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Transmission and Eigen–Parameter Dependent Boundary

Conditions

Mohammad Shahriari1∗ and Reza Akbari2

Abstract. In this paper, we provide a different uniqueness re-
sults for inverse spectral problems of conformable fractional Sturm-
Liouville operators of order α (0 < α ≤ 1), with a jump and eigen-
parameter dependent boundary conditions. Further, we study the
asymptotic form of solutions, eigenvalues and the corresponding
eigenfunctions of the problem. Also, we consider three terms of
the inverse problem, from the Weyl function, the spectral data and
two spectra. Moreover, we can also extend Hald’s theorem to the
problem.

1. Introduction

In 2014, Khalil et al. in [5] defined a new well-behaved (local) simple
fractional derivative called ‘‘the conformable fractional derivative(CFD)
depending just on the basic limit definition of the derivative. Unlike
other definitions of fractional derivative such as Riemann-Liouville, Ca-
puto, etc., this definition enables us to prove many properties similar to
derivatives of integer order. For more information about the CFD, refer
to [1, 2].
However, the CFD has it’s drawbacks. It’s derivative has some disad-
vantages and some unusual properties, e.g., the zeroth derivative of a
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function does not return the function. Fractional Sturm-Liouville prob-
lems (FSLPs) have attracted much attention as an important branch of
fractional derivative research, [3, 6–8, 16].

In our opinion, the most important useful property of the conformable
derivative is the possibility of defining the inner product in integral
form. This capability makes the Sturm-Liouville problem (SLP) well
investigated in different situations. In [10] the authors investigated the
existence of infinity of real eigenvalues of conformable fractional Sturm-
Liouville problem (CFSLP). So that the eigenvalues of CFSLP are simple
and the corresponding eigenfunctions are orthogonal.

Furthermore, in [11] the authors proved the uniqueness theorems of
CFSLP for solving the inverse problem with respect to the Weyl func-
tion, two spectra and spectral data. Also, they proved the Hochstadt-
Lieberman theorem.

Motivated by the above discussion, this study aims to propose how
to handle a discontinuous conditions and apply the asymptotic formulas
to prove several uniqueness results. In this study, we introduce a Weyl
function m that uniquely determines the parameters of the problem. We
also show that this Weyl function is a meromorphic Herglotz–Nevanlinna
function uniquely determined by its poles and residues as well as by its
poles and zeros. Moreover, we generalize the Hochstadt–Liebermann
type result to the present situation. For related result in the SLP, FSLP,
CFSLP, PDSLP we refer to [12–15, 17–23].

2. Preliminaries

In this section, we will present some necessary definitions and proper-
ties related to conformable fractional calculus theory which can be found
in [1, 5].

Definition 2.1. For the function h : [0,∞) → R and α ∈ (0, 1], the
CFD is defined by:
(2.1)

Dαh(τ) = lim
δ→0

h
(
τ + δτ1−α

)
− h(τ)

δ
, Dαh(0) = lim

τ→0+
Dαh(τ),

for all τ > 0. If h is differentiable, then

(2.2) Dαf(τ) = τ1−αh′(τ),

where h′(τ) = limδ→0[h(τ + δ)− h(τ)]/δ. If Dαh(τ0) exists and is finite,
we say that h is α-differentiable at τ0.

Theorem 2.2. If a function h : [0,∞) → R is conformable fractional
(CF) differentiable at τ0 > 0, then h is continuous at x0.
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Definition 2.3. For the function h : [0,∞) → R and α ∈ (0, 1], the CF
integral is defined by:

(2.3) Jαh(τ) =

∫ τ

0
h(t)dαt =

∫ τ

0
tα−1h(t)dt.

So that the above integral is the Riemann improper integral.

Theorem 2.4. For the α-differentiable functions g and h, the following
formulas hold

(i) Dα(ηg + κh) = ηDαg + κDαh, ∀η, κ ∈ R.
(ii) Dα(τp) = pτp−α, ∀p ∈ R.
(iii) Dα(k) = 0, ∀k constant.
(iv) Dα(gh) = hDα(g) + gDα(h).
(v) Dα(g/h) =

hDα(g)− gDα(h)

h2
, for h ̸= 0.

