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A Study on a Fractional q-Integro-Differential Inclusion by
Quantum Calculus with Numerical and Graphical Simulations

Mehran Ghaderi1 and Shahram Rezapour2∗

Abstract. In this paper, we investigate the existence of a solu-
tion for the fractional q-integro-differential inclusion with new dou-
ble sum and product boundary conditions. One of the most recent
techniques of fixed point theory, i.e. endpoints property, and in-
equalities, plays a central role in proving the main results. For a
better understanding of the issue and validation of the results, we
presented numerical algorithms, tables and some figures. The paper
ends with an example.

1. Introduction

As we know, a large number of physical phenomena can be described
and modeled by differential equations. Also, the new issue of differen-
tial inclusions has a special ability in interpreting physical phenomena
with shocks. With the entry of fractional calculus(FC) into this field,
the ability of differential equations and consequently boundary value
problems(BVP) in modeling faced significant growth. It is clear that
the reason for this growth is the generalization of operators from integer
order to arbitrary fractional order in FC, which is not a small advantage
in the study of systems with memory. This is the same property of non-
locality of fractional operators that researchers have recently used to
provide modeling in bio-mathematics [5, 13], physics [11, 19, 23, 29, 41],
thermodynamics [31, 40]and engineering [35, 36]. In recent decades, the
non-locality of fractional calculus has acted as a driving force for research
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in this field. Based on the available results and evidence, modeling by or-
dinary calculus is not capable of describing the real behavior of phenom-
ena and is often associated with the error of estimating the phenomenon
[24]. Of course, it is worth mentioning that the approach of researchers
of different sciences to this property of non-locality has not been the
same. For example, physicists used it to model viscosity and heat flow
and etc., while mathematicians tried to generalize and present new frac-
tional operators [16]. Caputo, ψ-Caputo, Caputo-Fabrizio, Hadamard,
Hilfer, Riemann-Liouville and Atangana-Baleanu(AB) can be mentioned
among the famous fractional operators that researchers use in their re-
search today. To get more information about these contributions, one
can refer to [7–10, 17, 18, 22, 25, 33, 34, 37–39]. On the other hand,
the prominent role of computer and software packages in the numeri-
cal methods of investigating complex equations and modeling cannot be
ignored, which requires a discrete space. In this work, we also provide
this space with the help of quantum calculus and time scale.

The history of quantum calculus(QC) dates back to the work of the
British mathematician Frank Hilton Jackson. In 1910, he gave a new
definition of the derivative, by which the basic principles of quantum
calculus were founded [26, 27]. Jackson removed the concept of limit
from the definition of the derivative and introduced two types of op-
erators, namely q-derivative and h-derivative. Of course, q-derivative’s
growth was higher than h-derivative’s and it didn’t take long for it to
enter the field of FC. Fractional q-derivative has both the advantages
of FC and due to the discreteness of the space, it provides the possibil-
ity of using the computer in solving and simulating complex equations.
For the same reason, in the last decade, q-derivative has received a lot
of attention from researchers and many articles have been published in
this field. For details see [4, 14, 20, 30, 32, 44, 45]. On the other hand,
Set-Valued mappings, namely Multifunction, have interesting features
whose properties have been investigated from different aspects and re-
cently used in modeling due to their ability to interpret physical phe-
nomena with shock. In 2007 Wlodarczyk et al. studied the existence
and uniqueness of endpoint of closed set-valued contractions in met-
ric spaces [42]. Wardowski in 2009, investigated the existence of fixed
point and endpoint of multifunction in cone metric space [43]. A year
later, Amini-Harandi presented an interesting property for multifunc-
tion, which plays the main role in this article [6]. Having said that, here
we are going to investigate the existence of the solution for a fractional
q-integro-differential inclusion by using the advantages mentioned about
fractional and quantum calculus and multifunction.
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In 2012, B. Ahmad et al. reviewed the existence and uniqueness of
solutions for the following q-difference equationsD2

qw(κ) = g(κ,w(κ)), κ ∈ K,

w(0) = w(K), Dqw(0) = Dqw(K),

such that g ∈ C(K×R,R), K = [0,K]∩qN, and qN := {qn : n ∈ N}∪{0}
[3]. In the same year, Ravi P Agarwal et al. investigated the existence
and dimension of the set of mild solutions to the following inclusion
problem

