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General Fractional Integro-Differential Equation of Order
ϱ ∈ (2, 3] Involving Integral Boundary Conditions

Abdelati El Allaoui

Abstract. In this paper, we are interested in studying an integro-
differential equation with two-point integral boundary conditions
using the Caputo fractional derivative of order 2 < ϱ ≤ 3. The con-
sidered problem is transformed into an equivalent integral equation.
To study existence and uniqueness results, our approaches used is
based on two well-known fixed point theorems, Banach contraction
and Krasnoselskii’s theorems. To illustrate our obtained outcomes,
an example is given at the end of this paper.

1. Introduction

Fractional calculus is widely employed for the mathematical model-
ing of various natural and engineering processes, as highlighted in [17].
Moreover, several works such as [12, 19, 20] delve into the application of
fractional calculus in constructing models to explore theoretical physics
problems. In particular, [18] presents a concrete real-world instance that
demonstrates the physical interpretation of the Caputo fractional deriv-
ative. Numerous researchers have contributed to the study of fractional
differential equations, including [2, 13–15].

Firstly, we present an overview of recent advancements in the analysis
and solution of fractional differential equations with different types of
boundary conditions. As a starting point, we will focus on three notable
works by E. Shivanian.

The work [5] delves into the error estimation and stability analysis of a
high-order nonlinear fractional differential equation featuring a Caputo
derivative and integral boundary condition. Through rigorous analysis
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222 A. EL ALLAOUI

and numerical investigations, the study provides valuable insights into
the accuracy and stability of the equation’s numerical solution.

In the work [6], E. Shivanian and A. Dinmohammadi tackle the chal-
lenging task of solving a nonlinear fractional integro-differential equation
with a non-local boundary condition. The authors explore both analyt-
ical and numerical methods to obtain solutions and examine the impact
of non-locality on the behavior of the equation.

Lastly, E. Shivanian and H. Fatahi’s research focuses on the study of
a specific class of three-point boundary fractional high-order problems
subject to Robin conditions (see [7]). Their work investigates the exis-
tence of unique solutions and presents efficient numerical techniques for
approximating the solution.

By reviewing these three works, we aim to highlight significant ad-
vancements in the understanding, analysis, and numerical solution of
fractional differential equations with diverse boundary conditions. The
insights gained from these studies contribute to the broader field of frac-
tional calculus and offer valuable tools for modeling and solving complex
mathematical problems arising in various scientific and engineering dis-
ciplines.

Ahmed et al. discussed the existence and uniqueness of solutions to
the following fractional differential equation.

cDϱ

0+
u(t) = ϕ(t, u(t)), for t ∈ (0, 1), n− 1 < ϱ ≤ n,

u(i)(0) = 0, for i = 0, 1, . . . , n− 1,

u(ϑ) = δ1

∫ γ

0

u(s)ds+ δ2

∫ 1

σ

u(s)ds, 0 < γ < ϑ < σ < 1,

where cDϱ
0+

represents the Caputo fractional derivative, for more details
see [1].

Dong et al. in [8] investigated the solvability of the following fractional
integro-differential equation{

cDν
0+u(t) = ϕ(t, u(t)) +

∫ t

0
ψ (t, s, u(s)) ds, t ∈ J = [0, T ], 0 < ν < 1

u(0) = δ,

where the existence and uniqueness of solutions are established using
the Banach contraction and the Schauder fixed point theorem.

Motivated by the aforementioned researches, the purpose of this paper
is to study the following fractional integro-differential equation involving
nonlocal double integral boundary conditions:
(1.1)

cDϱ

0+
u(t) + λIϑ

0+ϕ(t, u(t)) = ψ(t, u(t)), t ∈ I = [0, 1], 2 < ϱ ≤ 3, ϑ > 0,

u(0) =

∫ γ

0

u(τ)dτ,

u(1) =

∫ 1

σ

u(τ)dτ, 0 < γ < σ < 1,

u′(0) = 0,
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where Dϱ designates the Caputo fractional derivative [10], Iϑ0+ repre-
sents the Riemann-Liouville operators of fractional order ϑ (see [10]),
ϕ, ψ : I × R −→ R are continuous functions and λ ∈ R.

To the best of our knowledge, no one has combined a fractional
integro-differential equation of this type with these integral conditions
and a higher order derivative. The innovation also lies in the construc-
tion of the equivalent integral equation for this problem.