(vi) For the continuous function h : [0,∞) → R, we get DαJαh(τ) =
h(τ), for all τ > a.

(vii) For the differentiable function h : [0,∞) → R, we have
JαD

αh(τ) = h(τ)− h(a), for all τ > a.

3. Main Problem and Spectral Properties

Let us consider the following boundary value problem
(3.1) ℓαy := −DαDαy + q(x)y = λy

with the eigen-parameter dependent conditions
L1(y) := λy(0)− hDαy(0) = 0,(3.2)
L2(y) := λy(π) +HDαy(π) = 0

and the jump conditions
D1(y) := y(p+ 0)− ay(p− 0) = 0,(3.3)
D2(y) := Dαy(p+ 0)− bDαy(p− 0)− cy(p− 0) = 0,

where q(x) is real-valued function in L1
α[0, π]. We also assume that h,

H, a, b, c and p are real numbers, satisfying ab > 0. For the reader’s
convenience, we use the notation Lα = Lα(q(x);h;H; p), for the problem
(3.1)–(3.3).

To obtain a self-adjoint operators, we define the weighted inner prod-
ucts as follows

⟨F,G⟩H :=

∫ π

0
fgwdαx+

w(0)

h
f1g1 +

w(π)

H
f2g2,(3.4)

F =

f(x)
f1
f2

 , G =

g(x)
g1
g2

 ,
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where the weight function is

(3.5) w(x) =

{
1, 0 ≤ x < p,
1
ab , p < x < π.

In order to obtain a new self-adjoint eigenvalue problem using Hilbert
space H := L2

α((0, π);w)⊕ C2 with the following operator

Aα : H → H.

Next we introduce
R1(y) := y(0), R′

1(y) := hDαy(0),

R2(y) := y(π), R′
2(y) := HDαy(π).

In this space we construct with domain

dom (Aα)

=

F =

f(x)
f1
f2

∣∣∣∣∣∣ f,Dαf ∈ AC ([0, p) ∪ (p, π]) , ℓf ∈ L(0, π)
f1 = R1(f), f2 = R2(f), D1(f) = D2(f) = 0,


by

AαF =

 ℓf
R′

1(f)
−R′

2(f)

 with F =

 f(x)
R1(f)
R2(f)

 ∈ dom (Aα) .

By construction the eigenvalue problem of the form

AαY = λY, Y :=

 y(x)
R1(y)
R2(y)

 ∈ dom (Aα) ,

it is easy to see that, this problem is equivalent to the eigenvalue problem
(3.1)–(3.3).

Throughout the paper, using AC ([0, p) ∪ (p, π]) represents the set of
all functions whose restriction to [0, p) or (p, π] is absolutely continu-
ous. From the linear differential equations, we obtain that the modified
fractional Wronskian

(3.6) Wα(f, g) = w(x) (f(x)Dαg(x)−Dαf(x)g(x))

is constant on x ∈ [0, p) ∪ (p, π] for two solutions ℓαf = λf , ℓαg = λg
satisfying the transmission conditions (3.3).

Lemma 3.1. If 0 < α ≤ 1, then the PDCFSL operator Aα is self-adjoint
on L2

α((0, π);w)⊕ C2.
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Proof. After using α-integration by parts twice, we arrive at the follow-
ing expression:
(3.7) ⟨AαF,G⟩ = Wα (f, g)

∣∣
π
−Wα (f, g)

∣∣
0
+ ⟨F,AαG⟩ .

So, from Eqs (3.2) and (3.3) we have:
Wα (f, g)

∣∣
π
−Wα (f, g)

∣∣
0
= 0

Then Aα is self-adjoint operator on L2
α((0, π);w)⊕ C2. □

Especially, the eigenvalues of Aα and consequently Lα are real and
simple. Further, for each function f ∈ dom (Aα) we will denote by fj ,
(j = 1, 2), the restriction of f to the subinterval (pj−1, pj), (p0 = 0 p2 =
π). Moreover, we will set f2(p) = f(p+0) and f1(p) = f(p−0). Assume
that u(x, λ) and v(x, λ) are solutions of (3.1) with

u(0, λ) = h, Dαu(0, λ) = λ,(3.8)
and

v(π, λ) = −H, Dαv(π, λ) = λ,(3.9)

and the transmission conditions (3.3), respectively. Note that the equa-
tion (3.1) with initial conditions (3.8) or (3.9) has a unique solution.
These solutions are the entire function in λ ∈ C for x ∈ [0, d) ∪ (d, π].
Similarly, we can write

∆(λ) := Wα(u(λ), v(λ))(3.10)
= L1(v(λ))

= −w(π)L2(u(λ)).