CDηw(κ) ∈ Aw(κ) + B(κ,w(κ)), κ ∈ [0,K], η ∈ (0, 1]

w(0) + f(0) = w0,

which A is a sectorial operator (SO), CDη is Caputo derivative of fraction
order η, and B : [0,K] × Rn → P(Rn), f : C([0,K],Rn) → Rn [2]. In
2013, Zhao et al. studied the BVP of fractional q-derivative equation
as follows

Dη
qw(κ) + B(κ,w(κ)) = 0, κ ∈ (0, 1s), η ∈ (0, 1]

w(0) = 0, w(1) =

∫ α

0

(α− qp)ν−1

Γq(ν)
w(p)dqp,

such that η ∈ (1, 2], ν ∈ (0, 2], α ∈ (0, 1), B : [0, 1]× R+ → R+, and Dη
q

is Riemann-Liouville q-derivative of order η [46].
Considering the topics discussed above and getting motivation from

previous works, we want here to examine the existence of a solution for
the following fractional quantum integro-differential inclusion problem
(1.1)

CDη
qw(κ) ∈ T

(
κ,w(κ),C Dσ

qw(κ),

∫ κ

0
w(p)dp

)
, κ ∈ K = [0.1]

under new sum and product boundary conditions

(1.2)
{
w(0) + Sw′(1) = 0,

w′(d) = P

which S =
m∑
j=1

νj , P =
m∏
j=1

uj , νj , uj ∈ R, and d ∈ (0, 1). In our problem
CDη

q is Caputo quantum operator of fractional order 1 ≤ η < 2, and
σ ∈ (0, 1), such that T : K × R3 → P(R), is multifunction where P(R)
set of all subsets of real numbers. Note that we will continue to do all our
calculations on the time scale, namely TSκ0 =

{
κ0, κ0q, κ0q

2, . . .
}
∪{0},

where κ0 ∈ R, and q ∈ (0, 1).
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2. Preliminaries

Definition 2.1 ([26]). Assume that v, p ∈ R, n ∈ N0 = N∪{0}, then the
quantum-analogue of v and power function (v − p)n defined as follows,
respectively

[v]q =
1− qv

1− q
= 1 + q + · · ·+ qv−1.

and

{
(v − p)

(n)
q =

∏n−1
j=0 (v − pqi) for n ≥ 1,

(v − p)
(0)
q = 1.

Definition 2.2 ([27]). Let v ∈ R− {0,−1,−2, . . . }, then the quantum
gamma function formulated as follows

Γq(v) =
(1− q)(v−1)

(1− q)v−1
,

also, it is worth mentioning that Γq(v + 1) = [v]qΓq(v) holds true.

In the following, we present an algorithm for calculating the quantum
gamma function. Also, we computed some values of q in Table 1.

Algorithm 1 The proposed procedure to calculate Γq(w).
function quantum gamma = qG(q,v,r)
t = 1;
for j = 0 : r
t = t ∗ (1− q(j+1))/(1− q(v+j));
end
qG = t/(1− q)(v−1);
end
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Table 1. Numerical results for Γq(2.25) for different value of q

