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Novel Optimal Class of Eighth-Order Methods for Solving
Nonlinear Equations and Their Dynamical Aspects

Abdallah Dawoud1, Malak Khashoqji2, Tareq Al-hussain3 and Ibrahim Alsubaihi4 ∗

Abstract. In this paper, a novel optimal class of eighth-order con-
vergence methods for finding simple roots of nonlinear equations is
derived based on the Predictor-Corrector of Halley method. By
combining weight functions and derivative approximations, an op-
timal class of iterative methods with eighth-order convergence is
constructed. In terms of computational cost, the proposed methods
require three function evaluations, and the first derivative is eval-
uated once per iteration. Moreover, the methods have efficiency
indices equal to 1.6817. The proposed methods have been tested
with several numerical examples, as well as a comparison with ex-
isting methods for analyzing efficacy is presented.

1. Introduction

Solving the nonlinear algebraic equations f(x) = 0 by using iterative
numerical methods is a crucial technique that has tremendous applica-
tions in different scientific fields, namely engineering, artificial intelli-
gence and physics, see [1, 2, 5, 7, 8, 11–13]. Consequently, numerous
iterative methods were developed to meet this need. One of the long-
established methods to solve nonlinear equations is Newton method [14],
which is given by

(1.1) xn+1 = xn − f(xn)

f ′(xn)
.
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Based on Newton method many modifications have been proposed to
improve its order of convergence and evince new methods, see for ex-
ample [1, 3, 5, 7, 8, 12, 13] and references therein. A new numerical
method was developed by Halley in [3] which has a cubic convergence,
and is written as

(1.2) xn+1 = xn − 2f(xn)f
′(xn)

2f ′(xn)2 − f(xn)f ′′(xn)
.

Noor and Noor [9] increased the order of convergence of Halley’s method
to six order. The resultant method is given by

yn = xn − f(xn)

f ′(xn)

and

(1.3) xn+1 = yn − 2f(yn)f
′(yn)

2f ′(yn)2 − f(yn)f ′′(yn)
.

The method presented in (1.3) is called the Predictor-Corrector Halley
method, and it is a nonoptimal method of the sixth order of conver-
gence. The efficiency index of (1.3) is given by IE = r

1
θ = 6

1
5 ≈ 1.4309,

where r is the order of convergence and Θ is the number of function
evaluations per iteration, according to the Kung-Traub conjecture [6].
In the following sections, a new class of optimal methods of eighth-order
convergence is derived based on the Predictor-Corrector Halley method
using derivative approximation and weight functions. Section 2 presents
the construction of the new class of iterative methods. Section 3 shows
the convergence analysis of the class and presents several families of
iterative methods derived from the class by choosing different weight
functions. In Section 4, several numerical examples which analyze the
efficacy of the novel class of iterative algorithms described in this paper
are included. Ultimately, the last section 5 presents the ploynmiographs
and the generated basins of attraction of complex polynomials of differ-
ent degrees through our newly proposed methods and compares them
with other iterative methods.

2. Construction of the New Class of Methods

In this section, a new class of optimal eighth-order iterative methods
is formulated based on the method developed by Noor and Noor [9] (1.3).
To enhance the method to an eighth order, Newton’s method is added
in third step as follows.

Theorem 2.1 ([10]). let ψ1(x), ψ2(x), ψ3(x), . . . , ψn(x) be iterative func-
tions with the order q1, q2, q3, . . . , qn, respectively. Then, the composition
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of iterative functions ψ1(ψ2(ψ3(. . . ψn(x)), defines the iterative method
of the order q1q2q3 . . . qn.

By using theorem 2.1, Newton method is added as a third step, and
we obtain the following three-step method

yn = xn − f(xn)

f ′(xn)
,(2.1)

zn = yn − 2f(yn)f
′(yn)

2f ′(yn)2 − f(yn)f ′′(yn)
,

xn+1 = zn − f(zn)

f ′(zn)
.

