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Rigidity of Weak Einstein-Randers Spaces

Behnaz Lajmiri1, Behroz Bidabad2∗ and Mehdi Rafie-Rad3

Abstract. The Randers metrics are popular metrics similar to
the Riemannian metrics, frequently used in physical and geometric
studies. The weak Einstein-Finsler metrics are a natural gener-
alization of the Einstein-Finsler metrics. Our proof shows that if
(M,F ) is a simply-connected and compact Randers manifold and F
is a weak Einstein-Douglas metric, then every special projective vec-
tor field is Killing on (M,F ). Furthermore, we demonstrate that
if a connected and compact manifold M of dimension n ≥ 3 ad-
mits a weak Einstein-Randers metric with Zermelo navigation data
(h,W ), then either the S-curvature of (M,F ) vanishes, or (M,h)

is isometric to a Euclidean sphere Sn(
√
k), with a radius of 1/

√
k,

for some positive integer k.

1. Introduction

The study of Randers metrics and weak Einstein-Finsler metrics is
a pivotal research domain with extensive implications in both physical
and geometric fields. Randers metrics are particularly appealing for
their proximity to Riemannian metrics and their simplicity, rendering
them a frequently utilized tool in various studies.

This work is motivated by the desire to expand our understanding
of the properties and behaviors of Randers metrics and weak Einstein-
Finsler metrics. By proving that a simply-connected compact Randers
manifold with a weak Einstein-Douglas metric has a special projective
vector field that is Killing, we make a significant contribution to the field
by providing new insights into the nature of these metrics.
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Furthermore, the finding that a connected and compact manifold of
dimension n ≥ 3, that admits a weak Einstein-Randers metric with
Zermelo navigation data, has vanishing S-curvature or is isometric to a
Euclidean sphere Sn(

√
k) of radius 1/

√
k, is a major advancement in the

field. This result opens up new avenues for exploration and research and
inspires further investigation into the relationship between these metrics
and the physical and geometric phenomena they describe.

In conclusion, this work stands as a testament to the potency of math-
ematical inquiry and underscores the significance of delving into the
properties of mathematical entities to acquire fresh insights and knowl-
edge.

Historically, it is known that, through Yamabe’s work, every Rie-
mannian metric on a compact n-dimensional manifold (n ≥ 2), can be
conformally deformed into the one with constant scalar curvature [18].
The existence of such a conformal deformation relies on the existence of
a function that satisfies certain PDE and might give some information
on the topological structure of the Riemannian manifold. For instance
Obata proves that a compact Einstein manifold of constant scalar cur-
vature k admits a non-constant function ϕ such that ∆ϕ = nkϕ, if and
only if the manifold is isometric to the sphere Sn(

√
k), of radius 1/

√
k

in the (n+ 1)-dimensional Euclidean space, see [12]. This theorem has
been proved and used in the Einstein spaces in [19] , as well as in the
space of constant scalar curvature in [9]. The first eigenvalue λ1 of the
Laplacian operator on (Sn(

√
k), h), the Euclidean sphere of radius 1√

k
in

Rn+1 is nk and the corresponding eigenfunction f satisfies the following
system of differential equations:
(1.1) ∇df + kfh = 0, k > 0,

see [12]. Tanno studied the following system of third order partial dif-
ferential equations, see [17]
(1.2) ∇h∇j∇if + k (2∇hfgji +∇jfgih +∇ifghj) = 0,

where k is a positive constant. Originally, the aforementioned differential
equation arises from an investigation of the Laplacian operator on a
Euclidean sphere Sn(

√
k) with constant curvature k. The first eigenvalue

of the Laplacian on Sn(
√
k) is mk and the corresponding eigenfunction

h satisfies the following second order PDE:
(1.3) ∇j∇ih+ khgji = 0.

