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Asymptotically Almost Periodic Generalized
Ultradistributions and Application

Meryem Slimani1∗ and Fethia Ouikene2,3

Abstract. The paper aims to introduce and study an algebra of
asymptotically almost periodic generalized ultradistributions. These
generalized ultradistributions contain asymptotically almost peri-
odic ultradistributions and asymptotically almost periodic general-
ized functions. The definition and main properties of these gener-
alized ultradistributions are studied. An application to difference
differential systems is given.

1. Introduction

Almost periodic functions were introduced by H. Bohr; see [4]. M.
Fréchet introduced and studied asymptotically almost periodic functions
in [18] as a perturbation of almost periodic functions by functions van-
ishing at infinity. The concept of almost periodicity in the distributions
setting is due to L. Schwartz, see [23]. Asymptotically almost periodic
distributions were introduced and studied in [14]. The papers [15] and
[19] deal with almost periodic ultradistributions, while asymptotically
almost periodic ultradistributions are considered in [21]. It is well known
that the space of ultradistributions is strictly more significant than that
of distributions.

An algebra of generalized functions has been introduced in [16] in con-
nection with the problem of multiplication of distributions. The concept
of almost periodicity and asymptotic almost periodicity in the setting
of algebras of generalized functions were introduced and studied in the
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2 M. SLIMANI AND F. OUIKENE

works of C. Bouzar and col., see [5], [6], [7] and [8]. These algebras of al-
most periodic and asymptotically almost periodic generalized functions
contain respectively their classical analogue of almost periodic functions
and distributions and asymptotically almost periodic functions and dis-
tributions. In the same way, an algebra of generalized ultradistributions
containing classical ultradistributions has been introduced in [1] and [2].
Almost periodicity in the framework of the algebra of generalized ultra-
distributions is tackled in the paper [9], while an application to linear
ordinary differential equations is given in [10].

This work aims is to introduce and study an algebra of asymptotically
almost periodic generalized ultradistributions containing asymptotically
almost periodic ultradistributions and asymptotically almost periodic
generalized functions. First, we introduce the algebra of asymptotically
almost periodic generalized ultradistributions, denoted by GM

aap, then,
we study their main properties. We prove a fundamental result on the
uniqueness of the decomposition of an asymptotically almost periodic
generalized ultradistribution as in the classical case of functions, dis-
tributions and ultradistributions. To do this, generalise of the Seeley
theorem of [24] in the context of generalized ultradistributions. An ap-
plication to linear difference differential equations in the framework of
the algebra GM

aap is given. Our results generalize the result given in [8].
The paper is organized as follows: Section two recalls some prelim-

inary results needed in the sequel. We introduce in section three an
algebra of asymptotically almost periodic generalized ultradistributions
and also we investigate some of their main properties. Section four is
devoted to an extension result in the context of bounded generalized ul-
tradistributions needed to prove of the uniqueness of the decomposition
of an asymptotically almost periodic generalized ultradistribution. In
section five, we show that an asymptotically almost periodic generalized
ultradistribution is uniquely decomposed as in the classical case of func-
tions, distributions and ultradistributions. Section six deals with a non-
linear operation on asymptotically almost periodic generalized ultradis-
tribution. The last section studies of asymptotically almost periodic
generalized ultradistributional solutions of linear difference differential
systems.

2. Preliminaries

This section recalls some preliminary results needed in the sequel.
The space of continuous and bounded Complex-valued functions de-
fined and continuously on R, are denoted by Cb. It is well known that(
Cb, ‖·‖L∞(R)

)
is a Banach algebra. For the definition of almost periodic

functions and their properties, see [4] and [17] for more details.
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Definition 2.1. A complex valued function g defined and continuous
on R is said almost periodic if it satisfies one of the following equivalent
assertions

(i) ∀ε > 0, the set E {ε, g} :=
{
τ ∈ R : ‖g (·+ τ)− g (·)‖L∞(R) < ε

}
is relatively dense in R, i.e. ∃l (ε) > 0 such that any interval of
length l (ε) contains a τ ∈ E {ε, g} .

(ii) ∀ε > 0, there exists a trigonometric polynomial P such that
‖g − P‖L∞(R) < ε.

(iii) Any sequence (sm)m∈N ⊂ R admits a subsequence (smk
)k such

that the sequence of functions (g (·+ smk
))k is uniformly con-

vergent on R.
We denote by Cap the space of almost periodic functions.

The space of bounded functions vanishing at infinity, denoted C+,0, is
the set of all functions h ∈ Cb satisfying lim

x→+∞
h (x) = 0.

Asymptotically almost periodic functions are introduced and studied
by M. Fréchet in [18].
Definition 2.2. A function f ∈ Cb is said asymptotically almost pe-
riodic if there exist g ∈ Cap and h ∈ C+,0 such that f = g + h on
J := [0,+∞[ . The space of all asymptotically almost periodic functions
is denoted by Caap.

Proposition 2.3. The decomposition of an asymptotically almost peri-
odic function is unique on J.

Let E (I) be the algebra of space of smooth functions on I = R or J,
and define the space

DLp (I) :=
{
φ ∈ E(I) : ∀j ∈ Z+, φ

(j) ∈ Lp (I)
}
, p ∈ [1,+∞] ,

that we endow with the topology defined by the family of semi-norms

|φ|k,p,I :=
∑
j≤k

∥∥∥φ(j)
∥∥∥
Lp(I)

, k ∈ Z+.

So, DLp (I) is a Fréchet subalgebra of E (I) . Denote B (I) := DL∞ (I) .

Remark 2.4. We means by φ ∈ DLp (J) that lim
x→

>
0
φ(j)(x) exists ∀j ∈ Z+.

Definition 2.5. (i) The space of smooth almost periodic func-
tions, denoted by Bap, is the set of all functions φ ∈ E (R)
such that ∀j ∈ Z+, φ

(j) ∈ Cap.
(ii) The space of smooth asymptotically almost periodic functions,

denoted by Baap, is the set of all functions φ ∈ E (R) such that
∀j ∈ Z+, φ

(j) ∈ Caap.
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Remark 2.6. We endow Bap and Baap with the topology induced by
B := B (R) .

We give some properties of the space Baap, see [7].

Proposition 2.7. (i) The space Baap is a subalgebra of B stable
under translation and derivation.

(ii) Baap × Bap ⊂ Baap.
(iii) Baap ∗ L1 ⊂ Baap.

In order to introduce certain class of spaces, we need some definitions
and results from [20].

Let M = (Mk)k∈Z+
be a sequence of positive numbers, define the

following properties
Logarithmic convexity

(M.1) M2
k ≤Mk−1Mk+1, ∀k ∈ N.

Stability under ultradifferential operators
(M.2) Mk+l ≤ AHk+lMkMl, ∃A > 0, ∃H > 0, ∀k, l ∈ Z+.

Strong non quasi-analyticity

(M.3)

+∞∑
l=k+1

Ml−1

Ml
≤ Ak

Mk

Mk+1
, ∃A > 0, ∀k ∈ Z+.

Non quasi-analyticity

(M.3)′
+∞∑
k=0

Mk−1

Mk
<∞.

Definition 2.8. The associated function of the sequence M is defined
by

M (t) = sup
k∈Z+

ln
tkM0

Mk
, t > 0.

Example 2.9. If the sequence Mk is the Gevrey sequence (k!σ) , σ > 1,
then it satisfies (M.1) , (M.2) , (M.3) and it associated function M (t) is
equivalent to t 1

σ .

The next result shows that the conditions (M.1) and (M.2) can ex-
pressed in the term of the associated function, see Propositions 3.1 and
3.6 of [20].

Proposition 2.10. (i) The sequence M satisfies (M.1) if and only
if

Mk = sup
t>0

tkM0

eM(t)
, ∀k ∈ Z+.
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(ii) Let M satisfies (M.1) , then M satisfies (M.2) if and only if
2M (t) ≤M (Ht) + ln (AM0) , ∃A > 0, ∃H > 0, ∀t > 0.

As a consequence of Proposition 2.10-(ii), the following result was
obtained in Lemma 4.2 of [9].