2. Preliminaries

Firstly, we provide a concise overview of compact operators, including
their definitions and key properties. The Krasnoselskii and Banach fixed
point theorems, which are fundamental to this study, are also recalled.

Definition 2.1 ([4]). (i) An operator T : X −→ Y between two
Banach spaces X and Y is called a compact operator if, for any
bounded subset A in X, the closure of T (A) be compact.

(ii) T is called a relatively compact operator if the closure of its
image set T (X) is compact in Y . This means that T (X) is
both closed and compact.

(iii) T is said to be equicontinuous if, for every ε > 0, there exists
δ > 0 such that for any x, y ∈ X with ∥x− y∥ < δ, it holds that
∥T (x)− T (y)∥ < ε.

Theorem 2.2 (Arzelà-Ascoli theorem [9]). Let X be a compact Haus-
dorff metric space. Then K ⊂ C(X) is relatively compact if and only if
K is uniformly bounded and uniformly equicontinuous.

Theorem 2.3 (Banach’s Fixed Point Theorem [3]). Let X be a Banach
space and Λ : X −→ X be a contraction on X. Then, Λ has a unique
fixed point.

Theorem 2.4 (Krasnoselskii’s fixed point theorem [11]). Let B be a
closed bounded convex subset of a Banach space X. Assume that Λ1 and
Λ2 are mappings from B into X such that:

(i) Λ1(u) + Λ2(v) ∈ B for all u, v ∈ B,
(ii) Λ1 is a contraction,
(iii) Λ2 is continuous and compact.

Then, Λ1 + Λ2 has a fixed point in B.

Now, we recall essential findings on fractional calculus, which form
the foundation of our research. These fundamental results provide the
necessary tools and concepts to investigate and analyze fractional dif-
ferential equations.



224 A. EL ALLAOUI

Definition 2.5 ([10]). For h ∈ L1[0, 1], we define the left fractional
integral of order ϱ > 0 of Riemann-Liouville as follows:

Iϱ
0+
h(t) =

1

Γ(ϱ)

∫ t

0
(t− τ)ϱ−1h(τ)dτ.

Let n ∈ N and n− 1 < ϱ ≤ n. we recall the following definition:

Definition 2.6 ([10]). Let ACn[0, 1] be the space of functions that have
nth derivatives absolutely continuous.
The left Caputo fractional derivative for a function h ∈ ACn[0, 1] of
order ϱ is defined as

CDϱ
0+
h(t) =

1

Γ(n− ϱ)

∫ b

t
(t− τ)n−ϱ−1h(n)(τ)dτ,

where, Γ represents the Gamma function of Euler [16].

Lemma 2.7 ([21]). We have
CIϱ

0+

[
CDϱ

0+
h(t)

]
= h(t) + a0 + a1t+ a2t

2 + · · ·+ an−1t
n−1,

for ak ∈ R and k = 0, 1, 2, . . . , n− 1.

3. Main Results
First, let us construct the solution to our problem. Consider the

following problem

(3.1)



cDϱ

0+
u(t) + λIϑ

0+Φ(t) = Ψ(t), t ∈ I = [0, 1], 2 < ϱ ≤ 3, ϑ > 0,

u(0) =

∫ γ

0

u(τ)dτ,

u(1) =

∫ 1

σ

u(τ)dτ, 0 < γ < σ < 1,

u′(0) = 0,

with Φ, Ψ ∈ C(I).
The solution of problem (3.1) is expressed as

u(t) = Iϱ
0+
Ψ(t)− λIϱ+ϑ

0+
Φ(t) + µ(t)

[
Iϱ+1
0+

Ψ(γ)− λIϱ+ϑ+1
0+

Φ(γ)
]

+ ν(t)
[
λIϱ+ϑ

0+
Φ(1) + λIϱ+ϑ+1

0+
Φ(σ) + Iϱ+1

0+
Ψ(1)− Iϱ

0+
Ψ(1)

−λIϱ+ϑ+1
0+

Φ(1)− Iϱ+1
0+

Ψ(σ)
]
,

with

µ(t) =
2 + σ3 − 3σt2

ω
, ν(t) =

γ3 + 3(1− γ)t2

ω
,

where ω = (1− γ)
(
2 + σ3

)
+ σγ3.
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Indeed:
Let us apply Iϱ