Many mathematicians have studied the above differential equation in the
context of Finsler geometry, see for instance, [1, 4, 6, 11]. In the present
work we extend the above results for Randers metric in the following
sense. On a Randers metric on M , we denote by ∇ the Levi-Civita
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connection of α, and use the usual symbolic conventions for the general
(α, β)-metrics, [8]. Zermelo’s navigation problem involves determining
the shortest time paths on a Riemannian manifold (M,h), with an ex-
ternal force W . It turns out that the shortest paths are the geodesics
of the Randers metric F = α + β on M , expressed in terms of a Rie-
mannian metric h and a vector field W called the navigation data of F .
Also, we know that the weak Einstein-Finsler metrics are quite natural
generalization of the Einstein-Finsler metrics whose Ricci scalar takes
the form Ric = (n− 1)

(
3θ
F + σ

)
F 2, where σ = σ (x) is a scalar function

and θ = θi (x) y
i is a 1-form on M . To elaborate more precisely, we show

the following theorems in Finsler geometry.

Theorem 1.1. Let (M,F) be a simply connected and compact Randers
manifold. If F is a weak Einstein-Douglas metric then every special
projective vector field on (M,F ) is Killing.

Theorem 1.2. Let (M,F ) be a connected and compact weak Einstein-
Randers space of dimension n ≥ 3 having the navigation data (h,W ).
Then, the S-curvature of (M,F ) vanishes or (M,h) is isometric to the
Euclidean sphere Sn(

√
k), for some positive number k.

2. Preliminaries and Notations

Let M be an n-dimensional C∞ connected manifold and TxM the
tangent space of M at x. The tangent bundle of M is the union of
tangent spaces TM :=

∪
x∈M TxM . We will denote the elements of TM

by (x, y) where y ∈ TxM . Let TM0 = TM \{0} . The natural projection
π : TM0 → M is given by π (x, y) := x. A Finsler structure on M
is a function F : TM → [0,∞) with the following properties: (i) F
is C∞ on TM0, (ii) F is positively 1-homogeneous on the fibers of the
tangent bundle TM , and (iii) the Hessian of F 2 with the components
gij (x, y) := 1

2 [F
2 (x, y)]yiyj is a positive definite matrix on TM0. The

pair (M,F ) is then called a Finsler space. Throughout this paper, we
denote a Riemannian metric by α =

√
aij (x) yiyj and a 1-form by β =

bi (x) y
i.

A Randers metric is a type of Finsler metric, which is a generalization
of Riemannian metrics. The Finsler metric assigns a length to a tangent
vector at any direction at each point on a manifold, while a Riemannian
metric only assigns a length to a tangent vector at each point. A Randers
metric is defined by a 1-form β and a Riemannian metric α, and is given
by the following formula: F (x, y) = α+β, where (x, y) ∈ TM represents
the position and tangent vectors on the manifold, respectively.

An example of a Randers metric is the Zermelo navigation problem,
which involves finding the shortest path between two points on a smooth
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surface, taking into account the wind direction and speed. The Randers
metric for this problem is given by the following formula: F (x, y) =√
hx (y, y) +Wx (y), where h is the Riemannian metric on the surface,

and W is the 1-form representing the wind direction and speed.
A weak Einstein-Finsler metric is a generalization of the Einstein-

Finsler metric, which is a Finsler metric that satisfies a version of the
Einstein equation in Finsler geometry. The weak Einstein-Finsler met-
ric is a Finsler metric that satisfies a weakened form of the Einstein
equation, and is characterized by its curvature properties.

An instance of a weak Einstein-Finsler metric is the Berwald metric,
which is a type of Finsler metric that satisfies a weakened form of the
Einstein equation. The Berwald metric is given by the following for-
mula: F (x, y) =

√
hx (y, y) +

1
2

⟨
∇hx(y,·)y, y

⟩
, where ∇ is the covariant

derivative, and h is a Riemannian metric.
A globally defined vector field G induced by F on TM0, which in a

standard coordinate
(
xi, yi

)
on TM0 is given by G = yi ∂

∂xi−2Gi (x, y) ∂
∂yi

,
where Gi (x, y) are the local functions on TM0 satisfying Gi (x, λy) =
λ2Gi (x, y) , λ > 0. Consider the following conventions:

Gi
j :=

∂Gi

∂yi
, Gi

jk :=
∂Gi

j

∂yk
, Gi

jkl :=
∂Gi

jk

∂yl
.