r q = 0.2 q = 0.45 q = 0.69 q = 0.77 q = 0.89 q = 0.95

v = 2.25
1 1.0486 1.1997 1.7704 2.3102 4.9645 12.3195
2 1.0413 1.1283 1.4983 1.8719 3.7499 8.9705
3 1.0399 1.0986 1.3513 1.6262 3.0530 7.0484
4 1.0396 1.0858 1.2643 1.4738 2.6063 5.8134
5 1.0395 1.0800 1.2100 1.3730 2.2984 4.9589
6 1.0395 1.0775 1.1749 1.3036 2.0753 4.3355
.. ... ... ... ... ... ...
11 1.0395 1.0754 1.1138 1.1581 1.5240 2.7536
12 1.0395 1.0754 1.1105 1.1470 1.4679 2.5843
... ... ... ... ... ... ...
25 1.0395 1.0754 1.1031 1.1125 1.1855 1.6136
26 1.0395 1.0754 1.1031 1.1122 1.1783 1.5808
... ... ... ... ... ... ...
42 1.0395 1.0754 1.1031 1.1113 1.1312 1.2946
43 1.0395 1.0754 1.1031 1.1113 1.1303 1.2853
.. ... ... ... ... ... ...
83 1.0395 1.0754 1.1031 1.1113 1.1231 1.1467
84 1.0395 1.0754 1.1031 1.1113 1.1230 1.1458
... ... ... ... ... ... ...

207 1.0395 1.0754 1.1031 1.1113 1.1230 1.1286
208 1.0395 1.0754 1.1031 1.1113 1.1230 1.1285

Definition 2.3 ([1]). The quantum derivative of a continuous function
as w(κ) is as follows

(Dqw)(κ) =
w(κ)−w(qκ)

(1− q)κ
,

in addition, (Dqw)(0) = lim
κ→0

(Dqw)(κ). Furthermore, for all n ∈ N, the
relation (Dn

qw)(κ) = Dq(Dn−1
q w)(κ) holds true.

Definition 2.4 ([21]). Suppose that w(κ) : [0,∞] → R, be a continuous
function, then its fractional Riemann-Liouville quantum integral and its
fractional Caputo quantum derivative are expressed respectively by

Iη
qw(κ) =

1

Γq(η)

∫ κ

0
(κ− qp)η−1w(p)dqp,

and

cDηw(κ) =
1

Γq(n− η)

∫ κ

0
(κ− qp)n−η−1Dn

qw(p)dqp, n = [η] + 1.
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Lemma 2.5 ([15]). assume that n = [η] + 1, then the following relation
is true (

CIη
q
CDη

qw
)
(κ) = w(κ)−

n−1∑
j=0

wj

Γq(j + 1)
(Dj

qw)(0),

which is deduced from it, the general solution for CDη
qw(κ) = 0, expressed

by
w(κ) = ℓ0 + ℓ1κ+ ℓ2κ

2 + · · ·+ ℓn−1κ
n−1,

where ℓ0, . . . , ℓn−1 ∈ R.

Notation 2.6. Here, we introduce some symbols that are used in the
topology of the used space. Consider (G, dG) be a metric space, also
suppose that P(G) and 2G represent the set of all subset of G and the
set of all non-empty subset of G, respectively. In the sequel, we mean
the symbols Pcl(G), Pbd(G), Pcx(G) and Pct(G) respectively as the class
of all closed, bounded, convex and compact subsets of G, respectively.

Definition 2.7 ([6]). A fixed point of a multifunction(set-valued map)
such as E : G → 2G is an element κ ∈ K, such that κ ∈ E(κ). As well
as, if we have E(κ) = {κ}, then this element, namely κ, is called an end
point of E .

Definition 2.8 ([6]). Let (G, dG) be a metric space and E : G → 2G

is a multifunction, then E , has an approximate property if we have
inf
κ∈G

sup
r∈E(κ)

dG(κ, r) = 0.

Definition 2.9 ([12]). If (G, dG) is a metric space, then the Pompeiu-
Hausdorff meter, namely HM : 2G × 2G → [0.∞], is defined as follows

HM(W,Z) =

{
sup
w∈W

dG(w,Z), sup
z∈Z

dG(W, z)

}
,

which HM(W, z) = inf
w∈W

dG(w.z). Then the symbols (Pbd,cl(G),HM),
and (Pcl(G),HM) represent a metric space and a generalized metric
space, respectively.