0+
on both sides of the first equation of problem (3.1), we

get

u(t) = Iϱ
0+
Ψ(t)− λIϱ+ϑ

0+
Φ(t) + a0 + a1t+ a2t

2

(3.2)

=
1

Γ(ϱ)

∫ t

0
(t− τ)ϱ−1Ψ(τ)dτ − λ

Γ(ϱ+ ϑ)

∫ t

0
(t− τ)ϱ+ϑ−1Φ(τ)dτ

+ a0 + a1t+ a2t
2,

where a0, a1, a2 are unknowns to be determined.
From (3.2), we have

(3.3) u(0) = a0 =

∫ γ

0
u(τ)dτ.

By deriving both sides of equation (3.2), we have
u′(t) = Iϱ−1

0+
Ψ(t)− λIϱ+ϑ−1

0+
Φ(t) + a1 + 2a2t,

which implies that
(3.4) u′(0) = a1 = 0.

From (3.2), we have
u(1) = Iϱ

0+
Ψ(1)− λIϱ+ϑ

0+
Φ(1) + a0 + a2

=

∫ 1

σ
u(τ)dτ,

which means that

(3.5) a2 =

∫ 1

σ
u(τ)dτ + λIϱ+ϑ

0+
Φ(1)−

∫ γ

0
u(τ)dτ − Iϱ

0+
Ψ(1).

By substitution of (3.3), (3.4) and (3.5) in (3.2), we obtain

u(t) = Iϱ
0+
Ψ(t)− λIϱ+ϑ

0+
Φ(t) + λt2Iϱ+ϑ

0+
Φ(1)− t2Iϱ

0+
Ψ(1)

(3.6)

+ (1− t2)

∫ γ

0
u(τ)dτ + t2

∫ 1

σ
u(τ)dτ

=
1

Γ(ϱ)

∫ t

0
(t− τ)ϱ−1Ψ(τ)dτ − λ

Γ(ϱ+ ϑ)

∫ t

0
(t− τ)ϱ+ϑ−1Φ(τ)dτ

+ λt2Iϱ+ϑ
0+

Φ(1)− t2Iϱ
0+
Ψ(1) + (1− t2)

∫ γ

0
u(τ)dτ

+ t2
∫ 1

σ
u(τ)dτ,
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note that this solution is implicitly defined. In the next step, we will

determine the two unknowns
∫ γ

0
u(τ)dτ and

∫ 1

σ
u(τ)dτ .

Integrating both sides of equation (3.6) on [0, γ], we have∫ γ

0
u(t)dt =

1

Γ(ϱ+ 1)

∫ γ

0
(γ − τ)ϱΨ(τ)dτ + λ

γ3

3
Iϱ+ϑ
0+

Φ(1)

− λ

Γ(ϱ+ ϑ+ 1)

∫ γ

0
(γ − τ)ϱ+ϑΦ(τ)dτ

− γ3

3
Iϱ
0+
Ψ(1) +

(
γ − γ3

3

)∫ γ

0
u(τ)dτ +

γ3

3

∫ 1

σ
u(τ)dτ,

which is equivalent to

(
3 + γ3 −3γ)

∫ γ

0
u(τ)dτ − γ3

∫ 1

σ
u(τ)dτ

(3.7)

=
3

Γ(ϱ+ 1)

∫ γ

0
(γ − τ)ϱΨ(τ)dτ + λγ3Iϱ+ϑ

0+
Φ(1)

− 3λ

Γ(ϱ+ ϑ+ 1)

∫ γ

0
(γ − τ)ϱ+ϑΦ(τ)dτ − γ3Iϱ

0+
Ψ(1)

= 3Iϱ+1
0+

Ψ(γ)− 3λIϱ+ϑ+1
0+

Φ(γ) + λγ3Iϱ+ϑ
0+

Φ(1)− γ3Iϱ
0+
Ψ(1).