Now, to reduce the number of evaluations per iteration, f ′(yn), f ′′(yn)
and f ′(zn) must be approximated. Approximations for f ′(yn), f ′′(yn)
and f ′(zn) have been proved by Muhaijir [8]. The approximate values
for f ′(yn), f ′′(yn) and f ′(zn) are given as

f ′(yn) = 2

(
f(yn)− f(xn)

yn − xn

)
− f ′(xn) = 2f [xn, yn]− f ′(xn),(2.2)

f ′′(yn) = 2

(
f(yn)− f(xn)− (yn − xn)f

′(xn)

(yn − xn)2

)
,(2.3)

f ′(zn) = f [xn, zn] + f [yn, zn]− f [xn, yn].(2.4)

Equations (2.2), (2.3), and (2.4) were substituted into (2.1) to obtain
the seventh-order method below

yn = xn − f(xn)

f ′(xn)
,(2.5)

zn =
2f(yn)(2f [xn, yn]− f ′(xn))

(2f [xn, yn]− f ′(xn))2 − 2f(yn)
(
f(yn)−f(xn)−(yn−xn)f ′(xn)

(yn−xn)2

) ,
xn+1 = zn − f(zn)

f [xn, zn] + f [yn, zn]− f [xn, yn]
.

Where

f [xn, yn] =
f(yn)− f(xn)

yn − xn
,(2.6)

f [xn, zn] =
f(zn)− f(xn)

zn − xn
,(2.7)

f [yn, zn] =
f(zn)− f(yn)

zn − yn
.(2.8)

The resultant modified method (2.5) has a seventh order of convergence.
For it to be elevated to an eighth order, it must be multiplied by weighted
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functions A(g1),W (g2), and H(g3). Where g1 = f(yn)
f(xn)

, g2 = f(zn)
f(yn)

, and
g3 = f(zn)

f(xn)
. Ultimately, the optimal class of iterative methods with an

eighth order of convergence will be

yn = xn − f(xn)

f ′(xn)
,(2.9)

zn =
2f(yn)(2f [xn, yn]− f ′(xn))

(2f [xn, yn]− f ′(xn))2 − 2f(yn)
(
f(yn)−f(xn)−(yn−xn)f ′(xn)

(yn−xn)2

) ,
xn+1 = zn − f(zn)

f [xn, zn] + f [yn, zn]− f [xn, yn]
(A(g1)W (g2)H(g3)).

3. Convergence Analysis and a Description of Iterative
Methods

What follows is an analysis of the convergence of order of the optimal
eighth-order class presented in (2.9). In particular, we find the condi-
tions to the weight functions in (2.9), which guarantee the required class
of optimal eighth order and present some proposed families of iterative
methods.

Theorem 3.1. Let α ∈ I, where I is an open interval, and α be a simple
zero of a sufficiently differentiable function f : I ⊆ R → R. If the initial
approximation x0 is relatively close to the simple zero, then the class of
iterative methods defined by (2.9) converges to α with an order of eight
if the following conditions are satisfied

A(0) = 1, A′(0) = A′′(0) = A′′′(0) = 0,
∣∣A(4)(0)

∣∣ <∞,

W (0) = 1, W ′(0) = 0, |W ′′(0)| <∞,

and
H(0) = H ′(0) = 1.

Proof. Let en = xn − α given that f(α) = 0, the Taylor expansion
formula for f at α yields the following
(3.1)
f(x) = f ′(α)

(
e+ c2e

2 + c3e
3 + c4e

4 + c5e
5 + c6e

6 + c7e
7 + c8e

8 +O(e9)
)
.

Where ci = f (i)(α)
i!f ′(α) , i = 1, 2, 3 . . . and

(3.2)
f ′(x) = f ′(α)

(
1 + 2c2e+ 3c3e

2 + 4c4e
3 + 5c5e

4 + 6c6e
5 + 7c7e

6 + 8c8e
7 +Oe8

)
.

Based on the equations (3.1) and (3.2), the following is obtained

(3.3) f(x)

f ′(x)
= e− c2e

2 + · · ·+
(
−64c72 + · · · 7c8

)
e8 +O(e9).
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Furthermore, substituting (3.3) into the first step of (2.5), would yield
(3.4) yn = α+ c2e

2 + · · ·+
(
64c72 − · · ·+ 7c8

)
e8 +O

(
e9
)

.
From (3.4), using the Taylor expansion formula to determine f (yn)
around yn = α, would result in
(3.5) f (yn) = f ′(α)

[
c2e

2 + · · ·+
(
144c72 + · · ·+ 7c8

)
e8 +O

(
e9
)]

.
By substituting the equations (3.1), (3.2), (3.4) and (3.5) into the second
step of (2.5), the resultant equation will be
(3.6) zn = α− c2c3e

4 + · · ·+
(
21c72 − · · · − 17c4c5

)
e8 +O

(
e9
)

.
Applying the Taylor expansion formula of f (zn) around zn = α would
yield
(3.7)
f (zn) = f ′(α)

[
−c2c3e4 + · · ·+

(
21c72 − · · · − 17c4c5

)
e8 +O

(
e9
)]
.