Lemma 2.11. If M satisfies (M.2) then ∃A > 0, ∃H > 0, ∀t1, · · · , tn >
0, ∀n ∈ N,

M (t1) + · · ·+M (tn) ≤M
(
H

(n−1)(n+2)
2n max (t1, · · · , tn)

)
+ (n− 1) ln (AM0) .

Remark 2.12. Throughout the paper we assume that the sequence M
satisfying the conditions (M.1) , (M.2) and (M.3)′ .

We recall from [22] some needed spaces. Let p ∈ [1,+∞] , h > 0, the
space

DM,h
Lp :=

{
φ ∈ E(R) : ‖φ‖p,h,M := sup

j∈Z+

∥∥φ(j)
∥∥
Lp(R)

hjMj
<∞

}
,

endowed with the norm ‖·‖p,h,M is a Banach space.
The space of Lp−Beurling ultradifferentiable functions is

D(M)
Lp := proj lim

h→0
DM,h

Lp .

The space of Beurling ultradifferentiable functions

D(M) :=

{
φ ∈ E(R) : ∀K compact of R, ∀h > 0,

∃c > 0, ∀j ∈ Z+, sup
x∈K

∣∣φ(j) (x)
∣∣ ≤ chjMj

}

is dense in D(M)
Lp , p ∈ [1,+∞[ . The space Ḃ(M) is the closure of the

space D(M) in B(M) := D(M)
L∞ .

Definition 2.13. Let p ∈ ]1,+∞] , the space of Lp−Beurling ultradis-
tributions denoted by D′

Lp,(M) is the topological dual of D(M)
Lq , where

1
p + 1

q = 1. Denotes by D′
L1,(M) the topological dual of Ḃ(M). The ele-

ments of D′
L∞,(M) are said bounded ultradistributions.

3. Asymptotically Almost Periodic Generalized
Ultradistributions

In this section, we introduce an algebra of asymptotically almost peri-
odic generalized ultradistributions and also we investigate some of their
main properties.
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Let I := ]0, 1] and (uε)ε ∈ (DLp (I))I , p ∈ [1,+∞] , j ∈ Z+ and
k > 0, we mean by the notation∥∥∥u(j)ε

∥∥∥
Lp(I)

= O
(
eM( k

ε )
)
, ε→ 0,

that ∃c > 0, ∃ε0 > 0, ∀ε < ε0,∥∥∥u(j)ε

∥∥∥
Lp(I)

≤ ceM( k
ε ).

Definition 3.1. (i) The space of asymptotically almost periodic
moderate elements is denoted and defined by

MM
aap :=

 (uε)ε ∈ (Baap)
I : ∀j ∈ Z+, ∃k > 0,∥∥∥u(j)ε

∥∥∥
L∞(R)

= O
(
eM( k

ε )
)
, ε→ 0

 .

(ii) The space of asymptotically almost periodic null elements is
denoted and defined by

NM
aap :=

 (uε)ε ∈ (Baap)
I : ∀j ∈ Z+, ∀k > 0,∥∥∥u(j)ε

∥∥∥
L∞(R)

= O
(
e−M( k

ε )
)
, ε→ 0

 .

We give some properties of the spaces MM
aap and NM

aap.

Proposition 3.2. (i) We have the null characterization of NM
aap,

i.e.

NM
aap :=

{
(uε)ε ∈ MM

aap : ∀k > 0,

‖uε‖L∞(R) = O
(
e−M( k

ε )
)
, ε→ 0

}
.

(ii) The space MM
aap is an algebra stable under translation and

derivation.
(iii) The space NM

aap is an ideal of MM
aap.

Proof. (i) Let (uε)ε ∈ MM
aap, i.e. ∀j ∈ Z+, ∃kj > 0, ∃cj > 0, ∃εj ∈

I, ∀ε < εj ,

(3.1)
∥∥∥u(j)ε

∥∥∥
L∞(R)

≤ cje
M

(
kj
ε

)
,

and (uε)ε satisfies the null estimate of zero order, i.e. ∀k >
0, ∃c′ > 0, ∃ε′0 ∈ I, ∀ε < ε′0,

(3.2) ‖uε‖L∞(R) ≤ c′e−M( k
ε ).

In order to show that (uε)ε ∈ NM
aap, we use the Landau- Kol-

mogorov inequality which state that for any f ∈ Cn (R) , n ∈
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Z+, we have for every 1 ≤ p ≤ n,∥∥∥f (p)∥∥∥
L∞(R)

≤ 2π ‖f‖1−
p
n

L∞(R)

∥∥∥f (n)∥∥∥ p
n

L∞(R)
.

For every j ∈ Z+, by using the Landau-Kolmogorov inequality
for p = j and n = 2j, and due to the estimates (3.1), (3.2), we
obtain∥∥∥u(j)ε

∥∥∥
L∞(R)

≤ 2π ‖uε‖
1− 1

2

L∞(R)

∥∥∥u(2j)ε

∥∥∥ 1
2

L∞(R)

≤ 2π
(
c′e−M( k

ε )
) 1

2

(
c2je

M
(

k2j
ε

)) 1
2

≤ 2π
(
c′c2j

) 1
2 e

− 1
2
M( k

ε )+
1
2
M

(
k2j
ε

)
.

By Lemma 2.11, let k′ > 0 and taking k > 0 such that k
ε =

Hmax
(
k2j
ε ,

k′

ε

)
, then

e
−M( k

ε )+M
(

k2j
ε

)
≤ AM0e

−M
(

k′
ε

)
.

Consequently, ∀j ∈ Z+, ∀k′ > 0, ∃Cj =
(
2π (c′c2j)

1
2 AM0

)
>

0, ∀ε < min (εj , ε
′
0) ,∥∥∥u(j)ε

∥∥∥
L∞(R)

≤ Cje
−M

(
k′
ε

)
,

which means that (uε)ε ∈ NM
aap.

(ii) The stability under translation and derivation of the space MM
aap

is obvious. Let (uε)ε , (vε)ε ∈ MM
aap, i.e. they satisfy the esti-

mate (3.1), for any j ∈ Z+, we have∥∥∥(uεvε)(j)∥∥∥
L∞(R)

≤
∑
i+l=j

j!

i!l!

∥∥∥u(i)ε

∥∥∥
L∞(R)

∥∥∥v(l)ε

∥∥∥
L∞(R)

≤
∑
i+l=j

j!

i!l!
cicle

M
(

ki
ε

)
+M

(
kl
ε

)
,

due to Lemma 2.11, taking k > 0 such that k
ε = H max

i+l=j

(
ki
ε ,

kl
ε

)
,

then

e
M

(
ki
ε

)
+M

(
kl
ε

)
≤ AM0e

M( k
ε ).
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Hence, ∀j ∈ Z+, ∃k > 0, ∃Cj =

(
AM0

∑
i+l=j

j!
i!l!cicl

)
> 0, ∀ε <

min
i+l=j

(εi, εl) ,∥∥∥(uεvε)(j)∥∥∥
L∞(R)

≤ Cje
M( k

ε ),

which gives (uεvε)ε ∈ MM
aap.

(iii) Let (uε)ε ∈ MM
aap and (vε)ε ∈ NM

aap, i.e. (uε)ε satisfies the
estimate (3.1) and (vε)ε satisfies ∀j ∈ Z+, ∀k > 0, ∃cj >
0, ∃εj ∈ I, ∀ε < εj ,

(3.3)
∥∥∥v(j)ε

∥∥∥
L∞(R)

≤ cje
−M( k

ε ).

For every j ∈ Z+ and by (3.1) and (3.3),∥∥∥(uεvε)(j)∥∥∥
L∞(R)

≤
∑
i+l=j

j!

i!l!

∥∥∥u(i)ε

∥∥∥
L∞(R)

∥∥∥v(l)ε

∥∥∥
L∞(R)

≤
∑
i+l=j

j!

i!l!
cicle

M
(

ki
ε

)
e−M( k

ε ),

by Lemma 2.11, let k′ > 0 and taking k > 0 such that k
ε =

Hmax
(
ki
ε ,

k′

ε

)
, then

eM( ki
ε )e−M( k

ε ) ≤ AM0e
−M

(
k′
ε

)
.