Now, integrating both sides of equation (3.6) on [σ, 1], we obtain∫ 1

σ
u(t)dt

=
1

Γ(ϱ+ 1)

∫ 1

0
(1− τ)ϱΨ(τ)dτ − 1

Γ(ϱ+ 1)

∫ σ

0
(σ − τ)ϱΨ(τ)dτ

− λ

Γ(ϱ+ ϑ+ 1)

∫ 1

0
(1− τ)ϱ+ϑΦ(τ)dτ +

λ
(
1− σ3

)
3

Iϱ+ϑ
0+

Φ(1)

+
λ

Γ(ϱ+ ϑ+ 1)

∫ σ

0
(σ − τ)ϱ+ϑΦ(τ)dτ − 1− σ3

3
Iϱ
0+
Ψ(1)

+
2 + σ3 − 3σ

3

∫ γ

0
u(τ)dτ +

1− σ3

3

∫ 1

σ
u(τ)dτ,

which is equivalent to(
2 + σ3 − 3σ

) ∫ γ

0
u(τ)dτ −

(
2 + σ3

) ∫ 1

σ
u(τ)dτ(3.8)

=
3

Γ(ϱ+ 1)

∫ σ

0
(σ − τ)ϱΨ(τ)dτ
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+
3λ

Γ(ϱ+ ϑ+ 1)

∫ 1

0
(1− τ)ϱ+ϑΦ(τ)dτ

− 3

Γ(ϱ+ 1)

∫ 1

0
(1− τ)ϱΨ(τ)dτ

− 3λ

Γ(ϱ+ ϑ+ 1)

∫ σ

0
(σ − τ)ϱ+ϑΦ(τ)dτ

− λ
(
1− σ3

)
Iϱ+ϑ
0+

Φ(1) +
(
1− σ3

)
Iϱ
0+
Ψ(1)

= Iϱ+1
0+

Ψ(σ) + 3λIϱ+ϑ+1
0+

Φ(1)− 3Iϱ+1
0+

Ψ(1)

− 3λIϱ+ϑ+1
0+

Φ(σ)− λ
(
1− σ3

)
Iϱ+ϑ
0+

Φ(1)

+
(
1− σ3

)
Iϱ
0+
Ψ(1).

We define

S =

(
3 + γ3 − 3γ −γ3
2 + σ3 − 3σ −

(
2 + σ3

) )
, U =


∫ γ

0
u(τ)dτ∫ 1

σ
u(τ)dτ

 ,

B =

(
b1
b2

)
,

where
b1 = 3Iϱ+1

0+
Ψ(γ)− 3λIϱ+ϑ+1

0+
Φ(γ) + λγ3Iϱ+ϑ

0+
Φ(1)− γ3Iϱ

0+
Ψ(1),

b2 = Iϱ+1
0+

Ψ(σ) + 3λIϱ+ϑ+1
0+

Φ(1)− 3Iϱ+1
0+

Ψ(1)− 3λIϱ+ϑ+1
0+

Φ(σ)

− λ
(
1− σ3

)
Iϱ+ϑ
0+

Φ(1) +
(
1− σ3

)
Iϱ
0+
Ψ(1).

From equations (3.7) and (3.8), we have the following system
SU = B.(3.9)

Note that
det(S) = −3

[
(1− γ)

(
2 + σ3

)
+ σγ3

]
< 0.

Then, the system (3.9) has a unique solution.
Using Cramer’s rule, one can get

∫ γ

0
u(τ)dτ =

γ3

ω

(
λIϱ+ϑ

0+
Φ(1) + λIϱ+ϑ+1

0+
Φ(σ) + Iϱ+1

0+
Ψ(1)− Iϱ

0+
Ψ(1)

(3.10)

−Iϱ+1
0+

Ψ(σ)− λIϱ+ϑ+1
0+

Φ(1)
)

+
2 + σ3

ω

(
Iϱ+1
0+

Ψ(γ)− λIϱ+ϑ+1
0+

Φ(γ)
)
,
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and

∫ 1

σ
u(τ)dτ =

3 + γ3 − 3γ

ω

(
Iϱ+1
0+

Ψ(1) + λIϱ+ϑ+1
0+

Φ(σ)− λIϱ+ϑ+1
0+

Φ(1)

(3.11)

−Iϱ+1
0+

Ψ(σ)
)
+

2 + σ3 − 3σ

ω

(
Iϱ+1
0+

Ψ(γ)− λIϱ+ϑ+1
0+

Φ(γ)
)

+
(1− γ)

(
1− σ3

)
+ γ3 (1− σ)

ω

(
λIϱ+ϑ

0+
Φ(1)− Iϱ

0+
Ψ(1)

)
.