The function ∆(λ) is called the characteristic function. All roots λn of
∆(λ) are the eigenvalues of Lα. Furthermore, u(x, λn) and v(x, λn) are
the eigenfunctions of λn, satisfy the relation v(x, λn) = βnu(x, λn), from
(3.8),

(3.11) βn =
v(0, λn)

h
.

Also, define
γn := ∥u(x, λn)∥2H.

Thus it can be verified that:

Lemma 3.2. The eigenvalues of Lα, λn, are real and simple. The
derivative of ∆(λ) in λn has the following form

(3.12) ∆̇(λn) = −γnβn,

where ∆̇(λ) = d
dλ∆(λ).
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In the sequel, we consider a simple unitary transformation for our
eigenvalue problem, then it can be seen that:

Remark 3.3. Without losing of generality of the problem (3.1)–(3.3),
by [21, Lemma 2.3], we can get ab = 1.

4. Asymptotic Formulas for Eigendata

In this section, we study the asymptotic forms of solutions and eigen-
values. For these aims, we prove some lemmas and theorems as follows.

Theorem 4.1. Let λ = ρ2 and τ := |Imρ|. The asymptotic forms of
solutions and the characteristic function for PDCFSLP (3.1)– (3.3) as
|λ| → ∞, are established as follows:

u(x, λ)

(4.1)

=


ρ2 cos

( ρ
αx

α
)
+ ρ

[
q1(x) sin

( ρ
αx

α
)

+1
2

∫ x
0 q(t) sin

( ρ
α (xα − 2tα)

)
dαt

]
+O

(
exp

(
τ
αx

α
))

, 0 ≤ x < p,

ρ2
[
b1 cos

( ρ
αx

α
)
+ b2 cos

( ρ
α(2p

α − xα)
)]

+ ρ
[
f1(x) sin

( ρ
αx

α
)

+f2(x) sin
( ρ
α(2p

α − xα)
)]

+O
(
exp

(
τ
αx

α
))

, p ≤ x < π,

Dα
xu(x, λ)

(4.2)

=


−ρ3 sin

( ρ
αx

α
)
+ ρ2

[
q1(x) cos

( ρ
αx

α
)

+1
2

∫ x
0 q(t) cos

( ρ
α (xα − 2tα)

)
dαt

]
+O

(
ρ exp

(
τ
αx

α
))

, 0 ≤ x < p,

ρ3
[
−b1 sin

( ρ
αx

α
)
+ b2 sin

( ρ
α(2d

α − xα)
)]

+ ρ2
[
f1(x) cos

( ρ
αx

α
)

−f2(x) cos
( ρ
α(2p

α − xα)
)]

+O
(
ρ exp

(
τ
αx

α
))

, d ≤ x < π,

where

b1 =
a+ b

2
, b2 =

a− b

2
, q1(x) =

1

2

∫ x

0
q(t)dαt− h,

f1(x) = b1

(
1

2

∫ x

0
q(t)dαt− h

)
+

c

2
,

f2(x) = b2

(
−1

2

∫ x

0
q(t)dαt+

∫ p

0
q(t)dαt− h

)
− c

2
.
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The characteristic function satisfies

∆(λ) =w(π)

[
ρ4

(
b1 cos

( ρ

α
πα

)
+ b2 cos

( ρ

α
(2pα − πα)

))(4.3)

+ ρ3
[
−w1 sin

( ρ

α
πα

)
+ w2 sin

( ρ

α
(2dα − πα)

)]
+ o

(
exp

( τ

α
πα

))]
.

where

w1 = b1

(
H − h+

1

2

∫ π

0
q(t)dαt

)
+

c

2
,(4.4)

w2 = b2

(
H − h− 1

2

∫ π

0
q(t)dαt+

∫ p

0
q(t)dαt

)
− c

2
.

