

0
tψ
[
tλϕ(t) + (1− t)λϕ(1− t)

]
dt,
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and ∫ 1

0
tψ
∣∣ς ′ (tx+ (1− t)b)

∣∣q dt(2.10)

≤M q

∫ 1

0
tψ
[
tλϕ(t) + (1− t)λϕ(1− t)

]
dt.

We get the desired result. □

Corollary 2.8. In Theorem 2.7, one can see the following.
(i) If q = 1, Theorem 2.5.

(ii) If λ = 1, then Fractional Ostrowski type inequality for ϕ−convex:
|σ(ς, x, a, b, ψ)|

≤ M

(1 + ψ)
1− 1

q

(∫ 1

0
tψ [tϕ(t) + (1− t)ϕ(1− t)] dt

) 1
q
ψκba(x).

(iii) If λ = 1, l(t) = t and h = lϕ, then Fractional Ostrowski type
inequality for h−convex:
|σ(ς, x, a, b, ψ)|

≤ M

(1 + ψ)
1− 1

q

(∫ 1

0
tψ [h(t) + h(1− t)] dt

) 1
q
ψκba(x).

(iv) If λ = 1, ϕ(t) = 1
ts+1 with s ∈ [0, 1), then Ostrowski inequality

for GL s−convex:
|σ(ς, x, a, b, ψ)|

≤ M

(1 + ψ)
1− 1

q

(
1

1 + ψ − s
+

Γ(1 + ψ)Γ(1− s)

Γ(2 + ψ − s)

) 1
q
ψκba(x).

(v) If λ = 1, ϕ(t) = ts−1 with s ∈ (0, 1], then inequality (2.8) of
Theorem 9 in [36].

(vi) If λ = ψ = 1, ϕ(t) = ts−1 with s ∈ [0, 1], then inequality (2.3) of
Theorem 4 in [2].

(vii) If λ = 1, ϕ(t) = 1
t , then Ostrowski inequality for P−convex via

fractional integrals:

|σ(ς, x, a, b, ψ)| ≤ 2
1
qM

1 + ψ
ψκba(x).

(viii) If λ = ϕ(t) = 1, then one has the inequality of Corollary 3 in
[36].

(ix) If λ = ψ = ϕ(t) = 1, then one has inequality (1.5) of Theorem
5 in [36].
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(x) If λ = 1, ϕ(t) = 1

2
√
t(1−t)

, then Fractional Ostrowski type in-
equality for MT−convex:

|σ(ς, x, a, b, ψ)| ≤ M

(1 + ψ)
1− 1

q

(√
π Γ

[
1
2 + ψ

]
2 Γ[1 + ψ]

) 1
q

ψκba(x).

Theorem 2.9. Suppose all the assumptions of Lemma 1.13 hold. Ad-
ditionally, assume that λ ∈ (0, 1], |ς ′|q is ϕ − λ−convex function on
[a, b], q > 1 with p−1 + q−1 = 1, ϕ(t) ̸= 1

t2
and |ς ′(x)| ≤M. Then

|σ(ς, x, a, b, ψ)|(2.11)

≤ M

(ψp+ 1)
1
p

(∫ 1

0

[
tλϕ(t) + (1− t)λϕ(1− t)

]
dt

) 1
q
ψκba(x),

∀x ∈ (a, b), and ψκba(x) =
(x−a)ψ+1+(b−x)ψ+1

b−a .

Proof. From the Lemma 1.13 and using Hölder’s inequality [40], we have

|σ(ς, x, a, b, ψ)|(2.12)

≤ (x− a)ψ+1

b− a

(∫ 1

0
tψpdt

) 1
p
(∫ 1

0

∣∣ς ′ (tx+ (1− t)a)
∣∣q dt) 1

q

+
(b− x)ψ+1

b− a

(∫ 1

0
tψpdt

) 1
p
(∫ 1

0

∣∣ς ′ (tx+ (1− t)b)
∣∣q dt) 1

q

.