From (3.1) and (3.4)-(3.7) the following could be obtained

f [xn, zn] = f ′(α)
[
1 + c2e+ · · ·+

(
21c22c3c4 − · · ·+ c8

)
e7 +O

(
e8
)]
.

(3.8)

f [yn, zn] = f ′(α)
[
1 + c22e

2 + · · ·+
(
80c22c3c4 − · · · − 44c72

)
e7 +O

(
e8
)]
.

(3.9)

f [xn, yn] = f ′(α)
[
1 + c2e+

(
c22 + c3

)
e2 + · · ·+O

(
e8
)]
.

(3.10)

Substituting (3.6), (3.7) and (3.8)-(3.10) into the last step of (2.5) would
give
(3.11) xn+1 = α+ c22c

2
3e

7 +
(
−3c32c

2
3 + 3c22c3c4 + 4c2c

3
3

)
e8 +O

(
e9
)

.
This indicates that the method (2.5) has a seventh order of convergence.
Now, to transform (2.5) into an eighth order of convergence A(g1),W (g2)
and H(g3) will be expanded using Taylor expansion at g1 = g2 = g3 = 0,
which would result in

A(g1) = A(0) +A′(0)g1 +
1

2
A′′(0)g21 +A′′′(0)

g31
3!

+A(4)(0)
g41
4!

+O (g1)
5 .

(3.12)

W (g2) =W (0) +W ′(0)g2 +
1

2
W ′′(0)g22 +O(g2)

3.

(3.13)

H(g3) = H(0) +H ′(0)g3 +
1

2
H ′′(0)g23 +O(g3)

3.

(3.14)

Eventually, using (3.12), (3.13), (3.14), (2.5) and the conditions A(0) =
1, A′(0) = A′′(0) = A′′′(0) = 0,

∣∣A(4)(0)
∣∣ < ∞, W (0) = 1,W ′(0) =
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0, |W ′′(0)| < ∞, and H(0) = H ′(0) = 1, to transform the method
into an eighth order method as shown in (2.9). The error expression is
obtained from en+1 = xn+1 − α as
(3.15)

en+1 =

(
1

2
c2c

3
3W

′′(0)− c22c3c4 + 2c32c
2
3 +

1

24
A(4)(0)c52c3

)
e8 +O(e9).

This proves that the method listed in (2.9) has an optimal eighth order
of convergence, which concludes the proof of the theorem. □

Now, a construction for different families of iterative methods has
been established based on the optimal class given in (2.9) by choosing
weight functions that satisfy the conditions mentioned in theorem 3.1.
Method 1 (DSM1): Let
A(g1) = ga1 + gb1 + 1, a, b ∈ R and a ≥ 5, b ≥ 4
W (g2) = cos(g2) + gµ2 , µ ∈ R and µ > 1
H(g3) = sin(g3) + 1.
The functions A(g1),W (g2) and H(g3) satisfy the conditions and yield

a family of three-parameter eighth-order methods

yn = xn − f(xn)

f ′(xn)
,

(3.16)

zn =
2f(yn)(2f [xn, yn]− f ′(xn))

(2f [xn, yn]− f ′(xn))2 − 2f(yn)
(
f(yn)−f(xn)−(yn−xn)f ′(xn)

(yn−xn)2

) ,
xn+1 = zn − f(zn)(g

a
1 + gb1 + 1)(cos(g2) + gµ2 )(sin(g3) + 1)

f [xn, zn] + f [yn, zn]− f [xn, yn]
.

Where a, b, µ ∈ R and a ≥ 5, b ≥ 4, µ > 1.
Method 2 (DSM2): Let
A(g1) = 1 + gm1 , m ∈ R and m ≥ 4
W (g2) = cosh(g2)
H(g3) = cos(g3) + sin(g3).
It can be seen that the functions meet the conditions of Theorem 3.1

and by substituting them into (2.9) a new family of one parameter eighth
order methods are given by

yn = xn − f(xn)

f ′(xn)
,

(3.17)

zn =
2f(yn)(2f [xn, yn]− f ′(xn))

(2f [xn, yn]− f ′(xn))2 − 2f(yn)
(
f(yn)−f(xn)−(yn−xn)f ′(xn)

(yn−xn)2

) ,
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xn+1 = zn − f(zn)(1 + g1
m)(cosh(g2))(cos(g3) + sin(g3))

f [xn, zn] + f [yn, zn]− f [xn, yn]
.