Notice that, the local functions Gi
jk give rise to a torsion-free connection

on π∗TM called the Berwald connection, denoted here by D,and it serves
as a practical connection utilized within this paper.

Given a Finsler structure F on an n-dimensional manifold M , the
Busemann-Hausdorff volume form is defined by

σF (x) :=
Vol (Bn (1))

Vol
{
(yi) ∈ Rn | F

(
yi ∂

∂xi |x
)
< 1

} ,
where dVF = σF (x) dx1 · · · dxn.

Define g := det (gij (x, y)) and τ (x, y) := ln
√
g

σF (x) , and let y ∈ TxM ,
be a tangent vector and γ (t) ,−ϵ < t < ϵ, denotes the geodesic with the
initials γ (0) = x and ˙γ (0) = y. The function S (x, y) := d

dt [τ (γ (t) , γ̇ (t))]|t=0

is called the S-curvature with respect to the Busemann-Hausdorff vol-
ume form. A Finsler space is said to be of isotropic S-curvature if there
is a function c = c (x) defined on M such that S = (n+ 1) c (x)F . It is
called a Finsler space of constant S-curvature once c is a constant.

Let F be a Finsler structure on an n-manifold and Gi denote the
geodesic coefficients of F . Define Ry = Ri

k (x, y) dx
k ⊗ ∂

∂xi |x : TxM →
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TxM by

Ri
k := 2

∂Gi

∂xk
− yj

∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

The family R := {Ry}y∈TM0
is called the Riemann curvature. The Ricci

scalar is defined by Ric := Rk
k. The Ricci scalar Ric is a generaliza-

tion of the Ricci tensor in Riemannian geometry, in the sense that, a
Finsler structure F on an n-dimensional manifold M , is called a weak
Einstein metric if Ric = (n− 1)

(
3θ
F + σ

)
F 2, where σ = σ (x) is a scalar

function and θ = θi (x) y
i is a 1-form on M . It is called an Einstein

metric if θ = 0 in the above equation, that is, Ric = (n− 1)σ (x)F 2. In
Finsler geometry, almost all geometric objects are defined on TM , and
thus depend on both the position x and the direction y. Additionally,
the Lie derivatives of these objects in the direction of a vector field X
on M must be considered concerning to the complete lift vector field X̂
on TM . A diffeomorphism between the two Finsler manifolds (M,F )
and (M, F̄ ) is called a projective transformation if it takes every forward
(resp. backward) geodesic to a forward (resp. backward) geodesic. A
projective transformation is called an affine transformation if it leaves
invariant the connection coefficients.
A smooth vector field X is called a projective vector field or affine vec-
tor field on (M,F ) if the associated local flow is a projective or affine
transformation, respectively.
Lemma 2.1 ([1]). A vector field X on the Finsler manifold (M,F ) is a
projective vector field if and only if there is a function Ψ = Ψ(x, y) on
TM0, positively 1-homogeneous on y, such that
(2.1) £X̂Gi = Ψ(x, y) yi,

where Gi is the spray coefficients. X is an affine vector field if and only
if Ψ(x, y) = 0.
Definition 2.2. Two Finsler structures F and F̃ are said to be specially
projectively equivalent if G̃i = Gi + Ψyi, where, Ψ(x, y) is linear with
respect to y ∈ TxM , see [16].
2.1. Weak Einstein-Randers Metric. Let α be a Riemannian metric
and β = bi (x) y

i a 1-form on M such that ∥β∥x := sup β(y)
α(y) < 1. Define

∇jbi by (∇jbi) θ
j := dbi − bjθ

j
i , where θi := dxi, and θji := Γj

ikdx
k,

denote the Levi-Civita connection 1-form and ∇ the associate covariant
derivative of α, respectively. Let us put