Definition 2.10 ([12]). Assume that V = C(K,R), then define the space

G =

{
w(κ) : w(κ),C Dσ

qw(κ),

∫ κ

0
w(p)dp ∈ V

}
equipped with the norm

‖w‖ = sup
κ∈K

|w(κ)|+ sup
κ∈K

∣∣CDσ
qw(κ)

∣∣+ sup
κ∈K

∣∣∣∣∫ κ

0
w(p)dp

∣∣∣∣.
Now (G, ‖.‖) is a Banach space.
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Definition 2.11. Let w ∈ G, then for all κ ∈ K, define the set of
selection of S∗ as follows

S∗
T ,w =

{
g ∈ L1(K) : w(κ) ∈ T

(
κ,w(κ),C Dσ

qw(κ),

∫ κ

0
w(p)dp

)}
,

If dim(G) <∞, then the above selection is nonempty which is proved in
[12].

In 2010, Amini-Harandi introduced the end-point technique, which
plays an essential role in proving our main result [6]. Now we will express
it here.

Lemma 2.12 ([6]). Suppose that (G, dG) is a complete metric space,
also consider two map Ψ and E with the following properties

• Ψ : [0,∞) → [0,∞) is upper semi continuous (USC), which
∀κ > 0 we have Ψ(κ) < κ, and lim inf

κ→∞
(κ−Ψ(κ)) > 0.

• ∀w, z ∈ G, for the set-valued map E : G → Pcl,bd(G), the inequal-
ity HM

(
E(w), E(z)

)
≤ Ψ

(
dG(w, z)

)
holds true.

Then the set-valued map E, has a unique endpoint iff E has an approxi-
mate end-point property.

3. Main Results

Now we have provided the prerequisites necessary to express our main
results, and only one lemma remains, which we prove here.

Lemma 3.1. The unique solution for the fractional q-differential prob-
lem cDη

qw(κ) = g(κ) under boundary conditions (1.2) expressed by

w(κ) = Iη
q g(κ) + ℓ0 + ℓ1κ

= Iη
q g(κ) + S

[
Iη−1
q g(d)− Iη−1

q g(1)− P
]
+
[
P − Iη−1

q g(d)
]
κ.

such that η ∈ [1, 2), and g(κ) ∈ V.

Proof. In view of Lemma 2.5, the problem CDη
qw(κ) = g(κ), has a

unique solution which acquired by

(3.1) w(κ) = Iη
q g(κ) + ℓ0 + ℓ1t,

which ℓ0, ℓ1 ∈ R. To apply the boundary conditions, it is necessary to
calculate the first order derivative, namely w′(κ) = ℓ1 + Iη−1

q g(κ). Now
with regard to boundary conditions (1.2), we getℓ0 + S + Iη−1

q g(1) + Sℓ1 = 0,

Iη−1
q g(d) + ℓ1 − P = 0.
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By performing simple calculations, the values of ℓ0 and ℓ1 will be as
follows ℓ0 = S

[
Iη−1
q g(d)− Iη−1

q g(1)− P
]
,

ℓ1 = P − Iη−1
q g(d).

Placing coefficients ℓ0 and ℓ1 in equation (3.1) provides the desired result.
□

To obtain the result in our inclusion problem, it is necessary to apply
the following hypotheses.

A1) Since T : K×R3 → Pcp(R) is integrable and bounded, therefore
T (., a, b, c) : [0, 1] → Pcp(R) is measurable.

A2) For Ψ : [0,∞) → [0,∞), which is nondecreasing and (USC),
∀p > 0 we have lim infp→∞(p−Ψ(p)) > 0 and Ψ(p) < p.