Where m ∈ R and m ≥ 4.
Method 3 (DSM3): Let
A(g1) = 1 + gm1 , m ∈ R and m ≥ 4
W (g2) = 1− gS2 , S ∈ R and S ≥ 2
H(g3) = eg3g3 + 1
From the new functions which satisfy the conditions in theorem 3.1,

a new family of two-parameter eighth-order methods is obtained as

yn = xn − f(xn)

f ′(xn)
,

(3.18)

zn =
2f(yn)(2f [xn, yn]− f ′(xn))

(2f [xn, yn]− f ′(xn))2 − 2f(yn)
(
f(yn)−f(xn)−(yn−xn)f ′(xn)

(yn−xn)2

) ,
zn − f(zn)(1 + gm1 )(eg3g3 + 1)(1− gs2)

f [xn, zn] + f [yn, zn]− f [xn, yn]

where m, s ∈ R and m ≥ 4, s ≥ 2

4. Numerical Examples

In this section, several nonlinear equations have been selected to test
the performance and efficiency of the proposed methods. The proposed
methods DSM1 (3.16), DSM2 (3.17), and DSM3 (3.18) have been com-
pared with the Predictor-Corrector Halley method (1.3), and the follow-
ing eighth order methods.
The method proposed by Sharma [12] (SHM):

yn = xn − f(xn)

f ′(xn)
,(4.1)

zn = yn − f(xn)f(yn)

f(xn)− 2f(yn)f ′(yn)
,

xn+1 = zn −

[
1 +

f(zn)

f(xn)
+

(
f(zn)

f(xn)

)2
](

f [xn, yn]f(zn)

f [xn, zn]f [yn, zn]

)
.

The method proposed by Abbas and AlSubaihi [1] (HSM):

yn = xn − f (xn)

f ′ (xn)
,(4.2)

zn = xn + (β − 1)c1 − βc2,
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xn+1 = zn − f(zn)

a1 + 2a2(zn − xn) + 3a3(zn − xn)2
.

Where
β = 2,

a1 = f ′(xn),

a2 =
f [yn, xn, xn](zn − xn)− f [zn, xn, xn](yn − xn)

zn − yn
,

a3 =
f [zn, xn, xn]− f [yn, xn, xn]

zn − yn
,

c1 =
f(xn)(f(xn)− f(yn))

f ′(xn)(f(xn)− 2f(yn))
,

c2 =
f(xn)

f ′(xn)
+
f(yn)(f(xn)

3 + f(yn)
2f(xn) +

1
2f(yn)

3)(f(xn) + f(yn))
2

f ′(xn)f(xn)5
,

f [yn, xn, xn] =
f [yn, xn]− f(xn)

yn − xn
,

and
f [zn, xn, xn] =

f [zn, xn]− f ′(xn)

zn − xn
.

The method proposed by Liu and Wang [7] (LWM):

yn = xn − f(xn)

f ′(xn)
,(4.3)

zn = yn −
(

f(yn)f(xn)

f ′(xn)f(xn)− 2f ′(xn)f(yn)

)
,

xn+1 = zn −
(
f(zn)

f ′(xn)

)
k1.

Where,

k1 =

((
f(xn)− f(yn)

f(xn)− 2f(yn)

)2

+

(
f(zn)

f(yn)− f(zn)

)
+

(
4

f(zn)

f(xn) + f(zn)

))
,

With fifteen decimal digits, Table 1 shows the nonlinear equations
used for testing.
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Table 1. Test functions and their roots

Functions Roots (α)

f1(x) = sin(x)−
(
1
3

)
x 2.278862660075828

f2(x) = sin2(x)− x2 + 1 1.404491648215341
f3(x) = x3 + 4x2 − 10 1.365230013414097
f4(x) = (x+ 2)ex − 1 −0.442854401002389
f5(x) = ln(x) +