rij :=
1

2
(∇jbi +∇ibj) , sij :=

1

2
(∇jbi −∇ibj) ,(2.2)

sij := aihshj , sj := bis
i
j , eij := rij + bisj + bjsi.(2.3)
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Denote the geodesic spray coefficients of α and F by Gi
α. The relation

between Gi
α and the coefficients Gi are given by

(2.4) Gi = Gi
α +

(e00
2F

− s0

)
yi + αsi0,

where e00 := eijy
iyj , s0 := siy

i, and si0 := sijy
j , see [16]. Notice that the

S-curvature of a Randers metric F = α+ β is given by

S = (n+ 1)
{e00

F
− s0 − ρ0

}
,

where ρ = ln
√
1− ∥β∥ and ρ0 = ∂ρ

∂xk y
k, see [16]. It is well-known that

a Randers metric F is of isotropic S-curvature S = (n+ 1) cF , if and
only if e00 = 2c (x)

(
α2 − β2

)
, see [13, p.2]. In 1931, E. Zermelo studied

the following problem: Imagine a scenario where a ship is sailing on
an open sea and a gentle wind begins to blow. How should the ship’s
navigation be optimized to reach a predetermined destination in the least
amount of time? Randers metrics can be expressed as the solution to the
Zermelo navigation problem on some Riemannian manifold (M,h) with
a wind vector field W . Concretely, assume that h =

√
hij (x) yiyj and

W = W i ∂
∂xi with ∥W∥h < 1, then the Randers structure F is obtained

by solving the following equation:

h

(
x,

y

F (x, y)
−Wx

)
= 1.

Here the Randers metric is given by

(2.5) F =

√
λh2 +W 2

0

λ
− W0

λ
,

where W0 := Wiy
i = h (y,Wx) , Wi := hijW

j , λ := 1−∥W∥2h >
0 and ∥Wx∥h = ∥βx∥α, see [7]. The condition ∥W∥h < 1, is essential
for obtaining a positive definite Randers metric for Zermelo’s navigation
problem. In this case, we call (h,W ) the navigation data of the Randers
metric F = α + β. A Randers metric F = α + β is a Douglas metric if
and only if β is closed. For Douglas metric in (2.4), s0 and si0 are zero
[5].

Theorem 2.3 ([8]). Let F be a Randers metric on a manifold M. If F
is a weak Einstein metric, then it has isotropic S-curvature.

Akbar-Zadeh in 1986, proved that if (M, g) is a complete and simply
connected Finslerian manifold of dimension n with constant strictly posi-
tive Ricci directional curvature while possessing an admitting projective
vector field, then M is both compact and homeomorphic to a sphere,
as outlined in [2]. He proved that if a simply connected and complete
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Einstein-Finsler manifold admits a special projective vector field, then
the following PDE possesses a non-trivial solution f.
(2.6) D0D0D0f + (n− 1)σ (x)F 2∇0f = 0,

where, Ric = (n− 1)σ (x)F 2, D denotes the Berwald connection and
D0 = yiDi stands for the covariant derivative along the canonical geo-
desic spray. Notice that, the equation (2.6) is not invariant to the change
of affinely equivalent connections such as Chern, Berwald or Cartan con-
nections.

The technique employed here, as presented in the subsequent sections,
initially surfaced in [3] and has since found application in various other
studies. It seems to be a powerful technique for the (α, β)-metrics since
then, so that many interesting results are now proved, see [14]. This
algebraic technique is based on the translation of the original equation
into the form Rat + αIrrat = 0, where Rat and Irrat are polynomials
in terms of the components of the tangent vectors in a given coordi-
nate system. The equation Rat + αIrrat = 0 is itself equivalent to the
equation system Rat = 0, Irrat = 0. That is, for any point x ∈ M the
irreducible polynomial h2, α2 ∈ R

[
y1, ..., y2

]
are divisible.