A3) For all κ ∈ K, and wj , zj ∈ R, j = 1, 2, 3, there exist Ω ∈
C(K, [0,∞)), where

HM (T (κ,w1, w2, w3), T (κ, z1, z2, z3) ≤
Ω(κ)

δ1 + δ2 + δ3
Ψ

 3∑
j=1

|wj − zj |

 ,

such that

δ1 = ‖Ω‖
[

1

Γq(η + 1)
+

|S|dη−1

Γ(η)
− |S|

Γq(η)
+
dη−1

Γq(η)

]
,

δ2 = ‖Ω‖
[

1

Γq(η − σ + 1)
+

dη−1

Γq(2− σ)

]
,

δ3 = ‖Ω‖
[

1

Γq(η + 2)
+

|S|
Γq(η)

(
dη−1 + 1 + |P|

)
+
dη−1

Γq(η)
+ |P|

]
.

A4) Suppose that E : G → 2G , be a operator which for g ∈ S∗
T ,w

read as follows:
E(ℏ)

=
{
ℏ ∈ G : ℏ(κ) = Iη

q g(κ) + S
[
Iη−1
q g(d)− Iη−1

q g(1)− P
]

+
[
P − Iη−1

q g(d)
]
κ,∀κ ∈ K

}
Theorem 3.2. Let conditions A1 − A4 are holds true. If the set-
valued map E : G → 2G, has the approximate endpoint property, then
the inclusion q-integro-differential problem mentioned in (1.1)-(1.2) has
a solution.
Proof. To show that our problem (1.1)-(1.2) has a solution, we go to
find the endpoint of E : G → 2G . This end point is the solution to our
inclusion. We do this in two steps.
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Step I.: we shall show for all ℏ ∈ G, E(ℏ) ⊂ G which E(ℏ) is
closed. Since the map κ 7→ T (κ,w(κ),C Dσ

qw(κ),
∫ κ
0 w(p)dp), is

measurable and closed value map , for all ℏ ∈ G. Therefore, such
a map has a non-empty measurable selection, namely S∗

T ,w 6= ϕ.
Now assume that {tn}n≥1 be a sequence in E(ℏ), which tn → t.
Choose gn ∈ S∗

T ,w, which for all κ ∈ K and n ≥ 1

tn = Iη
q gn(κ) + S

[
Iη−1
q gn(d)− Iη−1

q gn(1)− P
]
+
[
P − Iη−1

q gn(d)
]
κ.

Compactness of T , implies that gn has a subsequence(show this
again with gn), which converges to some g ∈ L1[0, 1]. it is easy
to check that g ∈ S∗

T ,w, and for all κ ∈ K

tn(κ) → t(κ) = Iη
q g(κ)+S

[
Iη−1
q g(d)− Iη−1

q g(1)− P
]
+
[
P − Iη−1

q g(d)
]
κ.

It can be concluded from this t ∈ E(ℏ), thus G is closed values.
In addition, from the compactness of the value of T , it follows
that ∈ E(ℏ) is bounded.

Step II.: Our goal at this step is to establish the following in-
equality: HM

(
E(w), E(z)

)
≤ Ψ

(
‖w − z‖

)
. To do this, let

w, z ∈ G, ℏ1 ∈ E(z), and choose g1 ∈ S∗
T ,w such that for al-

most κ ∈ K, we can write

ℏ1 = Iη
q g1(κ) + S

[
Iη−1
q g1(d)− Iη−1

q g1(1)− P
]
+
[
P − Iη−1

q g1(d)
]
κ.

But, in view of hypothesis A3

Hd (T (κ,w1, w2, w3), T (κ, z1, z2, z3))

≤ 1

δ1 + δ2 + δ3
Ω(κ)Ψ

(
|w1(κ)− z1(κ)|+

∣∣CDη
qw2(κ)−C Dη

q z2(κ)
∣∣

+

∣∣∣∣∫ κ

0
w3(p)dp−

∫ κ

0
z3(p)dp

∣∣∣∣ ),
hence, ∃s ∈ T

(
κ,w(κ),C Dσ

qw(κ),
∫ κ
0 w(p)dp

)
, where ∀κ ∈ K:

|g1 − s| ≤ 1

δ1 + δ2 + δ3
Ω(κ)Ψ

 3∑
j=1

|wj − zj |

 .