Proof. Suppose that C1(x, λ) and S1(x, λ) are solutions (3.1) and jump
conditions (3.3) with initial conditions:

S1(0, λ) = 0, DαS1(0, λ) = 1,

and
C1(0, λ) = 1, DαC1(0, λ) = 0.

Using the jump conditions (3.3), we get

S2(x, λ) = A1C1(x, λ) +B1S1(x, λ),(4.5)
C2(x, λ) = A2C1(x, λ) +B2S1(x, λ),

where

A1 = (a− b)S1(p, λ)D
αS1(p, λ)− cS2

1(p, λ),

(4.6)

B1 = bC1(p, λ)D
αS1(p, λ)− aS1(p, λ)D

αC1(p, λ) + cS1(p, λ)C1(p, λ),

A2 = aC1(p, λ)D
αS1(p, λ)− bS1(p, λ)D

αC1(p, λ)− cS1(p, λ)C1(p, λ),

B2 = (a− b)C1(p, λ)D
αC1(p, λ) + cC2

1 (p, λ).

It was shown in [10] that the function C1(x, λ) is the unique solution of
the integral equation

(4.7) C1(x, λ) = cos
( ρ

α
xα

)
+

∫ x

0

sin
( ρ
α(x

α − tα)
)

ρ
q(t)C1(t, λ)dαt

and for |ρ| → ∞, we have

C1(x, λ) = cos
( ρ

α
xα

)
+O

(
1

ρ
exp

τ

α
xα

)
.
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From (4.7) we calculate

C1(x, λ) = cos
( ρ

α
xα

)
+

sin
( ρ
αx

α
)

2ρ

∫ x

0
q(t)dαt

(4.8)

+
1

2ρ

∫ x

0
sin

( ρ

α
(xα − 2tα)

)
q(t)dαt+O

(
1

ρ2
exp

τ

α
xα

)
,

that 0 ≤ x < p and

DαC1(x, λ) = −ρ sin
( ρ

α
xα

)
+

cos
( ρ
αx

α
)

2

∫ x

0
q(t)dαt

(4.9)

+
1

2

∫ x

0
cos

( ρ

α
(xα − 2tα)

)
q(t)dαt+O

(
1

ρ
exp

τ

α
xα

)
,

that 0 ≤ x < p. Analogously,

S1(x, λ) =
1

ρ
sin

( ρ

α
xα

)
−

cos
( ρ
αx

α
)

2ρ2

∫ x

0
q(t)dαt

(4.10)

+
1

2ρ2

∫ x

0
cos

( ρ

α
(xα − 2tα)

)
q(t)dαt+O

(
1

ρ3
exp

τ

α
xα

)
,

that 0 ≤ x < p and

DαS1(x, λ) = cos
( ρ

α
xα

)
+

sin
( ρ
αx

α
)

2ρ

∫ x

0
q(t)dαt

(4.11)

− 1

2ρ

∫ x

0
sin

( ρ

α
(xα − 2tα)

)
q(t)dαt+O

(
1

ρ2
exp

τ

α
xα

)
,

that 0 ≤ x < p.
By virtue of (4.6) and (4.7)–(4.11)

A1 =
b2
ρ
sin

(
2ρ

α
pα

)
+O

(
1

ρ2
exp

τ

α
pα

)
,(4.12)

B1 = b1 + b2 cos

(
2ρ

α
pα

)
+O

(
1

ρ
exp

τ

α
pα

)
,

A2 = b1 + b2 cos

(
2ρ

α
pα

)
+

sin
(
2ρ
α pα

)
ρ

(
b2

∫ p

0
q(t)dαt−

c

2

)
+O

(
1

ρ2
exp

τ

α
pα

)
,

B2 = b2

(
ρ sin

(
2ρ

α
pα

)
− cos

(
2ρ

α
pα

)∫ p

0
q(t)dαt
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−
∫ p

0
cos

(
2ρ

α
(pα − tα)

)
q(t)dαt

)
+

c

2

(
1 + cos

(
2ρ

α
pα

))
+O

(
1

ρ
exp

τ

α
pα

)
.