√
x− 5 8.309432694231572

All calculations have been performed using MATLAB (2018a) soft-
ware with 1500 digits of accuracy and with ε = 10−300 tolerance. The
stopping criteria have two conditions. Those conditions are |xn − α| ≤ ε
and |f (xn)| ≤ ε. Moreover, Tables 2-6 show a comparison of the num-
ber of iterations, the absolute value of the function, the absolute+ error,
and the computational order of convergence. The computational order
of convergence is calculated via the following equation

(4.4) COC =
ln
∣∣∣xn+1−α

xn−α

∣∣∣
ln
∣∣∣ xn−α
xn−1−α

∣∣∣ .
For the methods HM (1.3), DSM1 (3.16), DSM2 (3.17), DSM3 (3.18),

SHM (4.1), HSM (4.2) and LWM (4.3), some initial values are given
to find the solution for the functions in Table 1. Note that the sign
(−) in Table 5 shows that the method could not find the root of the
function. Also, the computational order of convergence is calculated via
the equation

Remark: The values for a, b and µ in DSM1 (3.16) are set to 7, 6
and 2, respectively. For both DSM2 (3.17) and DSM3 (3.18) m = 4. In
DSM3 (3.18), s = 2.

Table 2. Comparison of various iterative methods for f5(x)

Method IT |f(xn)| |xn − α| COC
f1(x), x0 = 2

HM 4 9.98783e-1085 1.01533e-1084 6
SHM 3 9.83341e-386 9.99636e-386 8
LWM 3 4.68288e-334 4.76048e-334 8
HSM 3 6.02354e-321 6.12335e-321 8
DSM1 3 7.98921e-494 8.12159e-494 8
DSM2 3 5.29551e-447 5.38326e-447 8
DSM3 3 2.72451e-448 2.76965e-448 8
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Table 3. Comparison of various iterative methods for f2(x).

Method IT |f(xn)| |xn − α| COC
f2(x), x0 = 1.6

HM 4 6.90052e-1146 2.7797e-1146 6
SHM 3 1.1127e-423 4.48221e-424 8
LWM 3 2.02765e-382 8.16787e-383 8
HSM 3 3.23698e-365 1.30394e-365 8
DSM1 3 1.39734e-552 5.62883e-553 8
DSM2 3 5.85586e-535 2.35888e-535 8
DSM3 3 3.77563e-535 1.52091e-535 8

Table 4. Comparison of various iterative methods for f3(x)

Method IT |f(xn)| |xn − α| COC
f3(x), x0 = 1.2

HM 4 1.81461e-1411 1.09887e-1412 6
SHM 3 3.52828e-531 2.13661e-532 8
LWM 3 3.07766e-480 1.86374e-481 8
HSM 3 4.27956e-345 2.59157e-346 8
DSM1 3 8.81976e-620 5.34097e-621 8
DSM2 3 9.95068e-568 6.02582e-569 8
DSM3 3 7.86454e-569 4.76252e-570 8

Table 5. Comparison of various iterative methods for f4(x)

Method IT |f(xn)| |xn − α| COC
f4(x), x0 = 0.5

HM 4 4.76686e-477 2.90273e-477 6
SHM - - - -
LWM 4 1.00172e-1169 6.09986e-1170 8
HSM 4 1.46334e-778 8.91085e-779 8
DSM1 4 8.33573e-508 5.07595e-508 8
DSM2 4 8.28661e-496 5.04604e-496 8
DSM3 4 8.82393e-594 5.37323e-594 8
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Table 6. Comparison of various iterative methods for f5(x)

Method IT |f(xn)| |xn − α| COC
f5(x), x0 = 11.9

HM 4 2.23394e-1144 7.60362e-1144 6
SHM 3 3.92439e-492 1.33574e-491 8
LWM 3 2.98533e-398 1.01611e-397 8
HSM 3 2.76523e-342 9.41198e-342 8
DSM1 3 3.81916e-439 1.29992e-438 8
DSM2 3 9.32007e-409 3.17226e-408 8
DSM3 3 7.12008e-454 2.42345e-453 8

The numerical results in Tables 2-6 show that when DSM1 (3.16),
DSM2 (3.17), and DSM3 (3.18) are compared to the method in (1.3),
they require less iterations than the Predictor-Corrector Halley method.
Moreover, they yield similar results obtained by similar methods of the
same order of convergence, such as SHM (4.1), HSM (4.2), and LWM
(4.3). In addition to that, it shows that in most of the cases, the pro-
posed methods have a smaller absolute value of f(xn) compared to the
other methods. Therefore, the new proposed class of methods is of prac-
tical interest and competes with other methods with the same order of
convergence.