Hence, ∀j ∈ Z+, ∀k′ > 0, ∃Cj =

(
AM0

∑
i+l=j

j!
i!l!cicl

)
>

0, ∀ε < min
i+l=j

(εi, εl) ,∥∥∥(uεvε)(j)∥∥∥
L∞(R)

≤ Cje
−M

(
k′
ε

)
,

so, (uεvε)ε ∈ NM
aap.

□
Now we give the definition of asymptotically almost periodic general-

ized ultradistributions.

Definition 3.3. The set of asymptotically almost periodic generalized
ultradistributions, is denoted and defined by the quotient

GM
aap :=

MM
aap

NM
aap

.

The next result follows from Proposition 3.2.
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Proposition 3.4. The set of asymptotically almost periodic generalized
ultradistributions is an algebra.

Example 3.5. We have Gaap ⊊ GM
aap, where Gaap is the algebra of asymp-

totically almost periodic generalized functions of [7] defined as the quo-
tient algebra

Gaap :=
Maap

Naap
,

where

Maap :=

 (uε)ε ∈ (Baap)
I : ∀j ∈ Z+, ∃k > 0,∥∥∥u(j)ε

∥∥∥
L∞(R)

= O
(
ε−k
)
, ε→ 0


and

Naap :=

 (uε)ε ∈ (Baap)
I : ∀j ∈ Z+, ∀k > 0,∥∥∥u(j)ε

∥∥∥
L∞(R)

= O
(
εk
)
, ε→ 0

 .

For more details on Gaap see [7].

Moreover, we have the following canonical embedding of Gaap into
GM
aap.

Proposition 3.6. The map
Iaap : Gaap −→ GM

aap

(uε)ε +Naap 7−→ (uε)ε +NM
aap

is a linear embedding.

Proof. It remains to prove Maap ⊂ MM
aap and Maap ∩NM

aap ⊂ Naap. Let
(uε)ε ∈ Maap, i.e. ∀j ∈ Z+, ∃kj > 0, ∃cj > 0, ∃εj ∈ I, ∀ε < εj ,

(3.4)
∥∥∥u(j)ε

∥∥∥
L∞(R)

≤ cjε
−kj .

Due to Proposition 2.10-(i),

Mn = sup
t>0

tnM0

eM(t)
, ∀n ∈ Z+,

hence, ∀n ∈ Z+, ∀k > 0, ∀ε > 0,

(3.5) eM( k
ε ) ≥ knM0

Mn
ε−n.

By (3.4) and (3.5), taking k′j = − [kj ]−1, then ∀j ∈ Z+, ∃kj > 0, ∃cj >
0, ∃εj ∈ I, ∀ε < εj ,∥∥∥u(j)ε

∥∥∥
L∞(R)

≤ cjε
−kj

≤ cjε
−[kj ]−1
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≤ cj
Mk′j

k
′k′j
j M0

e
M

(
k′j
ε

)
,

so, (uε)ε ∈ MM
aap. Thus, Maap ⊂ MM

aap. Let (uε)ε ∈ NM
aap, i.e. ∀j ∈

Z+, ∀k > 0, ∃cj > 0, ∃εj ∈ I, ∀ε < εj ,

(3.6)
∥∥∥u(j)ε

∥∥∥
L∞(R)

≤ cje
−M( k

ε ).

We have, ∀n ∈ Z+, ∀k > 0, ∀ε > 0,

εn ≥ knM0

Mn
e−M( k

ε ),

from (3.6), taking k′ = [k] , then ∀j ∈ Z+, ∀k > 0, ∃cj > 0, ∃εj ∈
I, ∀ε < εj , ∥∥∥u(j)ε

∥∥∥
L∞(R)

≤ cje
−M( k

ε )

≤ cje
−M

(
k′
ε

)

≤ cj
Mk′

k′k′M0
εk

′
,

so (uε)ε ∈ Naap. Thus, NM
aap ⊂ Naap. Moreover, Maap ∩ NM

aap ⊂ NM
aap ⊂

Naap. □
Now, we give other important examples of asymptotically almost pe-

riodic generalized ultradistributions.
Definition 3.7. Let T ∈ D′

L∞,(M) such that there exist an ultradif-
ferential operator P of class (M) , f ∈ Caap and g ∈ Caap such that
T = P (D) f + g. We denote by E′

aap,(M) the space of such ultradistri-
butions.

Let ρ ∈ D{N}
L1 := ind lim

h→+∞
DN,h

Lp and set ρε (·) = 1
ερ
( ·
ε

)
, ε > 0.

Proposition 3.8. Let M and N be two sequences satisfying (M.1) , (M.2)
and (M.3)′ , then the map

Jaap : E
′

aap,(MN) −→ GM
aap

T 7−→ (T ∗ ρε)ε +NM
aap

is a linear embedding.

Proof. Let T ∈ E
′

aap,(MN) then T = P (D) f + g, where P is an ultradif-
ferential operator of class (MN) , f ∈ Caap and g ∈ Caap. Due to Young
inequality, we have ∀j ∈ Z+, ∀x ∈ R,∣∣∣(T ∗ ρε)(j) (x)

∣∣∣ ≤ ∣∣∣f ∗ P (D) ρ(j)ε (x)
∣∣∣+ ∣∣∣g ∗ ρ(j)ε (x)

∣∣∣
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≤ ‖f‖L∞(R)

∑
i∈Z+

|ai|
1

εi+j

∫
R

∣∣∣ρ(i+j) (y)
∣∣∣ dy

+ ‖g‖L∞(R)
1

εj

∫
R

∣∣∣ρ(j) (y)∣∣∣ dy.
On the other hand, as ρ ∈ D{N}

L1 then ∃h > 0 such that ‖ρ‖1,h,N < ∞.

As P (D) =
∑

i∈Z+

aiD
i, is an ultradifferential operator of class (MN) , so

∃L > 0 and ∃c > 0 such that ∀i ∈ Z+, |ai| ≤ cLi (MiNi)
−1 . It follows

that ∥∥∥(T ∗ ρε)(j)
∥∥∥
L∞(R)

≤ c ‖f‖L∞(R)

∑
i∈Z+

Li

MiNi

hi+j

εi+j

∥∥ρ(i+j)
∥∥
L1(R)

hi+j

+ ‖g‖L∞(R)
hj

εj

∥∥ρ(j)∥∥
L1(R)

hj
.

Since M and N satisfy (M.2) , there exist A, A′ > 0 and H, H ′ > 0
such that Mi+j ≤ AH i+jMiMj and Ni+j ≤ A′H ′i+jNiNj , which give

1

MiNi
≤ AA′ (HH ′)i+j

Mi+jNi+j
MjNj .

Therefore,∥∥∥(T ∗ ρε)(j)
∥∥∥
L∞(R)

≤ cAA′ ‖f‖L∞(R)

∑
i∈Z+

Li

Mi+jNi+j

×
(
HH ′)i+j hi+j

εi+j
MjNj

∥∥ρ(i+j)
∥∥
L1(R)

hi+j

+ ‖g‖L∞(R)
hj

εj

∥∥ρ(j)∥∥
L1(R)

hj
,

hence,
1

MjNj

∥∥∥(T ∗ ρε)(j)
∥∥∥
L∞(R)

≤ cAA′ ‖f‖L∞(R)

∑
i∈Z+

Li

Mi+jNi+j

×
(
HH ′)i+j hi+j

εi+j

∥∥ρ(i+j)
∥∥
L1(R)

hi+j

+ ‖g‖L∞(R)
hj

εj
1

MjNj

∥∥ρ(j)∥∥
L1(R)

hj

≤ cAA′ ‖f‖L∞(R)

∑
i∈Z+

Li

Mi+j
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×
(
HH ′)i+j hi+j

εi+j

∥∥ρ(i+j)
∥∥
L1(R)

hi+jNi+j

+ ‖g‖L∞(R)
hj

εj
1

Mj

∥∥ρ(j)∥∥
L1(R)

hjNj

≤ cAA′ ‖f‖L∞(R)

∑
i∈Z+

Li

Mi+j

×
(
HH ′)i+j hi+j

εi+j
‖ρ‖1,h,N

+ ‖g‖L∞(R)
hj

εj
1

Mj
‖ρ‖1,h,N .