Using (4.7)–(4.12), we get the asymptotic forms of C(x, λ), S(x, λ),
DαC(x, λ) and DαS(x, λ). Clearly, u(x;λ) = λC(x;λ) − hDαS(x;λ).
So, using (4.7)–(4.12), we calculate (4.1)-(4.2). Using (3.10), we obtain
the characteristic function (4.3). □

As a direct consequence of Theorem 4.1, we get

|u(x, λ)| = O

(
|ρ|2 exp

(
τ

α
xα

))
,

|Dαu(x, λ)| = O

(
|ρ|3 exp

(
τ

α
xα

))
, 0 ≤ x ≤ π

By changing x to π − x in Eqs. (3.1) and using the jump conditions
(3.3), asymptotic formulas of v(x, λ) and Dαv(x, λ) can be obtained.
Specially,

|v(x, λ)| = O

(
|ρ|2 exp

(
τ

α
(π − x)α

))
,(4.13)

|Dαv(x, λ)| = O

(
|ρ|3 exp

(
τ

α
(π − x)α

))
, 0 ≤ x ≤ π.

One can see that from Valiron’s theorem ([9, Thm. 13.4]), [10] and
the above calculations, we obtain:

Theorem 4.2. The eigenvalues λn = ρ2n of the PDCFSLP (3.1)–(3.3)
satisfy
(4.14) ρn = απ1−αn+O(1)

as n → ∞.

Lemma 4.3. The specification of the spectrum {λn}, n ≥ 0, are uniquely
determined by the characteristic function ∆(λ) by the formulaes

(4.15) ∆(λ) = C

∞∏
n=1

λn − λ

λ◦
n

,

where C = −λ0Ω
∏∞

n=1
λn
λ◦
n

.

Proof. By Hadamard’s factorization theorem [4, P. 289], ∆(λ) is uniquely
determined up to a multiplicative constant by its zeros:

(4.16) ∆(λ) =
C(λ− λ0)

2

λ2
0

∞∏
n=1

(
1− λ

λn

)
.
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(when ∆(0) = 0 needs minor modifications). Define

(4.17) ∆◦(λ) = ρ4w(π)
(
b1 cos

( ρ

α
πα

)
+ b2 cos

( ρ

α
(2dα − πα)

))
Let λn = ρ2n and λ◦

n = (ρ◦n)
2 be zeros of the functions (4.3) and (4.17)

respectively, then
ρn = ρ◦n + o(1), n → ∞.

Using the Hadamard’s factorization [9, Sec. 4.2] for the function ∆◦(λ)
defined in (4.17), we obtain the infinite product

∆◦(λ) = Ωλ2
∞∏
n=1

(
1− λ

λ◦
n

)
, Ω = aw(π).

Then
∆(λ)

∆◦(λ)
=

C(λ0 − λ)2

Ωλ2
0λ

2

∞∏
n=1

λ◦
n

λn

∞∏
n=1

(
1 +

λn − λ◦
n

λ◦
n − λ

)
.

Taking (4.3) into account, we calculate

lim
λ→−∞

∆(λ)

∆◦(λ)
= 1, lim

λ→−∞

∞∏
n=1

(
1 +

λn − λ◦
n

λ◦
n − λ

)
= 1

and hence

C = λ2
0Ω

∞∏
n=1

λn

λ◦
n

.

Substituting this into (4.16), we arrive at (4.15). □
Example 4.4. Consider the following PDCSLP with q(x) = 0 and
h = H = 1 with one jump point p = π

4

−DαDαy = λy(4.18)
λy(0)−Dαy(0) = 0,

λy(π) +Dαy(π) = 0,

y
(π
4
+ 0

)
− 2y

(π
4
− 0

)
= 0,

Dαy
(π
4
+ 0

)
− 1

2
Dαy

(π
4
− 0

)
= 0.