5. Polynomiography

There are several areas of mathematics where polynomials play a
significant role. A huge part of the history of mathematics revolves
around finding the roots of polynomials. By introducing polynomiog-
raphy, Kalantari [4] took polynomials’ root-finding techniques to the
next level. Polynomiography is the science and art of visualising the
approximation of the roots of complex polynomials, using fractal, and
nonfractal graphs created by applying the mathematical convergence
properties of iteration functions [4]. When compared with the classical
approach of numerically comparing iterative methods in the real do-
main, the study of convergence and stability of the iterative method
based on its polynomiograph gives detailed information and a deep un-
derstanding of its behavior at a glance. Therefore, it is an essential and
effective tool to use. To obtain the ploynomiograph of the root in terms
of fractal graphs, consider a square R × R = [−2, 2] × [−2, 2] in which
we take 400 × 400 = 160000 initial points which contain all the roots
(zn, j = 1, 2, 3, . . .) of the concerned complex polynomial and we apply
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the methods starting at every initial point z0 in the square. If the se-
quence generated by the iterative method converges to a root zn of the
polynomial with a tolerance |f (zn+1)| < 10−3 and a maximum of 20
iterations, we decide that z0 is in the basins of attraction of this root.
A brighter color means fewer iterations and a darker color is assigned
to show more iterations. If the iterative method starting be at z0 and
reaches a root in K iterations (K ≤ 20), then this point z0 is assigned
with different colors if |zn+1 − zn| < 10−3. It is assumed that the start-
ing point has diverged if K > 20 and is assigned a black color. It is
important to note that the presence of black dots in the polynmiograph
does not necessarily indicate that the method is nonconvergent at these
points or that it is unable to find a root at these points; nevertheless, it
indicates that the method failed to find the solution under the conditions
established for convergence, such as the number of steps and tolerance.

What follows is the polynomiographs of different complex polynomials
for HM (1.3), SHM (4.1), HSM (4.2), LWM (4.3), and the newly devel-
oped iterative methods DSM1 (3.16), DSM2 (3.17) and DSM3 (3.18).
The polynomiographs present the basins of attraction of the following
polynomials:

P1(z) = z2 − 1, P2(z) = z2 − z, P3(z) = z3 − 4z2 − 10,
P4(z) = z3 − z, P5(z) = z4 − z.

(a) SHM (b) LWM (c) HSM

(d) DSM1 (e) DSM2 (f) DSM3

Figure 1. Basins of attraction of P1(z) for HM, SHM,
LWM, HSM, DSM1, DSM2 and DSM3.
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(a) SHM (b) LWM (c) HSM

(d) DSM1 (e) DSM2 (f) DSM3

Figure 2. Basins of attraction of P2(z) for HM, SHM,
LWM, HSM, DSM1, DSM2 and DSM3.

(a) SHM (b) LWM (c) HSM

(d) DSM1 (e) DSM2 (f) DSM3

Figure 3. Basins of attraction of P3(z) for HM, SHM,
LWM, HSM, DSM1, DSM2 and DSM3.
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(a) SHM (b) LWM (c) HSM

(d) DSM1 (e) DSM2 (f) DSM3

Figure 4. Basins of attraction of P4(z) for HM, SHM,
LWM, HSM, DSM1, DSM2 and DSM3.

(a) SHM (b) LWM (c) HSM

(d) DSM1 (e) DSM2 (f) DSM3

Figure 5. Basins of attraction of P5(z) for HM, SHM,
LWM, HSM, DSM1, DSM2 and DSM3.

6. Conclusion

A novel optimal class of eighth-order of convergence methods for find-
ing simple roots of nonlinear equations based on the Predictor-Corrector
Halley method has been evinced. The order of convergence of the class
is eight and consists of three function evaluations and one evaluation of
the first derivative per iteration, so the class of optimal methods has an
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efficiency index equal to 8
1
4 = 1.6817. Numerical examples have been

carried out to test the performance and efficiency of the novel methods.
Furthermore, in most of the results obtained from the numerical exam-
ples and the basins of attraction, the proposed methods proved efficient
and yielded better results than those of the same order of convergence.
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