Lemma 2.4. Let us suppose that (M,F ) is a Douglas Randers metric
with isotropic S-curvature. If F is a weak Einstein metric with Ricci
curvature Ric = (n− 1)

(
3θ
F + σ

)
F 2, then f satisfies the following equa-

tion
D0D0D0f + (n− 1)

(
3θ

F
+ σ

)
F 2∇0f = 0,

if and only if it satisfies the following equations
(2.7)
∇0∇0∇0f−2β∇0c∇0f+3 (n− 1) θβ∇0f+(n− 1)∇0fσ

(
α2 + β2

)
= 0,

and
(2.8) − 2∇0c∇0f − 4c∇0∇0f +3 (n− 1)∇0fθ+2 (n− 1)∇0fσβ = 0.

Proof. Denote the geodesic spray coefficients of α and F by Gi
α and Gi

(2.9) Gi = Gi
α +

(e00
2F

− S0

)
yi + αsi0.

Since F is Douglas metric, s0 = 0, and si0 = 0. By theorem (2.3), if F is
a weak Einstein metric, then it has isotropic S-curvature. Also F is of
isotropic S-curvature if and only if e00 = 2c

(
α2 − β2

)
, where c = c (x)

is a function on M . Therefore (2.9) reduces to
(2.10) Gi = Gi

α + c (α− β) yi.

On the ther hand, from [15, p.386] we get
(2.11) D0D0f = ∇0∇0f + 2Fsi0∇if + F 2si∇if − 2cF∇0f.
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Since F is Douglas metric (2.11) reduces to
(2.12) D0D0f = ∇0∇0f − 2cF∇0f.

In order to compute D0D0D0f , we assume that D0D0f = φ and com-
pute the derivative of φ, as follows

D0φ = yiδiφ(2.13)

= yi
(

∂

∂xi
−Gk

i

∂

∂yk

)
φ

= yi
∂φ

∂xi
− 2Gk ∂φ

∂yk
.

Replacing Gk = Gk
α + c (α− β) yk in (2.13) we get

D0φ = yi
∂φ

∂xi
− 2Gk

α

∂φ

∂yk
− c (α− β) yk

∂φ

∂yk
(2.14)

= ∇0φ− c (α− β) yk
∂φ

∂yk
.

Replacing (2.12) in (2.14) we have
D0φ = D0D0D0f

= ∇0 (D0D0f)− c (α− β) yi
∂

∂yi
(D0D0f)

= ∇0∇0∇0f − 2∇0 (cF )∇0f − 2cF∇0∇0f

− c (α− β) yi
∂

∂yi
(D0D0f) .

Again replacing (2.12) in the last term of the above equation we get

D0D0D0f = ∇0∇0∇0f − 2∇0 (cF )∇0f − 2cF∇0∇0f

(2.15)

− c (α− β) yi
∂

∂yi
(∇0∇0f − 2cF∇0f)

= ∇0∇0∇0f −∇0 (cF )∇0f − 2cF∇0∇0f − c (α− β) yi
∂

∂yi(
yi∇i∇0f + yi∇0∇if − yi2cF∇if − yi2c

(
∂

∂yi
F

)
∇0f

)
.

By simplification, (2.15) becomes
D0D0D0f = ∇0∇0∇0f − 2∇0 (cF )∇0f − 2cF∇0∇0f(2.16)

− 2c (α− β)∇0∇0f + 2c2
(
α2 − β2

)
∇0f

+ 2c2
(
α2 − β2

)
∇0f.
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Replacing
∇0 (cF ) = ∇0 (c)F + c∇0 (α+ β)

= ∇0 (c) (α+ β) + 2c2
(
α2 − β2

)
,

in (2.16) we get
D0D0D0f = ∇0∇0∇0f − 2 (∇0c) (α+ β)∇0f(2.17)

− 4c2
(
α2 − β2

)
∇0f − 2c (α+ β)∇0∇0f

+ 4c2
(
α2 − β2

)
∇0f − 2c (α− β)∇0∇0f.

Using the above equation, since F is weak Einstein we have

D0D0D0f + (n− 1)

(
3θ

F
+ σ

)
F 2∇0f = 0.