Now consider the map F : K → P(R), such that

F(κ) =

s ∈ R : |g1 − s| ≤ 1

δ1 + δ2 + δ3
Ω(κ)Ψ

 3∑
j=1

|wj − zj |
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Forasmuch as 1

δ1 + δ2 + δ3
Ω(κ)Ψ

(∑3
j=1 |wj − zj |

)
, and g1 are

measurable, so the set-valued map

F(.) ∩ T
(
.,w(.),C Dσ

qw(.),

∫ .

0
w(p)dp

)
is measurable.

Take g2(κ) ∈ T
(
κ,w(κ),C Dσ

qw(κ),
∫ κ
0 w(p)dp

)
, which for all

κ ∈ K, we have

|g1(κ)− g2(κ)| ≤
1

δ1 + δ2 + δ3
Ω(κ)Ψ

 3∑
j=1

|wj − zj |

 .

Now, ∀κ ∈ K, assume that g2 ∈ E(ℏ) , with

ℏ2 = Iη
q g2(κ) + S

[
Iη−1
q g2(d)− Iη−1

q g2(1)− P
]
+
[
P − Iη−1

q g2(d)
]
κ.

Subsequently, let supκ∈K |Ω(κ)| = ‖Ω‖, therefore

ℏ1(κ)− ℏ2(κ) = Iη
q [g1 − g2](κ) + SIη−1

q [g1 − g2](d)− SIη−1
q [g1 − g2](1)

+
(
Iη−1
q [g1 − g2](d)

)
κ,

which yields

|ℏ1 − ℏ2| ≤
1

δ1 + δ2 + δ3
‖Ω‖Ψ

(
‖w − z‖

)
×
[

1

Γq(η + 1)
+

|S|dη−1

Γq(η)
− |S|

Γq(η)
+
dη−1

Γq(η)

]

=
δ1

δ1 + δ2 + δ3
Ψ
(
‖w − z‖

)
.

Also,∣∣CDσ
q ℏ1 −C Dσ

q ℏ2
∣∣ ≤ 1

δ1 + δ2 + δ3
‖Ω‖Ψ

(
‖w − z‖

)
×
[

1

Γq(η − σ + 1)
+

dη−1

Γq(2− σ)

]

=
δ2

δ1 + δ2 + δ3
Ψ
(
‖w − z‖

)
,

and∣∣∣∣∫ κ

0
ℏ1(p)dp−

∫ κ

0
ℏ2(p)dp

∣∣∣∣ ≤ 1

δ1 + δ2 + δ3
‖Ω‖Ψ

(
‖w − z‖

)
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×
[

1

Γq(η + 2)
+

|S|
Γq(η)

(
dη−1 + 1 + |P|

)
+
dη−1

Γq(η)
+ |P|

]

=
δ3

δ1 + δ2 + δ3
Ψ
(
‖w − z‖

)
.

It can be inferred from the above relationships that
‖ℏ1 − ℏ2‖ = sup

κ∈K
|ℏ1(κ)− ℏ2(κ)|+ sup

κ∈K
|CDσ

q ℏ1(κ)−C Dσ
q ℏ2(κ)|

+ sup
κ∈K

∣∣∣∣∫ κ

0
ℏ1(p)dp−

∫ κ

0
ℏ2(p)dp

∣∣∣∣
≤ 1

δ1 + δ2 + δ3
Ψ
(
‖w − z‖

)
(δ1 + δ2 + δ3)

= Ψ
(
‖w − z‖

)
.

Thus,for all w, z ∈ G, we have
HM

(
E(w), E(z)

)
≤ Ψ

(
‖w − z‖

)
.