By substitution of (3.10) and (3.11) into (3.6), we get

u(t) = Iϱ
0+
Ψ(t)− λIϱ+ϑ

0+
Φ(t) + µ(t)

[
Iϱ+1
0+

Ψ(γ)− λIϱ+ϑ+1
0+

Φ(γ)
](3.12)

+ ν(t)
[
λIϱ+ϑ

0+
Φ(1) + λIϱ+ϑ+1

0+
Φ(σ) + Iϱ+1

0+
Ψ(1)− Iϱ

0+
Ψ(1)

−λIϱ+ϑ+1
0+

Φ(1)− Iϱ+1
0+

Ψ(σ)
]
,

Therefore, the problem (1.1) can be abstracted to the following fixed
point problem

Λu(t) =
1

Γ(ϱ)

∫ t

0
(t− τ)ϱ−1ψ(τ, u(τ))dτ(3.13)

− λ

Γ(ϱ+ ϑ)

∫ t

0
(t− τ)ϱ+ϑ−1ϕ(τ, u(τ))dτ

+ µ(t)

[
1

Γ(ϱ+ 1)

∫ γ

0
(γ − τ)ϱψ(τ, u(τ))dτ

− λ

Γ(ϱ+ ϑ+ 1)

∫ γ

0
(γ − τ)ϱ+ϑϕ(τ, u(τ))dτ

]
+ ν(t)

[
λ

Γ(ϱ+ ϑ)

∫ 1

0
(1− τ)ϱ+ϑ−1ϕ(τ, u(τ))dτ

+
λ

Γ(ϱ+ ϑ+ 1)

∫ σ

0
(σ − τ)ϱ+ϑϕ(τ, u(τ))dτ

+
1

Γ(ϱ+ 1)

∫ 1

0
(1− τ)ϱψ(τ, u(τ))dτ

− 1

Γ(ϱ)

∫ 1

0
(1− τ)ϱ−1ψ(τ, u(τ))dτ

− λ

Γ(ϱ+ ϑ+ 1)

∫ 1

0
(1− τ)ϱ+ϑϕ(τ, u(τ))dτ

− 1

Γ(ϱ+ 1)

∫ σ

0
(σ − τ)ϱψ(τ, u(τ))dτ

]
.
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Let X = C(I,R) the space formed by continuous functions on I.
The Banach space X is endowed with the norm ∥y∥ = sup

t∈I
|y(t)|.

Before citing our existence results, we consider the assumptions below:
(H1) There exist kϕ, kψ > 0 such that, ∀t ∈ I, ∀u, v ∈ R

|ϕ(t, v)− ϕ(t, u)| ≤ kϕ|v − u|,
|ψ(t, v)− ψ(t, u)| ≤ kψ|v − u|

(H2) There exist θ1, θ2 ∈ C(I,R+) such that, ∀t ∈ I, ∀u ∈ R
|ϕ(t, u)| ≤ θ1(t),

|ψ(t, u)| ≤ θ2(t).

At this point, we are able to present our first existence result.

Theorem 3.1. Suppose that assumptions (H1) and (H2) hold. Suppose
in addition that

(3.14) ξ :=
|λ|kϕ

Γ(ϱ+ ϑ+ 1)
+

kψ
Γ(ϱ+ 1)

< 1.

Then, there exists at least one solution for problem (1.1).

Proof. First, we consider the following closed ball
Br = {u ∈ X : ∥u∥ ≤ r} ,

with r ≥ λ1∥θ1∥+ λ2∥θ2∥, where

λ1 =
|λ| [ϱ+ ϑ+ 1 + (ϱ+ ϑ+ σ)∥ν∥+ γ∥µ∥]

Γ(ϱ+ ϑ+ 2)
,

λ2 =
ϱ+ 1 + (ϱ+ σ)∥ν∥+ γ∥µ∥

Γ(ϱ+ 2)
.