Thus,

(2L)j

MjNj

∥∥∥(T ∗ ρε)(j)
∥∥∥
L∞(R)

≤ ‖ρ‖1,h,N
(
cAA′ ‖f‖L∞(R)

×
∑
i∈Z+

2−i (2L)
i+j

Mi+j

(
HH ′)i+j hi+j

εi+j

+ ‖g‖L∞(R) (2L)
j h

j

εj
1

Mj

)
,

i.e.

(2L)j

MjNj

∥∥∥(T ∗ ρε)(j)
∥∥∥
L∞(R)

≤ ‖ρ‖1,h,N
(
cAA′ ‖f‖L∞(R)

×
∑
i∈Z+

2−i

(
2LHH′h

ε

)i+j

Mi+j

+ ‖g‖L∞(R)

(
2Lh
ε

)j
Mj

)
.

The fact that M satisfies (M.1) , so Proposition 2.10-(i), gives(
2LHH′h

ε

)i+j

Mi+j
≤ 1

M0
e
M

(
2LHH′h

ε

)

and (
2Lh
ε

)j
Mj

≤ 1

M0
eM( 2Lh

ε ).
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Consequently,
(2L)j

MjNj

∥∥∥(T ∗ ρε)(j)
∥∥∥
L∞(R)

≤ 1

M0
‖ρ‖1,h,N

(
2cAA′ ‖f‖L∞(R)

× e
M

(
2LHH′h

ε

)
+ ‖g‖L∞(R) e

M( 2Lh
ε )
)

≤ C

M0

(
e
M

(
2LHH′h

ε

)
+ eM( 2Lh

ε )
)
,

where C = ‖ρ‖1,h,N max
(
2cAA′ ‖f‖L∞(R) , ‖g‖L∞(R)

)
. Hence,

(2L)j

MjNj

∥∥∥(T ∗ ρε)(j)
∥∥∥
L∞(R)

≤ 2C

M0
e
M

(
2LHH′h

ε

)
+M( 2Lh

ε )
.

Due to Lemma 2.11, let k > 0 such that k
ε = Hmax

(
2LHH′h

ε , 2Lhε

)
and

C ′
j =

(
2AC

MjNj

(2L)j

)
> 0, we get∥∥∥(T ∗ ρε)(j)

∥∥∥
L∞(R)

≤ C ′
je

M( k
ε ),

which means that (T ∗ ρε) ∈ MM
aap. The linearity follows from the fact

that the convolution is linear. Let ρ ∈ D{N}
L1 such that

∫
R
ρ (x) dx = 1. If

(T ∗ ρε) ∈ NM
aap, then ∀k > 0, ∃c > 0, ∃ε0 ∈ I, ∀ε < ε0,

(3.7) ‖T ∗ ρε‖L∞(R) ≤ ce−M( k
ε ).

Let ψ ∈ D(MN)
L1 , we have

〈T, ψ〉 = lim
ε→0

∫
R

(T ∗ ρε) (x)ψ (x) dx.

From (3.7), we obtain∣∣∣∣∣∣
∫
R

(T ∗ ρε) (x)ψ (x) dx

∣∣∣∣∣∣ ≤ ‖ψ‖L1(R) ‖T ∗ ρε‖L∞(R)

≤ c ‖ψ‖L1(R) e
−M( k

ε ),

let ε→ 0, thus 〈T, ψ〉 = 0,∀ψ ∈ D(MN)
L1 . Hence, Jaap is injective. □

Remark 3.9. In addition, if the sequence M satisfies the condition
(M.3), then due to Theorem 3 of [21], the space E′

aap,(M) coincides with
the space of asymptotically almost periodic Beurling ultradistributions
studied in [21]. Therefore, in view of Proposition 3.8, the space of asymp-
totically almost periodic Beurling ultradistributions is embedded into
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the algebra of asymptotically almost periodic generalized ultradistribu-
tions.

In order to establish some properties of the algebra GM
aap, we recall

some needed algebras of generalized ultradistributions of [9]. The al-
gebra of almost periodic generalized ultradistributions is denoted and
defined by

GM
ap :=

MM
ap

NM
ap

,

where

MM
ap :=

 (uε)ε ∈ (Bap)
I : ∀j ∈ Z+, ∃k > 0,∥∥∥u(j)ε

∥∥∥
L∞(R)

= O
(
eM( k

ε )
)
, ε→ 0


and

NM
ap :=

 (uε)ε ∈ (Bap)
I : ∀j ∈ Z+, ∀k > 0,∥∥∥u(j)ε

∥∥∥
L∞(R)

= O
(
e−M( k

ε )
)
, ε→ 0

 .

The algebra of Lp−generalized ultradistributions on I, p ∈ [1,+∞] ,
is denoted and defined by the quotient algebra

GM
Lp (I) :=

MM
Lp (I)

NM
Lp (I)

,

where

MM
Lp (I) :=

 (uε)ε ∈ (DLp (I))I : ∀j ∈ Z+, ∃k > 0,∥∥∥u(j)ε

∥∥∥
Lp(I)

= O
(
eM( k

ε )
)
, ε→ 0


and

NM
Lp (I) :=

 (uε)ε ∈ (DLp (I))I : ∀j ∈ Z+, ∀k > 0,∥∥∥u(j)ε

∥∥∥
Lp(I)

= O
(
e−M( k

ε )
)
, ε→ 0

 .

Notation 1. Denote by GM
B (I) := GM

L∞ (I) , GM
B := GM

L∞ (R) and GM
L1 :=

GM
L1 (R) .

The following result summarise some properties of GM
aap.

Proposition 3.10. (i) GM
aap is a subalgebra of GM

B stable under
translation and derivation.

(ii) GM
aap × GM

ap ⊂ GM
aap.

(iii) GM
aap ∗ GM

L1 ⊂ GM
aap.

Proof. (i) It follows from Proposition 3.2-(ii) that GM
aap is an algebra

stable under translation and derivation. Let (uε)ε ∈ MM
aap, so
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(uε)ε satisfies (3.1) and since Baap ⊂ B, then (uε)ε ∈ MM
B . If

(uε)ε ∈ NM
aap, so (uε)ε satisfies (3.3) and then (uε)ε ∈ NM

B .

(ii) Let ũ = [(uε)ε] ∈ GM
aap and ṽ = [(vε)ε] ∈ GM

ap , if (uε)ε ∈ MM
aap

and (vε)ε ∈ MM
ap, then in view of Proposition 2.7-(ii), it follows

that ∀ε ∈ I, uεvε ∈ Baap. As (uε)ε ∈ MM
aap and (vε)ε ∈ MM

ap,
so they satisfy the estimate (3.1). For every j ∈ Z+,∥∥∥(uεvε)(j)∥∥∥

L∞(R)
≤
∑
i+l=j

j!

i!l!
cicle

M
(

ki
ε

)
+M

(
kl
ε

)
,

by Lemma 2.11, taking k > 0 such that k
ε = H max

i+l=j

(
ki
ε ,

kl
ε

)
,

then

e
M

(
ki
ε

)
+M

(
kl
ε

)
≤ AM0e

M( k
ε ).

Thus, ∀j ∈ Z+, ∃k > 0, ∃Cj =

(
AM0

∑
i+l=j

j!
i!l!cicl

)
> 0, ∀ε <

min
i+l=j

(εi, εl) ,∥∥∥(uεvε)(j)∥∥∥
L∞(R)

≤ Cje
M( k

ε ),

which gives (uεvε)ε ∈ MM
aap. It is easy to show that the product

ũ× ṽ does not depend on the representatives (uε)ε and (vε)ε .
(iii) Let (uε)ε ∈ MM

aap and (vε)ε ∈ MM
L1 be a respective representa-

tives of ũ ∈ GM
aap and ṽ ∈ GM

L1 . If (uε)ε ∈ MM
aap so it satisfies the

estimate (3.1) and (vε)ε ∈ MM
L1 , i.e. satisfies ∀j ∈ Z+, ∃k′j >

0, ∃c′j > 0, ∃ε′j ∈ I, ∀ε < ε′j ,∥∥∥v(j)ε

∥∥∥
L1(R)

≤ c′je
M

(
k′j
ε

)
.