The characteristic function and eigenfunctions are

∆(λ) =ρ4
[
5

4
cos

( ρ

α
πα

)
+

3

4
cos

( ρ

α

(
πα − 2

(π
4

)α))]
+ ρ3

[
−5

4
sin

( ρ

α
πα

)
− 3

4
sin

( ρ

α

(
πα − 2

(π
4

)α))]
+ ρ2

[
5

4
cos

( ρ

α
πα

)
− 3

4
cos

( ρ

α

(
πα − 2

(π
4

)α))]
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+ ρ

[
−5

4
sin

( ρ

α
πα

)
+

3

4
sin

( ρ

α

(
πα − 2

(π
4

)α))]

un,α(x) =


ρ2n cos

(ρn
α xα

)
− ρn sin

(ρn
α xα

)
, 0 ≤ x < π

4 ,

ρ2n
[
5
4 cos

(ρn
α xα

)
+ 3

4 cos
(ρn

α

(
xα − 2

(
π
4

)α))]
−ρn

[
5
4 sin

(ρn
α xα

)
− 3

4 sin
(ρn

α

(
xα − 2

(
π
4

)α))]
, π

4 ≤ x ≤ π.

The eigenvalues and eigenfunctions are presented in Table 1 and Figure
1. We use the fzero function in MATLAB R2015a to compute the
zeros ρn,α of the function ∆(λ).

Table 1. Eigenvalues and asymptotic results for Example 4.4.

ρn,α ζn,α

n α = 0.7 α = 0.8 α = 0.9 α = 0.99 α = 0.7 α = 0.8 α = 0.9 α = 0.99

2 1.2747 1.3266 1.3520 1.3501 0.646 0.657 0.670 0.674
3 2.2651 2.2556 2.2608 2.2801 0.765 0.745 0.747 0.759
4 3.5339 3.5366 3.4232 3.3073 0.895 0.876 0.848 0.826
5 4.2004 4.5073 4.6585 4.5392 0.851 0.893 0.923 0.907

10 9.2301 9.6384 9.3520 9.6268 0.935 0.955 0.926 0.961
15 14.3062 14.3736 14.753 14.2997 0.966 0.965 0.974 0.952
20 19.3728 19.7019 19.5224 19.4549 0.973 0.976 0.967 0.971
25 24.3658 24.7062 24.7421 24.6936 0.981 0.979 0.981 0.986
30 29.2630 29.4561 29.8097 29.5722 0.985 0.983 0.984 0.988
35 34.1072 34.8532 34.7168 34.3422 0.987 0.986 0.982 0.985
40 38.9354 39.7493 40.0483 39.5571 0.986 0.984 0.988 0.988

We compared the eigenvalues with first term of asymptotic form (4.14)
as ζn,α = ρn

nαπ1−α . The eigenvalue and ratio ζn are presented in Tables 1.
According to asymptotic form (4.14), the values of ζn,α must be tend to
one, that hold for results of ζn,α in Tables 1. The first four eigenfunctions
for different values of α are plotted in Figures 1. It is well known that,
the nth eigenfunction of eigen-parameter SLP defined on [0, π], has n
zero in interval (0, π). The graphs in Figures 1 indicate that this result
hold also for PDCSLP with jump conditions.

5. Uniqueness Results

The main goal of this section is to study the inverse problem of the
reconstruction of a boundary value problem Lα from its spectral char-
acteristics. Moreover, we have used the three statements of the inverse
problem of the reconstruction of the boundary value problem Lα : from
the Weyl function, from the spectral data {λn, γn}n≥0 and from two
spectra {λn, µn}n≥0.
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Figure 1. Eigenfunctions of Example 4.4 for different values
of n and α.

Define the Weyl m-function by

m(λ) = − R1(v)

h∆(λ)
(5.1)

= −v(0, λ)

∆(λ)
.

From (3.8) and (4.13), we can get the asymptotic expansion

(5.2) m(λ) =
1√
−λ

+O(λ−1)

along any ray except the positive real axis.
For this purpose, first we consider χ(x, λ) be a solution of (3.1) from

the initial conditions

χ(0, λ) = 0, Dαχ(0, λ) =
1

h
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and the jump conditions (3.3). It’s obvious that Wα(u, χ) = 1 ̸= 0 and
the function v(x, λ) we obtain

θ(x, λ) :=
v(x, λ)

∆(λ)
(5.3)

= χ(x, λ)−m(λ)u(x, λ).