The operator Λ defined by (3.13) can be written as Λ1 + Λ2, with

Λ1u(t) =
1

Γ(ϱ)

∫ t

0
(t− τ)ϱ−1ψ(τ, u(τ))dτ

− λ

Γ(ϱ+ ϑ)

∫ t

0
(t− τ)ϱ+ϑ−1ϕ(τ, u(τ))dτ,

and

Λ2u(t) = µ(t)

[
1

Γ(ϱ+ 1)

∫ γ

0
(γ − τ)ϱψ(τ, u(τ))dτ

− λ

Γ(ϱ+ ϑ+ 1)

∫ γ

0
(γ − τ)ϱ+ϑϕ(τ, u(τ))dτ

]
+ ν(t)

[
λ

Γ(ϱ+ ϑ)

∫ 1

0
(1− τ)ϱ+ϑ−1ϕ(τ, u(τ))dτ
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+
λ

Γ(ϱ+ ϑ+ 1)

∫ σ

0
(σ − τ)ϱ+ϑϕ(τ, u(τ))dτ

+
1

Γ(ϱ+ 1)

∫ 1

0
(1− τ)ϱψ(τ, u(τ))dτ

− 1

Γ(ϱ)

∫ 1

0
(1− τ)ϱ−1ψ(τ, u(τ))dτ

− λ

Γ(ϱ+ ϑ+ 1)

∫ 1

0
(1− τ)ϱ+ϑϕ(τ, u(τ))dτ

− 1

Γ(ϱ+ 1)

∫ σ

0
(σ − τ)ϱψ(τ, u(τ))dτ

]
.

(i) For u, v ∈ Br, Λ1u+ Λ2v ∈ Br. Indeed:

∥Λ1u+ Λ2v∥

≤ sup
t∈I

{
1

Γ(ϱ)

∫ t

0
(t− τ)ϱ−1|ψ(τ, u(τ))|dτ

+
|λ|

Γ(ϱ+ ϑ)

∫ t

0
(t− τ)ϱ+ϑ−1|ϕ(τ, u(τ))|dτ

}
+ sup

t∈I
|µ(t)|

[
1

Γ(ϱ+ 1)

∫ γ

0
(γ − τ)ϱ|ψ(τ, v(τ))|dτ

+
|λ|

Γ(ϱ+ ϑ+ 1)

∫ γ

0
(γ − τ)ϱ+ϑ|ϕ(τ, v(τ))|dτ

]
+ sup

t∈I
|ν(t)|

[
|λ|

∫ 1

0

∣∣∣∣ (1− τ)ϱ+ϑ

Γ(ϱ+ ϑ+ 1)
− (1− τ)ϱ+ϑ−1

Γ(ϱ+ ϑ)

∣∣∣∣ |ϕ(τ, v(τ))|dτ
+

∫ 1

0

∣∣∣∣ (1− τ)ϱ

Γ(ϱ+ 1)
− (1− τ)ϱ−1

Γ(ϱ)

∣∣∣∣ |ψ(τ, v(τ))|dτ
+|λ|

∫ σ

0

(σ − τ)ϱ+ϑ

Γ(ϱ+ ϑ+ 1)
|ϕ(τ, v(τ))|dτ +

∫ σ

0

(σ − τ)ϱ

Γ(ϱ+ 1)
|ψ(τ, v(τ))|dτ

]
≤ |λ|∥θ1∥

[
1

Γ(ϱ+ ϑ+ 1)
+

(ϱ+ ϑ+ σ)∥ν∥+ γ∥µ∥
Γ(ϱ+ ϑ+ 2)

]
+ ∥θ2∥

[
1

Γ(ϱ+ 1)
+

(ϱ+ σ)∥ν∥+ γ∥µ∥
Γ(ϱ+ 2)

]
≤ |λ| [ϱ+ ϑ+ 1 + (ϱ+ ϑ+ σ)∥ν∥+ γ∥µ∥]

Γ(ϱ+ ϑ+ 2)
∥θ1∥

+
ϱ+ 1 + (ϱ+ σ)∥ν∥+ γ∥µ∥

Γ(ϱ+ 2)
∥θ2∥

≤ λ1∥θ1∥+ λ2∥θ2∥
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≤ r.