In view of Proposition 2.7-(iii), ∀ε ∈ I, (uε ∗ vε) ∈ Baap and
due to Young inequality, we obtain for every j ∈ Z+,∥∥∥(uε ∗ vε)(j)∥∥∥

L∞(R)
≤
∥∥∥u(j)ε

∥∥∥
L∞(R)

‖vε‖L1(R)

≤ cjc
′
0e

M
(

kj
ε

)
e
M

(
k′0
ε

)
,

by Lemma 2.11, let k > 0 such that k
ε = Hmax

(
kj
ε ,

k′0
ε

)
, then

e
M

(
kj
ε

)
e
M

(
k′0
ε

)
≤ AM0e

M( k
ε ).
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Consequently, ∀j ∈ Z+, ∃k > 0, ∃Cj = (cjc
′
0AM0) > 0, ∀ε <

min (εj , ε
′
0) ,∥∥∥(uε ∗ vε)(j)∥∥∥

L∞(R)
≤ Cje

M( k
ε ),

this gives that (uε ∗ vε)ε ∈ MM
aap. It is easy to prove that the

convolution does not depend on the representatives (uε)ε and
(vε)ε .

□

4. Extension of Generalized Ultradistributions

The uniqueness of the decomposition of an asymptotically almost pe-
riodic generalized ultradistribution requires an extension result in the
context of bounded generalized ultradistributions. Which is a general-
ization of the Seeley theorem, see [24].
Lemma 4.1. There are two sequences of real numbers (al)l∈Z+

and
(bl)l∈Z+

such that
(i) bl < 0, ∀l ∈ Z+.

(ii)
+∞∑
l=0

|al| |bl|n < +∞, ∀n ∈ Z+.

(iii)
+∞∑
l=0

alb
n
l = 1, ∀n ∈ Z+.

(iv) bl → −∞, l → +∞.

Proof. See [24]. □
Define the space

B+,0 (I) :=
{
φ ∈ B (I) : ∀j ∈ Z+, lim

x→+∞
φ(j) (x) = 0

}
.

The algebra of bounded generalized ultradistributions vanishing at
infinity on I, is defined as the quotient algebra

GM
+,0 (I) :=

MM
+,0 (I)

NM
+,0 (I)

,

where

MM
+,0 (I) :=

 (uε)ε ∈ (B+,0 (I))I : ∀j ∈ Z+, ∃k > 0,∥∥∥u(j)ε

∥∥∥
L∞(I)

= O
(
eM( k

ε )
)
, ε→ 0


and

NM
+,0 (I) :=

 (uε)ε ∈ (B+,0 (I))I : ∀j ∈ Z+, ∀k > 0,∥∥∥u(j)ε

∥∥∥
L∞(I)

= O
(
e−M( k

ε )
)
, ε→ 0

 .
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Theorem 4.2. The linear extension operator Ẽ : GM
B (J) −→ GM

B (R) ,
ũ = [(uε)ε] 7−→ Ẽũ = [(Euε)ε] , where

Euε (x) :=


uε (x) , if x ≥ 0,

+∞∑
l=0

aluε (blx) , if x < 0,

is well defined and we have Ẽũ|J = ũ. In particular, ∀ũ ∈ GM
+,0 (J) , Ẽũ ∈

GM
+,0 (R) .

Proof. Let ũ = [(uε)ε] ∈ GM
B (J) , and (uε)ε ∈ MM

B (J) be a represen-
tative of ũ. Then ∀ε ∈ I, Euε ∈ B (R) and Euε|J = uε. Indeed, due
to Lemma 4.1-(i) for every x < 0 we get blx > 0, ∀l ∈ Z+. For any
ε ∈ I, j ∈ Z+, x < 0, we have

(4.1) (Euε)
(j) (x) =

+∞∑
l=0

alb
j
lu

(j)
ε (blx) ,

as uε ∈ B (J) , ∀ε ∈ I, and in view of Lemma 4.1-(ii), we obtain ∀j ∈
Z+, ∀ε ∈ I, ∀x < 0,

(4.2)
∣∣∣(Euε)(j) (x)∣∣∣ ≤ ∥∥∥u(j)ε

∥∥∥
L∞(J)

+∞∑
l=0

|al| |bl|j < +∞,

consequently, ∀j ∈ Z+, the series given in (4.1) are absolutely converge.
Moreover, by Lemma 4.1-(iii),

lim
x→0
<

(Euε)
(j) (x) =

+∞∑
l=0

alb
j
l limx→0

<

u(j)ε (blx)

= u(j)ε (0)

+∞∑
l=0

alb
j
l

= u(j)ε (0) ,

hence, ∀ε ∈ I, Euε ∈ E (R) . From (4.2), it holds ∀ε ∈ I, ∀j ∈ Z+,∥∥∥(Euε)(j)∥∥∥
L∞(R\J)

≤
∥∥∥u(j)ε

∥∥∥
L∞(J)

+∞∑
l=0

|al| |bl|j

also ∥∥∥(Euε)(j)∥∥∥
L∞(J)

=
∥∥∥u(j)ε

∥∥∥
L∞(J)

.

Consequently,

(4.3)
∥∥∥(Euε)(j)∥∥∥

L∞(R)
≤ max

(
1,

+∞∑
l=0

|al| |bl|j
)∥∥∥u(j)ε

∥∥∥
L∞(J)

,
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as ∀ε ∈ I, ∀j ∈ Z+, u
(j)
ε ∈ L∞ (J) and by (4.3) we obtain ∀ε ∈ I, ∀j ∈

Z+, (Euε)
(j) ∈ L∞ (R) . If (uε)ε ∈ MM

B (J) then it follows from (4.3)
that (Euε)ε ∈ MM

B (R) . The operator Ẽũ is well-defined. Indeed, if
(uε)ε and (vε)ε are representatives of ũ, thus ∀ε ∈ I, ∀j ∈ Z+,∥∥∥(Euε − Evε)

(j)
∥∥∥
L∞(R)

≤ max

(
1,

+∞∑
l=0

|al| |bl|j
)∥∥∥(uε − vε)

(j)
∥∥∥
L∞(J)

,

since (uε − vε)ε ∈ NM
B (J) then ∀j ∈ Z+, ∀k > 0,∥∥∥(Euε − Evε)

(j)
∥∥∥
L∞(R)

= O
(
e−M( k

ε )
)
, ε→ 0,

which means that (Euε − Evε)ε ∈ NM
B (R) .

The fact that Ẽũ = [(Euε)ε] ∈ GM
B (R) and ũ = [(uε)ε] ∈ GM

B (J)
gives Ẽũ|J − ũ :=

[(
Euε|J

)
ε

]
− ũ = [(uε)ε] − ũ = ũ − ũ = 0 in GM

B (J) .

Consequently, Ẽũ|J = ũ in GM
B (J) .

If ũ = [(uε)ε] ∈ GM
+,0 (J) ⊂ GM

B (J) , then Ẽũ = [(Euε)ε] ∈ GM
B (R) .

We have, ∀ε ∈ I, Euε ∈ B (R) . As ∀ε ∈ I, ∀j ∈ Z+, (Euε)
(j) = u

(j)
ε

on J, so lim
x→+∞

(Euε)
(j) (x) = 0, i.e. ∀ε ∈ I, Euε ∈ B+,0 (R) . Thus,

Ẽũ ∈ GM
+,0 (R) . □

5. The Decomposition

In this section we show that an asymptotically almost periodic gen-
eralized ultradistribution is uniquely decomposed. The following results
are needed in the sequel, see [12].

Lemma 5.1. Let f ∈ Baap such that f = g + h on J and for j ∈
Z+, f

(j) = gj + hj on J. Then gj = (g)(j) on R and hj = (h)(j) on J.

Lemma 5.2. If f = (g + h) ∈ Caap, then ‖g‖L∞(R) ≤ ‖f‖L∞(J) . Fur-
thermore, if f ∈ Cap and ω ∈ R, ‖f‖L∞(R) = sup

x≥ω
|f (x)| .