The functions θ(x, λ) and m(λ) are called the Weyl solution and the
Weyl function, respectively for the boundary value problem Lα. Clearly
(5.4) Wα(u(x, λ), θ(x, λ)) = 1.

Lemma 5.1. The Weyl function m(λ) is a meromorphic, Herglotz–
Nevanlinna function,

(5.5) Im(m(λ)) = Im(λ)∥Θ(λ)∥2H, Θ(x, λ) =

 θ(x)
−R1(θ)
R2(θ)


and can be represented as

(5.6) m(λ) =

∞∑
n=0

γn
λn − λ

,

where

(5.7)
∞∑
n=0

γn =
1

h
.

Proof. The first relation follows after a straightforward calculation using

Im
(
θ(π, λ)Dαθ(π, λ)

)
− Im

(
θ(0, λ)Dαθ(0, λ)

)
= Im(λ)

∫ π

0
|θ(x, λ)|2w(x)dαx.

Hence m(z) is a Herglotz–Nevanlinna function (i.e. it maps the upper
half plane to the upper half plane) and by the asymptotic (5.2) it has a
representation of the form ([24, Lem. 9.20])

m(λ) =

∫
R

dρ(t)

λn − t
,

where ρ is a Borel measure satisfying∫
R

dρ(t)

1 + |λ|γ
, ∀γ >

1

2
.

Since by (5.1) the Weyl function is meromorphic it follows that ρ is a
pure point measure supported at the poles with masses given by the
negative residues. Hence the result follows from Lemma 3.2. □
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Now, we are ready to prove our main uniqueness theorem for the
solutions of the problems (3.1)–(3.3). For this purpose, we agree that
together with Lα we consider a boundary value problem L̃α of the same
form but with different coefficients q̃(x), h̃, H̃, ã, b̃, c̃, d̃. If a certain sym-
bol η denotes an object related to Lα, then η̃ will denote the analogous
object related to L̃α.

Theorem 5.2. If m(λ) = m̃(λ) and w(x) = w̃(x) then Lα = L̃α.
Thus the specification of the Weyl function and the weight function w(x)
uniquely determines the operator.

Proof. It follows from (4.13) and (5.3) that
(5.8)

|θ(x, λ)| ≤ C|ρ|−1 exp

(
−τ

α
xα

)
, |Dαθ(x, λ)| ≤ C exp

(
−τ

α
xα

)
,

as λ → ∞ along any ray except the positive real axis. Define the matrix
P (x, λ) = [Pjk(x, λ)]j,k=1,2 by the formula

P (x, λ)

(
ũ(x, λ) θ̃(x, λ)

Dαũ(x, λ) Dαθ̃(x, λ)

)
=

(
u(x, λ) θ(x, λ)

Dαu(x, λ) Dαθ(x, λ)

)
.

Taking (5.4) into account, we calculate
(5.9)(

P11(x, λ) P12(x, λ)
P21(x, λ) P22(x, λ)

)
=

(
uDαθ̃ −Dαũθ ũθ − uθ̃

DαuDαθ̃ −DαũDαθ ũDαθ −Dαuθ̃

)
and

(5.10)
(
u(x, λ)
θ(x, λ)

)
=

(
P11(x, λ)ũ(x, λ) + P12(x, λ)D

αũ(x, λ)

P11(x, λ)θ̃(x, λ) + P12(x, λ)D
αθ̃(x, λ)

)
.

It is easy to see that the functions Pjk(x, λ), j, k = 1, 2 are meromorphic
in λ with simple poles in the points λn and λ̃n. Moreover, if m(λ) = m̃(λ)
then from (5.3) and (5.9), P11(x, λ) and P12(x, λ) are entire functions of
growth order 1/2 in λ. From (5.8)