Now, according to Lemma 2.12, and the endpoint property of E , ∃w∗ ∈
G, where E(w∗) = {w∗}. Hence, w∗ is a solution for the fractional q-
inclusion problem mentioned in (1.1)-(1.2). □

4. Examples

Example 4.1. Regard the following fractional quantum integro-differential
inclusion problem

(4.1)

cD
5
4
q w(κ) ∈ T

[
0,

2 + cos(κ)

23κ2 + κ3
+

7

23(2 +
√
κ)

|w(κ)|+ 7κ

46

∫ κ

0

w(p)dp

1 + p

+ 7
46e

∣∣∣ cD
3
5
q w(κ)

∣∣∣]
,

w(0) + 2.4125w′(1) = 0,

w′
(

3

20

)
=

1

81
.

where κ ∈ K = [0, 1]. Here, we put: η = 5
4 , σ = 3

5 , d = 3
20 , S =

4∑
j=1

νj =

2.4125 with ν1 = 7
10 , ν2 = 9

8 , ν3 = 2
5 , ν4 = 3

16 , and P =
j=4∏
j=1

uj =
1
81 with

uj = 1
3 . we choose Ω : [0, 1] → [0,∞) by Ω(κ) = 8

67κ, ‖Ω‖ = 8
67 , and
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Ψ(κ) = κ
23 . Obviously Ψ is non-decreasing and (USC) on K.

Consider the set-valued map T : K × R3 → Pct(R) as follows:

T (t, w1, w2, w3) =

[
0,

2 + cos(κ)

23κ2 + κ3
+

7

23(2 +
√
κ)

|w(κ)|+ 7κ

46

∫ κ

0

w(p)dp

1 + p

+
7

46
e

∣∣∣ cD
3
5
q w(κ)

∣∣∣]
.

Nevertheless, the values of δ1, δ2, δ3 are calculated for q = 1
5 , 7

20 , 4
5 in

Table 2.

Table 2. Numerical result of δ1, δ2, δ3, for different val-
ues of q.

q = 1
5 q = 7

20 q = 4
5

δ1 0.0789 0.2020 0.6638
δ2 0.0759 0.2058 0.6092
δ3 0.0695 0.2137 0.6512

(δ1 + δ2 + δ3)
−1‖Ω‖ 0.5323 0.1921 0.0621

Now, it is easy to examine that

HM (T (κ,w1, w2, w3), T (κ, z1, z2, z3)) ≤
Ω(κ)

δ1 + δ2 + δ3
Ψ

 3∑
j=1

|wj − zj |

 ,

and infw∈G
(
supz∈E(z) ‖w− z‖

)
= 0. Now all the conditions of Theorem

3.2 are satisfied. Thanks to endpoint property and Theorem 3.2, our
problem which is formulated in (4.1) has a solution. Also, the graphs
of some functions are presented in Figures 1,2 and 3.
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Figure 1. The graph of T (κ,w(κ)) in Example 4.1.

Figure 2. The contour line of T (κ,w(κ)) in Example 4.1.
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Figure 3. The graph of T (κ,w(κ),
∫ κ
0 w(p)dp) in Ex-

ample 4.1.

5. Conclusion

In the last decade, increasing the ability to model natural and physical
phenomena has become one of the important topics of interdisciplinary
research. In this regard, the usual modeling methods have undergone
important changes. For example, differential inclusions, which have a
special ability to model physical phenomena with multiple shocks, are
considered serious competitors for differential equations. In this work,
we examined a fractional quantum integro-differential inclusion under
sum and product boundary conditions with the numerical method. The
existing derivation operators in our problem are of q-Caputo type. To
prove the existence of the solution, we used the endpoint feature of the
set-valued mappings. With the use of quantum calculus, we provided
the right space for the use of computers in calculations and solutions. An
example, algorithms and numerical results are also provided to validate
our results.

Acknowledgment. Research of the authors was supported by Azarbai-
jan Shahid Madani University. The authors express their gratitude to
the referees for their helpful suggestions which improved final version of
this paper.
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