Since |ς ′|q is ϕ− λ−convex and |ς ′(x)| ≤M, we have
(2.13)∫ 1

0

∣∣ς ′ (tx+ (1− t)a)
∣∣q dt ≤M q

∫ 1

0

[
tλϕ(t) + (1− t)λϕ(1− t)

]
dt

and
(2.14)∫ 1

0

∣∣ς ′ (tx+ (1− t)b)
∣∣q dt ≤M q

∫ 1

0

[
tλϕ(t) + (1− t)λϕ(1− t)

]
dt

We get the desired result. □

Corollary 2.10. In Theorem 2.9, one can see the following.
(i) If λ = 1, then Fractional Ostrowski type inequality for ϕ−convex:

|σ(ς, x, a, b, ψ)|

≤ M

(ψp+ 1)
1
p

(∫ 1

0
[tϕ(t) + (1− t)ϕ(1− t)] dt

) 1
q
ψκba(x).



FRACTIONAL OSTROWSKI TYPE INEQUALITIES 123

(ii) If λ = 1, l(t) = t and h = lϕ, then Fractional Ostrowski type
inequality for h−convex:

|σ(ς, x, a, b, ψ)| ≤ M

(ψp+ 1)
1
p

(∫ 1

0
[h(t) + h(1− t)] dt

) 1
q
ψκba(x).

(iii) If λ = 1, ϕ(t) = 1
ts+1 with s ∈ [0, 1), then Ostrowski inequality

for GL s−convex:

|σ(ς, x, a, b, ψ)| ≤ M

(ψp+ 1)
1
p

(
2

1− s

) 1
q
ψκba(x).

(iv) If λ = 1, ϕ(t) = ts−1 with s ∈ (0, 1], then inequality (2.7) of
Theorem 8 in [36].

(v) If λ = ψ = 1, ϕ(t) = ts−1 with s ∈ (0, 1], then inequality (2.2) of
Theorem 3 in [2].

(vi) If λ = 1, ϕ(t) = 1
t , then Ostrowski inequality for P−convex via

fractional integrals:

|σ(ς, x, a, b, ψ)| ≤ 2
1
qM

(ψp+ 1)
1
p

ψκba(x).

(vii) If λ = ϕ(t) = 1, then one has Corollary 2 in [36].
(viii) If λ = ψ = ϕ(t) = 1, then one has inequality (1.4) of Theorem

4 in [36].
(ix) If λ = 1, ϕ(t) = 1

2
√
t(1−t)

, then Fractional Ostrowski type in-
equality for MT−convex:

|σ(ς, x, a, b, ψ)| ≤ M

(ψp+ 1)
1
p

(π
2

) 1
q ψκba(x).

3. Applications of Midpoint Inequalities

If we replace ς by −ς and x = a+b
2 in Theorem 2.3, we get

Theorem 3.1. Let ς : [a, b] → R be differentiable on (a, b), ς ′ : [a, b] → R
be integrable on [a, b] and η : I ⊂ R → R, be a ϕ− λ−convex, then

η

[
Γ(ψ)

(
b−a
2

)1−ψ
b− a

Jψa ς(b)− ς

(
a+ b

2

)
− Jψ−1

a

(
P1

(
a+ b

2
, b

)
ς(b)

)]

≤
2ψ−λ ϕ

(
1
2

)
(b− a)ψ

[∫ a

a+b
2

η

[
(t− a)ς ′(t)

(b− t)1−ψ

]
dt+

∫ a+b
2

b
η

[
(t− b)ς ′(t)

(b− t)1−ψ

]
dt

]
.
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Remark 3.2. In Theorem 3.1, if ψ = 1, we get

η

(
1

b− a

∫ b

a
ς(t)dt− ς

(
a+ b

2

))
≤

21−λϕ
(
1
2

)
b− a

[∫ a+b
2

a
η[(a− t)ς ′(t)]dt+

∫ b

a+b
2

η[(b− t)ς ′(t)]dt

]
.

Remark 3.3. In Theorem 3.1, assume that η : I ⊂ [0,∞) → R be an
ϕ− λ−convex function:

(i) If ψ = 1, ς(t) = 1
t , where t ∈ [a, b] ⊂ (0,∞), then we have

η

[
A(a, b)− L(a, b)

A(a, b)L(a, b)

]
≤

21−λϕ
(
1
2

)
b− a

[∫ a+b
2

a
η

[
t− a

t2

]
dt+

∫ b

a+b
2

η

[
t− b

t2

]
dt

]
.