(5.11) |P11(x, λ)| ≤ C, |P12(x, λ)| ≤
C

|ρ|
along any ray except the positive real axis. Moreover, by our hypothe-
sis this function has an order of growth s and thus we can apply the
Phragmén–Lindelöf theorem (e.g., [9, Sect. 6.1]) the two half-planes
bounded by the imaginary axis. This shows that the functions P11

and P12 are bounded on all of C and thus constant by Liouville’s the-
orem. Since P12 vanishes along a ray it must be zero and we obtain
P11(x, λ) = A(x) and P12(x, λ) = 0. Using (5.10), we get
(5.12) u(x, λ) = A(x)ũ(x, λ), θ(x, λ) = A(x)θ̃(x, λ).
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It follows from (3.10), Wα(u(x, λ), θ(x, λ)) = Wα(ũ(x, λ), θ̃(x, λ)) = 1

and so we deduce A(x) = w̃(x)
w(x) = 1, that is, u(x, λ) = ũ(x, λ), θ(x, λ) =

θ̃(x, λ) and v(x, λ) = ṽ(x, λ). Therefore from (3.1), (3.3), (3.10) and
(3.9) we get q(x) = q̃(x), a.e. on [0, π] and a = ã, b = b̃, c = c̃, d = d̃,
h = h̃ and H = H̃. Consequently Lα = L̃α. □

Note that this theorem is optimal in the sense that the weight function
cannot be determined from m(λ) since a unitary transformation as in
Lemma 3.3 can be used to change the weight without changing m(λ).
Note that the condition w(x) = w̃(x) will be hold if we have for example
ab = ãb̃ = 1 and d = d̃.

By virtue of Lemma 5.1 we also get:

Corollary 5.3. If λn = λ̃n and γn = γ̃n, for n = 0, 1, 2, ... and w(x) =

w̃(x) then Lα = L̃α.

Finally, let us consider the boundary value problem Lk
α which is the

problem where the boundary condition L1(y) is replaced by

L′
1(y) =

{
λy(0)− kDαy(0) = 0, k ∈ R,
Dαy(0) = 0, k = ∞.

Let {µn}n≥0 be the eigenvalues of the problem Lk
α.

Corollary 5.4. Suppose k ̸= h. If λn = λ̃n and µn = µ̃n for n =
0, 1, 2, . . . and w(x) = w̃(x), then Lα = L̃α.

Proof. We begin with the case k = ∞. The numbers λn, µn are the poles
and zeros of m(λ) and hence determine it uniquely up to a constant
by Krein’s theorem [9, Thm. 27.2.1]. This unknown constant can be
determined from (5.2). The case k ̸= h follows in the same manner
using m(λ) + (k − h)−1. □

Finally, we are also able to extend Hald’s theorem to the case of CF
Sturm-Liouville problems with transmission conditions.

Theorem 5.5. If λn = λ̃n, w(x) = w̃(x), L1 = L̃1, q(x) = q̃(x) for a.e.
x < π

2 and U = Ũ , V = Ṽ for the case d < π
2 , then Lα = L̃α.

Proof. It follows from Hadamard’s factorization theorem Wα(ũ, ṽ) =
KWα(u, v) for some constant K which can be determined from Lemma
4.3 and the asymptotic as λ → ∞:

K =

{
1, d < π/2;
b̃1
b1
, d ≥ π/2.
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Furthermore, our assumptions imply

ṽ(x, λ) = K v(x, λ) + F (λ)u(x, λ), x <
π

2
,

for some entire function F (λ) of growth order at most 1
2 . Solving for F

and taking the limit x ↑ π
2 we obtain

F (λ) =
ṽ(π2−, λ)−Kv(π2−, λ)

u(π2−, λ)

= K
v(π2−, λ)

u(π2−, λ)

(
ṽ(π2−, λ)

Kv(π2−, λ)
− 1

)
.

Now, using the asymptotic form of the expression in parenthesis, we
see that this vanishes for every ray different from the positive real axis.
Furthermore, applying the asymptotic (4.1) for u and the analogous
result for v, ṽ in the first part of F (λ) this is bounded in every ray
different from the positive real axis. Using Phragmén–Lindelöf theorem
we conclude that this function must be identical to zero. From S̃(x, λ) =
S(x, λ), ũ(x, λ) = u(x, λ) and ṽ(x, λ) = Kv(x, λ) for x < π

2 , applying
Eq. (5.3), we conclude that M(λ) = M̃(λ) and the result obtain using
Theorem 5.2. □
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