Theorem 5.3. Let ũ ∈ GM
aap (R) then there exist ṽ ∈ GM

ap (R) and w̃ ∈
GM
+,0 (R) such that ũ = ṽ + w̃ on J, and the decomposition is unique on
J.

Proof. Let ũ = [(uε)ε] ∈ GM
aap, then ∀ε ∈ I, ∀j ∈ Z+, u

(j)
ε ∈ Caap. So

there exist vε,j ∈ Cap, wε,j ∈ C+,0, such that ∀j ∈ N, u(j)ε = (vε,j+wε,j) ∈
Caap on J, and for j = 0, uε = vε+wε on J. By Lemma 5.1, it holds that
∀j ∈ N, vε,j = (vε)

(j) on R and wε,j = (wε)
(j) on J, which gives vε ∈ Bap
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and wε ∈ B+,0 (J) . Now, we show (vε)ε ∈ MM
ap. If (uε)ε ∈ MM

aap, then
∀j ∈ Z+, ∃kj > 0, ∃cj > 0, ∃εj ∈ I, ∀ε < εj ,

(5.1)
∥∥∥u(j)ε

∥∥∥
L∞(R)

≤ cje
M

(
kj
ε

)
.

Due to Lemma 5.2, we obtain, ∀j ∈ Z+,

(5.2)
∥∥∥v(j)ε

∥∥∥
L∞(R)

≤
∥∥∥u(j)ε

∥∥∥
L∞(J)

,

hence, ∀j ∈ Z+, ∃kj > 0, ∃cj > 0, ∃εj ∈ I, ∀ε < εj ,

(5.3)
∥∥∥v(j)ε

∥∥∥
L∞(R)

≤ cje
M

(
kj
ε

)
,

which gives (vε)ε ∈ MM
ap. If (uε)ε ∈ NM

aap, so ∀j ∈ Z+, ∀k > 0, ∃cj >
0, ∃εj ∈ I, ∀ε < εj ,

(5.4)
∥∥∥u(j)ε

∥∥∥
L∞(R)

≤ cje
−M( k

ε ).

It follows due to (5.2) and (5.4) that (vε)ε ∈ NM
ap . Therefore, ṽ =

[(vε)ε] ∈ GM
ap . On the other hand, it is easy to see that ∀j ∈ Z+,

(5.5)
∥∥∥w(j)

ε

∥∥∥
L∞(J)

≤
∥∥∥u(j)ε

∥∥∥
L∞(J)

+
∥∥∥v(j)ε

∥∥∥
L∞(J)

.

The estimates (5.1) ,(5.3) and (5.5) give ∀j ∈ Z+, ∃kj > 0, ∃cj >
0, ∃εj ∈ I, ∀ε < εj , ∥∥∥w(j)

ε

∥∥∥
L∞(J)

≤ 2cje
M

(
kj
ε

)
,

hence (wε)ε ∈ MM
+,0 (J) . If (uε)ε ∈ NM

aap, then we get (wε)ε ∈ NM
+,0 (J)

from (5.4) and (5.5). Consequently, w̃ = [(wε)ε] ∈ GM
+,0 (J) . Due to

Theorem 4.2 extending w̃ ∈ GM
+,0 (J) to Ẽw̃ ∈ GM

+,0 (R) with Ẽw̃ = w̃ on
J. Finally, ũ = ṽ + w̃ on J.

Now, we show that the decomposition ũ = ṽ + w̃ on J is unique.
Indeed, suppose that there exist ṽ1, ṽ1 ∈ GM

ap and w̃1, w̃2 ∈ GM
+,0 :=

GM
+,0 (R) such that

ũ = ṽi + w̃i on J, i = 1, 2.

To prove that the decomposition is unique and in order to facilitate the
calculation we need the following null characterization

(5.6) NM
B (I) :=

{
(uε)ε ∈ MM

B (I) : ∀k > 0,

‖uε‖L∞(I) = O
(
e−M( k

ε )
)
, ε→ 0

}
,

which is proved due the classical Landau-Kolmogorov inequality in the
same way as Proposition 3.2-(i). Let (vi,ε)ε ∈ MM

ap and (wi,ε)ε ∈ MM
+,0
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be respectively representatives of ṽi and w̃i, i = 1, 2. So (v1,ε − v2,ε)ε +

(w1,ε − w2,ε)ε ∈ NM
B (J) , i.e. (v1,ε − v2,ε)ε + (w1,ε − w2,ε)ε ∈ MM

B (J)
and ∀k > 0, ∃c > 0, ∃ε0 ∈ I, ∀ε < ε0,

(5.7) ‖v1,ε − v2,ε + w1,ε − w2,ε‖L∞(J) ≤ ce−M( k
ε ),

which gives ∀k > 0, ∃c > 0, ∃ε0 ∈ I, ∀ε < ε0, ∀x ≥ 0,

(5.8) |v1,ε (x)− v2,ε (x) + w1,ε (x)− w2,ε (x)| ≤ ce−M( k
ε ).

For any real sequence (sm)m∈N , such that sm → +∞ there exist
(
sml(ε)

)
l

a subsequence of (sm)m∈N such that taking the translate at sml(ε)
−smp(ε)

in (5.8) and let l, p → +∞ we obtain ∀k > 0, ∃c > 0, ∃ε0 ∈ I, ∀ε <
ε0, ∀x ≥ 0,

|v1,ε (x)− v2,ε (x)| ≤ ce−M( k
ε ).

Due to Lemma 5.2, it holds ∀k > 0, ∃c > 0, ∃ε0 ∈ I, ∀ε < ε0,

(5.9) ‖v1,ε − v2,ε‖L∞(R) ≤ ce−M( k
ε ).

As (v1,ε − v2,ε)ε ∈ MM
ap ⊂ MM

B (R) and by (5.9), so in view of (5.6) it
follows that (v1,ε − v2,ε)ε ∈ NM

B (R) , then ṽ1 = ṽ2 in GM
B (R) . Due to

(5.7), (5.9) and as (w1,ε − w2,ε)ε ∈ MM
B (J) it holds in view of (5.6) that

(w1,ε − w2,ε)ε ∈ NM
B (J) , i.e. w̃1 = w̃2 in GM

B (J) . □

Notation 2. Let ũ ∈ GM
aap and ũ = ṽ + w̃ on J, where ṽ ∈ GM

ap and
w̃ ∈ GM

+,0, then ṽ and w̃ are called respectively the principal term and
the corrective term of ũ and we denote them respectively ũap and ũcor.
Also ũ = (ũap + ũcor) ∈ GM

aap means that ũap ∈ GM
ap , ũcor ∈ GM

+,0 and
ũ = ũap + ũcor on J.

6. Non-linear Operation

This section shows that the composition of a tempered generalized
ultradistribution with an asymptotically almost periodic generalized ul-
tradistribution is an asymptotically almost periodic generalized ultra-
distribution. First, recall from [9], the algebra of tempered generalized
ultradistributions on C, denoted and defined as the quotient algebra

GM
τ (C) :=

MM
τ (C)

NM
τ (C)

,

where

MM
τ (C) :=

 (fε)ε ∈
(
E
(
R2
))I

: ∀j ∈ Z+, ∃k > 0,

sup
x∈R2

(1 + |x|)−k
∣∣∣f (j)ε (x)

∣∣∣ = O
(
eM( k

ε )
)
, ε→ 0


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and

NM
τ (C) :=

 (fε)ε ∈
(
E
(
R2
))I

: ∀j ∈ Z+, ∃m > 0, ∀k > 0,

sup
x∈R2

(1 + |x|)−m
∣∣∣f (j)ε (x)

∣∣∣ = O
(
e−M( k

ε )
)
, ε→ 0

 .

Proposition 6.1. Let ũ = [(uε)ε] ∈ GM
aap and F̃ = [(fε)ε] ∈ GM

τ (C) then

F̃ ◦ ũ := [(fε ◦ uε)ε]

is well-defined element of GM
aap. The principal term and the corrective

term of F̃ ◦ ũ are respectively F̃ (ũap) and F̃ (ũap + ũcor)−F̃ (ũap) , where
ũ = ũap + ũcor on J.