Hence

D0D0D0f + (n− 1)

(
3θ

F
+ σ

)
F 2∇0f

= ∇0∇0∇0f − 2α (∇0c)∇0f − 2 (∇0c)∇0fβ

− 4c2α2∇0f + 4c2β2∇0f − 2cα∇0∇0f

− 2cβ∇0∇0f − 2cα∇0∇0f + 2cβ∇0∇0f

+ 4c2α2∇0f − 4c2β2∇0f + (n− 1)∇0f3θα

+∇0f (n− 1) 3θβ + (n− 1)∇0fσα
2

+ (n− 1)∇0fσβ
2 + 2 (n− 1)∇0fσαβ

= 0.

Let us rewrite the above equation using the Rat and Irrat
Rat = ∇0∇0∇0f − 2β∇0c∇0f + 3 (n− 1) θβ∇0f(2.18)

+ (n− 1)∇0fσ
(
α2 + β2

)
,

and
Irrat = −2∇0c∇0f − 4c∇0∇0f + 3 (n− 1)∇0fθ(2.19)

+ 2 (n− 1)∇0fσβ.

This complete the proof of Lemma 2.4. □

We are now in a position to prove the theorem 1.1.

Proof. To prove Theorem 1.1, by means of Lemma 2.4 we compute the
term Rat− βIrrat as follows.
Rat− βIrrat = ∇0∇0∇0f + 4cβ∇0∇0f + (n− 1)∇0fσ

(
α2 − β2

)
= 0.
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The above equation along a geodesic γ (t) , t ∈ R has the following form

(2.20) f ′′′ + 4c (t)u (t) f ′′ + γ (t) (n− 1) f ′ = 0,

where, f (t) = f (x (t)), u (t) = β (γ̇ (t)), and γ (t) = γ (x (t)). To solve
this differential equation, we assume first y = f ′, therefore we have the
following second-order differential equation

(2.21) y′′ + 4c (t)u (t) y′ + (n− 1) γ (t) y = 0,

where we suppose l ≤ γ (t) ≤ l1, m ≤ u (t) ≤ m1 and b ≤ c (t) ≤ b1 are
bounded in (2.21). Therefore, we have the following equation

(2.22) d2

dt2
y (t) + 4bm

(
d

dt
y (t)

)
+ (n− 1) ly (t) = 0.

To solve the equation above, we make the assumption that the solution
can be represented as a series: y (t) =

∞∑
k=0

akt
k, and rewrite the above

ODE with the series expansion.
Convert (n− 1) ly (t) to the series expansion

(2.23) (n− 1) ly (t) =

∞∑
k=0

l (n− 1) akt
k.

Convert 4bm d
dty (t) to the series expansion

(2.24) 4bm
d

dt
y (t) =

∞∑
k=0

4bmak+1 (k + 1) tk.

Convert d2

dt2
y (t) to the series expansion

(2.25) d2

dt2
y (t) =

∞∑
k=0

ak+2 (k + 1) (k + 2) tk.

Replacing (2.23) and (2.24), (2.25) in (2.22) we get
(2.26)
∞∑
k=0

ak+2 (k + 1) (k + 2) tk+
∞∑
k=0

4bmak+1 (k + 1) tk+
∞∑
k=0

l (n− 1) akt
k = 0.

Evaluating each term at t = 0 gives the recursion relation,

(2.27)
(
k2 + 3k + 2

)
ak+2 + 4bmak+1k + 4bmak+1 + l (n− 1) ak = 0.

The above recursion relation, defines the series solution of the ODE

(2.28) ak+2 = −4bmak+1 (k + 1) + l (n− 1) ak
(k + 2) (k + 1)

.



RIGIDITY OF WEAK EINSTEIN-RANDERS SPACES 217

Using the recursion equation, we have the following solution

(2.29) y = a0

(
1−

(
n− 1

2

)
lt2 + · · ·

)
+ a1

(
t− 2bmt2 + · · ·

)
.