(ii) If λ = ψ = 1, ς(t) = − ln t, where t ∈ [a, b] ⊂ (0,∞), then we
have

η

[
ln

(
A(a, b)

I(a, b)

)]
≤

21−λϕ
(
1
2

)
b− a

[∫ a+b
2

a
η

[
t− a

t

]
dt+

∫ b

a+b
2

η

[
t− b

t

]
dt

]
.

(iii) If ψ = 1, ς(t) = tp, p ∈ R \ {0,−1}, where t ∈ [a, b] ⊂ (0,∞),
then we have

η
[
Lpp(a, b) +Ap(a, b)

]
≤

21−λϕ
(
1
2

)
b− a

[∫ a+b
2

a
η

[
p (a− t)

t1−p

]
dt+

∫ b

a+b
2

η

[
p (b− t)

t1−p

]
dt

]
.

Remark 3.4. In Theorem 2.7, one can see the following.
(i) Let x = a+b

2 , ψ = 1, 0 < a < b, q ≥ 1 and ς : R → R+,
ς(x) = xn, then
|An (a, b)− Lnn (a, b)|

≤ M (b− a)

(2)
2− 1

q

(∫ 1

0

[
tλ+1ϕ(t) + t(1− t)λϕ(1− t)

]
dt

) 1
q

.

(ii) Let x = a+b
2 , ψ = 1, 0 < a < b, q ≥ 1 and ς : (0, 1] → R,

ς(x) = − lnx, then∣∣∣∣ln(A (a, b)

I (a, b)

)∣∣∣∣ ≤ M (b− a)

(2)
2− 1

q

(∫ 1

0

[
tλ+1ϕ(t) + t(1− t)λϕ(1− t)

]
dt

) 1
q

.
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Remark 3.5. In Theorem 2.9, one can see the following.
(i) Let x = a+b

2 , ψ = 1, 0 < a < b, p−1 + q−1 = 1 and ς : R → R+,
ς(x) = xn, then

|An (a, b)− Lnn (a, b)|

≤ M (b− a)

2 (p+ 1)
1
p

(∫ 1

0

[
tλϕ(t) + (1− t)λϕ(1− t)

]
dt

) 1
q

.

(ii) Let x = a+b
2 , ψ = 1, 0 < a < b, p−1+ q−1 = 1 and ς : (0, 1] → R,

ς(x) = − lnx, then∣∣∣∣ln(A (a, b)

I (a, b)

)∣∣∣∣ ≤ M (b− a)

2 (p+ 1)
1
p

(∫ 1

0

[
tλϕ(t) + (1− t)λϕ(1− t)

]
dt

) 1
q

.

4. Conclusion and Remarks

4.1. Conclusion. In this paper, we present the generalization of Os-
trowski inequality via fractional Montgomery identity with ϕ−λ−convex.
This class of functions include of ϕ−convex [15], h−convex [38], GL
s−convex [14], s−convex in the 2nd kind [6] and hence the class convex
and MT−convex [4]. It also includes the class of P−convex [20] and
class of GL functions [22]. In Section 2, we present the generalization
of the Ostrowski inequality via the generalized Montgomery identity us-
ing fractional integrals for �−�−convex functions. Furthermore, we used
different techniques including Hölder’s inequality [40] and power mean
inequality [39] for generalization of Ostrowski inequality. In the second-
to-last section, we provide applications of the obtained results in terms of
special means, including arithmetic, geometric, harmonic, logarithmic,
identric and p−logarithmic means, using the midpoint inequalities.

4.2. Remarks and Future Ideas.
(i) One may also do similar work by using various different classes

of convex functions.
(ii) One may do similar work to generalize all results stated in this

research work by applying weights.
(iii) One may also state all results stated in this research work by

higher order derivatives.
(iv) One may also state all results stated in this research work by

multivariable functions and gernalized fractional integral oper-
ators.
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(v) One may also do the similar work by using various different
generalized forms for the Korkine’s and Montgomery identi-
ties, improved power mean inequality, Hölder’s Iscan inequal-
ity, Jensen’s integral inequality with weights, generalized fuzzy
metric spaces on set of all fuzzy numbers.

Acknowledgment. The authors would like to express their sincere
thanks to potential reviewers for valuable comments.
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