Proof. Let (uε)ε ∈ MM
aap and (fε)ε ∈ MM

τ (C) be a respective represen-
tatives of ũ and F̃ , then ∀j ∈ Z+, ∃kj > 0, ∃cj > 0, ∃εj ∈ I, ∀ε < εj ,

(6.1)
∥∥∥u(j)ε

∥∥∥
L∞(R)

≤ cje
M

(
kj
ε

)

and ∀j ∈ Z+, ∃k′j > 0, ∃c′j > 0, ∃ε′j ∈ I, ∀ε < ε′j ,

(6.2)
∥∥∥f (j)ε (uε)

∥∥∥
L∞(R)

≤ c′je
M

(
k′j
ε

)
‖1 + uε‖

k′j
L∞(R) .

By using the classical Faà di Bruno formula, we have ∀j ∈ Z+,

(6.3) (fε ◦ uε)(j)

j!
=

∑
l1+2l2+···+jlj=j

r=l1+···+lj

f
(r)
ε (uε (x))

l1! · · · lj !

j∏
i=1

(
u
(i)
ε (x)

i!

)li

,

as ∀j ∈ Z+, ∀ε ∈ I, u
(j)
ε ∈ Caap and fε is of class E on C, it follows

from the classical result on composition of a continuous function with an
asymptotically almost periodic function is also an asymptotically almost
periodic function that ∀ε ∈ I, ∀r ∈ Z+, f

(r)
ε (uε) ∈ Caap and since Caap

is an algebra then ∀j ∈ Z+, ∀ε ∈ I, (fε ◦ uε)(j) ∈ Caap. From (6.1), (6.2)
and (6.3), we get∥∥∥(fε ◦ uε)(j)∥∥∥

L∞(R)

j!
≤

∑
l1+2l2+···+jlj=j

r=l1+···+lj

∥∥∥f (r)ε (uε)
∥∥∥
L∞()

l1! · · · lj !

×
j∏

i=1


∥∥∥u(i)ε

∥∥∥
L∞(R)

i!


li
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≤
∑

l1+2l2+···+jlj=j
r=l1+···+lj

c′re
M

(
k′r
ε

)
‖1 + uε‖k

′
r

L∞(R)

l1! · · · lj !

×
j∏

i=1


∥∥∥u(i)ε

∥∥∥
L∞(R)

i!


li

,

so ∥∥∥(fε ◦ uε)(j)∥∥∥
L∞(R)

j!
≤

∑
l1+2l2+···+jlj=j

r=l1+···+lj

c′re
M

(
k′r
ε

)(
1 + c0e

M
(

k0
ε

))k′r

l1! · · · lj !

×
j∏

i=1

cieM(
ki
ε

)
i!

li

,

hence there exists Cr > 0,∥∥∥(fε ◦ uε)(j)∥∥∥
L∞(R)

j!
≤

∑
l1+2l2+···+jlj=j

r=l1+···+lj

Cr

l1! · · · lj !
e
M

(
k′r
ε

)
e
k′rM

(
k0
ε

)

×
j∏

i=1

(ci
i!

)li
e
liM

(
ki
ε

)

≤
∑

l1+2l2+···+jlj=j
r=l1+···+lj

Cr

l1! · · · lj !
e
M

(
k′r
ε

)
e
([k′r]+1)M

(
k0
ε

)

×
j∏

i=1

(ci
i!

)li
e
liM

(
ki
ε

)
.

Set m = [k′r] + 1, due to Lemma 2.11, we have

e
([k′r]+1)M

(
k0
ε

)
≤ (AM0)

m−1 e
M

(
k0
ε
H

(m−1)(m+2)
2m

)

and

e
liM

(
ki
ε

)
≤ (AM0)

li−1 e
M

 ki
ε
H

(li−1)(li+2)
2li


.
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Therefore,

∥∥∥(fε ◦ uε)(j)∥∥∥
L∞(R)

j!
≤

∑
l1+2l2+···+jlj=j

r=l1+···+lj

Cr

l1! · · · lj !
(AM0)

m−1 e
M

(
k′r
ε

)

× e
M

(
k0
ε
H

(m−1)(m+2)
2m

)
j∏

i=1

(ci
i!

)li
(AM0)

li−1

× e
M

 ki
ε
H

(li−1)(li+2)
2li



≤
∑

l1+2l2+···+jlj=j
r=l1+···+lj

Cr

l1! · · · lj !
(AM0)

m−1 e
M

(
k′r
ε

)

× e
M

(
k0
ε
H

(m−1)(m+2)
2m

)
(AM0)

r−j

× e

j∑
i=1

M

 ki
ε
H

(li−1)(li+2)
2li

 j∏
i=1

(ci
i!

)li
≤

∑
l1+2l2+···+jlj=j

r=l1+···+lj

Cr

l1! · · · lj !
(AM0)

m+r−j−1

× e
M

(
k′r
ε

)
e
M

(
k0
ε
H

(m−1)(m+2)
2m

)

× e

j∑
i=1

M

 ki
ε
H

(li−1)(li+2)
2li

 j∏
i=1

(ci
i!

)li
.

By Lemma 2.11, we get

j∑
i=1

M

(
ki
ε
H

(li−1)(li+2)
2li

)
≤M

(
H

(j−1)(j+2)
2j max

1≤i≤j

(
ki
ε
H

(li−1)(li+2)
2li

))
+ (j − 1) ln (AM0)

≤M
(mj

ε

)
+ (j − 1) ln (AM0) ,
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where mj := H
(j−1)(j+2)

2j max
1≤i≤j

(
kiH

(li−1)(li+2)
2li

)
, so∥∥∥(fε ◦ uε)(j)∥∥∥

L∞(R)

j!
≤

∑
l1+2l2+···+jlj=j

r=l1+···+lj

Cr

l1! · · · lj !
(AM0)

m+r−j−1 e
M

(
k′r
ε

)

× e
M

(
k0
ε
H

(m−1)(m+2)
2m

)
(AM0)

j−1 e
M

(
mj
ε

)

×
j∏

i=1

(ci
i!

)li
,

by using again Lemma 2.11, let Nj > 0, such that
Nj

ε
= H

5
3 max

(
k′r
ε
,
mj

ε
,
k0
ε
H

(m−1)(m+2)
2m

)
,

thus

e
M

(
k′r
ε

)
e
M

(
k0
ε
H

(m−1)(m+2)
2m

)
e
M

(
mj
ε

)
≤ (AM0)

2 e
M

(
Nj
ε

)
.

It follows∥∥∥(fε ◦ uε)(j)∥∥∥
L∞(R)

j!
≤

∑
l1+2l2+···+jlj=j

r=l1+···+lj

Cr

l1! · · · lj !
(AM0)

m+r−j−1

× (AM0)
j−1 (AM0)

2 e
M

(
Nj
ε

) j∏
i=1

(ci
i!

)li
≤

∑
l1+2l2+···+jlj=j

r=l1+···+lj

Cr

l1! · · · lj !
(AM0)

m+r e
M

(
Nj
ε

)

×
j∏

i=1

(ci
i!

)li
.

Finally, we obtain∥∥∥(fε ◦ uε)(j)∥∥∥
L∞(R)

≤ j!
∑

l1+2l2+···+jlj=j
r=l1+···+lj

Cr

l1! · · · lj !
(AM0)

m+r

× e
M

(
Nj
ε

) j∏
i=1

(ci
i!

)li
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≤ C ′
je

M
(

Nj
ε

)
,

where C ′
j := j!

∑
l1+2l2+···+jlj=j

r=l1+···+lj

Cr

l1! · · · lj !
(AM0)

m+r
j∏

i=1

(ci
i!