The limit at infinity is
(2.30)

lim
t→∞

y (t) = lim
t→∞

a0

(
1−

(
n− 1

2

)
lt2 + · · ·

)
+a1

(
t− 2bmt2 + · · ·

)
= ∞,

which is a contradiction with the assumption. Since y is assumed to be
bounded, the coefficients a0, a1, . . . must be zero, hence y = 0, and f is
constant. Since f is constant, we have ∇0f = Ψ = 0. Therefore every
special projective vector field is Killing on (M,F ). This completes the
proof of Theorem 1.1. □

Recall that a vector field W on M is conformal with respect to the
Riemannian metric h if the Lie derivative of the metric h with respect
to W is proportional to h, namely, there is a positive function σ = σ (x)
such that LWh = 2σ (x)h. In [8], it is proved that given any Ran-
ders metric F = α+ β on M expressed in terms of the navigation data
(h,W ), F has isotropic S-curvature S = (n+ 1) c (x)F (x, y) if and only
if W is a conformal vector field satisfying LWh = −4c (x)h. Compact
Riemannian manifolds that admit a non-trivial conformal vector field
exhibit intriguing properties. For instance, the following result summa-
rize information on the interaction between some Riemannian manifolds
and conformal vector fields, see [10, 19].

Theorem 2.5 ([10, p.243]). Let (M,h) be a connected n-dimensional
(n ≥ 3) Riemannian Einstein manifold with Ric = (n− 1)µh2 and the
conformal vector field W on M .

(a) If µ ≤ 0 then, W is a Killing vector field for (M,h).
(b) If µ > 0 then, (M,h) is isometric to the sphere Sn

(√
µ
)
.

Theorem 2.6 ([7]). Let F = α+ β be a Randers metric on a manifold
M of dimension n expressed by (2.5) with the navigation data (h,W ).
Assume that F is of the isotropic S-curvature S = (n+ 1) cF . Then F
is a weak Einstein metric with

Ric = (n− 1)

(
3θ

F
+ σ

)
F 2,

if and only if h is an Einstein metric with
Rich = (n− 1)µh2,

where µ = σ (x)+c2+2cxmWm, c = c (x), σ = σ (x) are scalar functions
on M , and Rich is the Ricci curvature of the Riemannian metric h.
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We are now in a position to prove the theorem 1.2.

Proof. To prove Theorem1.2, let us consider a weak Einstein-Randers
metric F = α + β with the navigation data (h,W ). It is well-known
that the S-curvature of F is isotropic, see [3]. By Theorem (2.6) h is an
Einstein metric whose Ricci scalar Rich satisfies Rich = (n− 1)µ (x)h2,
where µ (x) is a constant say µ since n ≥ 3. Now, W is a conformal vector
field on the Einstein manifold (M,h). By Theorem 2.5, either W is a
Killing vector field for h if µ ≤ 0 or, (M,h) is isometric to the Euclidean
sphere Sn

(√
µ
)

if µ > 0. In the former case, S-curvature vanishes since
W is Killing. This completes the proof of Theorem 1.2. □

In conclusion, Theorems 1.1 and 1.2 make significant contributions to
the study of Randers metrics and weak Einstein-Finsler metrics. Theo-
rem 1.1 demonstrates that under certain conditions, every special pro-
jective vector field on a Randers manifold is a Killing vector field. This
finding not only illuminates the intricate connection between Randers
metrics and special projective vector fields but also carries significant im-
plications for the investigation of geometry and physics within Randers
spaces.

Theorem 1.2 provides a complete characterization of the geometry of
compact weak Einstein-Randers spaces in terms of the Zermelo naviga-
tion data. It reveals that such spaces either have vanishing S-curvature
or are isometric to Euclidean spheres, providing a deep understanding
of the geometric structure of these spaces. These results are likely to be
of great interest to researchers in differential geometry and Finsler ge-
ometry, and may have applications in a variety of other areas, including
physics, engineering, and computer science.
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