)li
. Then, we

deduce that (fε ◦ uε)ε ∈ MM
aap. It is easy to prove that the composi-

tion F̃ ◦ ũ is independent on the representatives (uε)ε and (fε)ε . Let
ũ = (ũap + ũcor) ∈ GM

aap. Since F̃ ◦ ũ = F̃ (ũap) +
(
F̃ (ũ)− F̃ (ũap)

)
,

then F̃ ◦ ũ = F̃ (ũap) +
(
F̃ (ũap + ũcor)− F̃ (ũap)

)
on J. In view of ([9],

Proposition 6.1) we obtain F̃ (ũap) ∈ GM
ap . As GM

aap and GM
ap are subalge-

bras of GM
B then F̃ (ũap + ũcor)− F̃ (ũap) ∈ GM

B . It suffices to show that
∀ε ∈ I, fε (uap,ε + ucor,ε) − fε (uap,ε) ∈ B+,0, where (fε)ε, (uap,ε)ε and
(ucor,ε )ε are respective representatives of F̃ , ũap and ũcor. The classical
result on composition of asymptotically almost periodic function with
continuous function shows that the corrective term of fε (uap,ε + ucor,ε)

is fε (uap,ε + ucor,ε)−fε (uap,ε) and the fact that F̃ (ũap + ũcor)−F̃ (ũap) ∈
GM
B gives ∀ε ∈ I, (fε (uap,ε + ucor,ε)− fε (uap,ε)) ∈ B. By ([12], Propo-

sition 5 − (5)), we have ∀ε ∈ I, fε (uap,ε + ucor,ε) − fε (uap,ε) ∈ C+,0 ∩
B = B+,0. Therefore, F̃ (ũap + ũcor)− F̃ (ũap) ∈ GM

+,0. □

7. Linear Difference Differential Systems

We consider the following linear difference differential systems

(7.1) Lũ =

p∑
i=0

q∑
j=0

Ãij

(
τωj ũ

)(i)
= f̃ ,

where f̃ =
(
f̃1, · · · , f̃n

)
∈
(
GM
B
)n
, ω = (ωj)0≤j≤q ⊂ Rq

+ and Ã =(
Ãrl

ij

)
1≤r,l≤n

is a square matrix of almost periodic generalized ultradis-
tributions. The unknown generalized ultradistribution ũ = (ũ1, · · · , ũn) .

Remark 7.1. If ũ ∈
(
GM
aap

)n then in view of Proposition 3.10 we obtain
Lũ ∈

(
GM
aap

)n
.

Definition 7.2. A generalized ultradistribution ũ ∈
(
GM
B (R)

)n is said
a generalized solution of (7.1) on I if p∑

i=0

q∑
j=0

Aij,ε

(
τωjuε

)(i) − fε


ε

∈
(
NM

B (I)
)n
,
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i.e. for r = 1, · · · , n, n∑
l=0

 p∑
i=0

q∑
j=0

Arl
ij,ε

(
τωjul,ε

)(i)− fr,ε


ε

∈ NM
B (I) ,

where (uε)ε =
(
(u1,ε)ε , · · · (un,ε)ε

)
, (fε)ε =

(
(f1,ε)ε , · · · , (fn,ε)ε

)
and

(Aij,ε)ε =
((
Arl

ij,ε

)
ε

)
1≤r,l≤n

are respective representatives of

ũ = (ũ1, · · · , ũn) , f̃ =
(
f̃1, · · · , f̃n

)
and Ãij =

(
Ãrl

ij

)
1≤r,l≤n

.

Theorem 7.3. Let f̃ =
(
f̃ap + f̃cor

)
∈
(
GM
aap

)n
, the equation (7.1)

admits a generalized solution ũ ∈
(
GM
aap

)n on J if and only if there exist
ṽ ∈

(
GM
ap

)n and w̃ ∈
(
GM
+,0

)n such that

(7.2) Lṽ = f̃ap on R,
and
(7.3) Lw̃ = f̃cor on J.

Proof. If ũ = (ũap + ũcor) ∈
(
GM
aap

)n is a generalized solution of (7.1) on
J, then for r = 1, · · · , n,

(7.4)


n∑

l=0

(
p∑

i=0

q∑
j=0

Arl
ij,ε

(
τωjuap,l,ε

)(i))− fap,r,ε

+
n∑

l=0

(
p∑

i=0

q∑
j=0

Arl
ij,ε

(
τωjucor,l,ε

)(i))− fcor,r,ε


ε

∈ NM
B (J) ,

where (uap,l,ε)ε , (ucor,l,ε)ε , (fap,l,ε)ε , (fcor,l,ε)ε and
(
Arl

ij,ε

)
ε

are respec-

tive representatives of ũap,l, ũcor,l, f̃ap,l, f̃cor,l and Ãrl
ij for 1 ≤ l ≤ n. In

view of (5.6), this means that
n∑

l=0

(
p∑

i=0

q∑
j=0

Arl
ij,ε

(
τωjuap,l,ε

)(i))− fap,r,ε

+
n∑

l=0

(
p∑

i=0

q∑
j=0

Arl
ij,ε

(
τωjucor,l,ε

)(i))− fcor,r,ε


ε

∈ MM
B (J) ,

and ∀k > 0, ∃c > 0, ∃ε0 ∈ I, ∀ε < ε0, ∀x ≥ 0,
(7.5)∣∣∣∣∣∣∣∣∣∣

n∑
l=0

(
p∑

i=0

q∑
j=0

Arl
ij,ε (x)

(
τωjuap,l,ε (x)

)(i))− fap,r,ε (x)

+
n∑

l=0

(
p∑

i=0

q∑
j=0

Arl
ij,ε (x)

(
τωjucor,l,ε (x)

)(i))− fcor,r,ε (x)

∣∣∣∣∣∣∣∣∣∣
≤ ce−M( k

ε ).
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For any real sequence (sm)m∈N , such that sm → +∞ there exist a
subsequence

(
smp1(ε)

)
p1

of (sm)m∈N such that taking the translate at
smp1(ε)

− smp2(ε)
in (7.5) and let p1, p2 → +∞ we obtain ∀k > 0, ∃c >

0, ∃ε0 ∈ I, ∀ε < ε0, ∀x ≥ 0,∣∣∣∣∣∣
n∑

l=0

 p∑
i=0

q∑
j=0

Arl
ij,ε (x)

(
τωjuap,l,ε (x)

)(i)− fap,r,ε (x)

∣∣∣∣∣∣ ≤ ce−M( k
ε ).

Due to Lemma 5.2, we obtain ∀k > 0, ∃c > 0, ∃ε0 ∈ I, ∀ε < ε0,

(7.6)

∥∥∥∥∥∥
n∑

l=0

 p∑
i=0

q∑
j=0

Arl
ij,ε

(
τωjuap,l,ε

)(i)− fap,r,ε

∥∥∥∥∥∥
L∞(R)

≤ ce−M( k
ε ).

As n∑
l=0

 p∑
i=0

q∑
j=0

Arl
ij,ε

(
τωjuap,l,ε

)(i)− fap,r,ε


ε

∈ MM
ap ⊂ MM

B (R) ,

and by (5.6) ,(7.6), it follows that

(7.7)

 n∑
l=0

 p∑
i=0

q∑
j=0

Arl
ij,ε

(
τωjuap,l,ε

)(i)− fap,r,ε


ε

∈ NM
B (R) ,

this means that ũap = (ũap,1, · · · , ũap,n) ∈
(
GM
ap

)n is a generalized solu-
tion of (7.2) on R. From (7.4) and (7.7) we obtain n∑

l=0

 p∑
i=0

q∑
j=0

Arl
ij,ε

(
τωjucor,l,ε

)(i)− fcor,r,ε


ε

∈ NM
B (J) ,

this means that ũcor = (ũcor,1, · · · , ũcor,n) ∈
(
GM
+,0

)n is a generalized
solution of (7.3) on J. If there exist ṽ ∈

(
GM
ap

)n and w̃ ∈
(
GM
+,0

)n such that
(7.2) and (7.3) hold, then it is easy to see that ũ := (ṽ + w̃) ∈

(
GM
aap

)n
is a generalized solution of (7.1) on J. □

Corollary 7.4. A generalized ultradistribution Ũ =
(
Ũap + Ũcor

)
∈

GM
aap is a primitive on J of the generalized ultradistribution ũ ∈ GM

aap

such that ũ = (ũap + ũcor) on J if and only if

Ũap is a primitive of ũap on R,

and
Ũcor is a primitive of ũcor on J.
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