(ii) Λ1 is a contraction. Indeed:
For u, v ∈ Br, we have

∥Λ1v − Λ1u∥ ≤ sup
t∈I

{
1

Γ(ϱ)

∫ t

0
(t− τ)ϱ−1|ψ(τ, v(τ))− ψ(τ, u(τ))|dτ

+
|λ|

Γ(ϱ+ ϑ)

∫ t

0
(t− τ)ϱ+ϑ−1|ϕ(τ, v(τ))− ϕ(τ, u(τ))|dτ

}
≤

(
∥λ∥kϕ

Γ(ϱ+ ϑ+ 1)
+

kψ
Γ(ϱ+ 1)

)
∥v − u∥

≤ ξ∥v − u∥.
(iii) Note that Λ2 is continuous, and for u ∈ Br, we have

∥Λ2u∥ ≤ ∥µ∥
[

1

Γ(ϱ+ 1)

∫ γ

0
(γ − τ)ϱ|ψ(τ, u(τ))|dτ

+
|λ|

Γ(ϱ+ ϑ+ 1)

∫ γ

0
(γ − τ)ϱ+ϑ|ϕ(τ, u(τ))|dτ

]
+ ∥ν∥

[
|λ|

∫ 1

0

∣∣∣∣ (1− τ)ϱ+ϑ

Γ(ϱ+ ϑ+ 1)
− (1− τ)ϱ+ϑ−1

Γ(ϱ+ ϑ)

∣∣∣∣ |ϕ(τ, u(τ))|dτ
+

∫ 1

0

∣∣∣∣ (1− τ)ϱ

Γ(ϱ+ 1)
− (1− τ)ϱ−1

Γ(ϱ)

∣∣∣∣ |ψ(τ, u(τ))|dτ
+ |λ|

∫ σ

0

(σ − τ)ϱ+ϑ

Γ(ϱ+ ϑ+ 1)
|ϕ(τ, u(τ))|dτ

+

∫ σ

0

(σ − τ)ϱ

Γ(ϱ+ 1)
|ψ(τ, u(τ))|dτ

]
≤ |λ| [(ϱ+ ϑ+ σ)∥ν∥+ γ∥µ∥]

Γ(ϱ+ ϑ+ 2)
∥θ1∥+

(ϱ+ σ)∥ν∥+ γ∥µ∥
Γ(ϱ+ 2)

∥θ2∥,

which prove that Λ2 is uniformly bounded on this ball.
Now, let us prove that Λ2 is compact:
Denote
ξϕ = sup

(t,u)∈I×Br

|ϕ(t, u)| and ξψ = sup
(t,u)∈I×Br

|ψ(t, u)|.

For u ∈ Br and 0 < t1 < t2 < 1, we have
∥(Λ2u) (t2)− (Λ2u) (t1)∥

≤
[

1

Γ(ϱ+ 1)

∫ γ

0
(γ − τ)ϱ|ψ(τ, v(τ))|dτ

+
|λ|

Γ(ϱ+ ϑ+ 1)

∫ γ

0
(γ − τ)ϱ+ϑ|ϕ(τ, v(τ))|dτ

]
|µ(t2)− µ(t1)|
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+

[
|λ|

∫ 1

0

∣∣∣∣ (1− τ)ϱ+ϑ

Γ(ϱ+ ϑ+ 1)
− (1− τ)ϱ+ϑ−1

Γ(ϱ+ ϑ)

∣∣∣∣ |ϕ(τ, v(τ))|dτ
+

∫ 1

0

∣∣∣∣ (1− τ)ϱ

Γ(ϱ+ 1)
− (1− τ)ϱ−1

Γ(ϱ)

∣∣∣∣ |ψ(τ, v(τ))|dτ
+ |λ|

∫ σ

0

(σ − τ)ϱ+ϑ

Γ(ϱ+ ϑ+ 1)
|ϕ(τ, v(τ))|dτ

+

∫ σ

0

(σ − τ)ϱ

Γ(ϱ+ 1)
|ψ(τ, v(τ))|dτ

]
|ν(t2)− ν(t1)|

≤
[

|λ|γξϕ
Γ(ϱ+ ϑ+ 2)

+
γξψ

Γ(ϱ+ 2)

]
|µ(t2)− µ(t1)|

+

[
|λ|(ϱ+ ϑ+ σ)ξϕ
Γ(ϱ+ ϑ+ 2)

+
(ϱ+ σ)ξψ
Γ(ϱ+ 2)

]
|ν(t2)− ν(t1)|,

since

|µ(t2)− µ(t1)| ≤
3(1− γ)

ω
|t22 − t21|

≤ 6(1− γ)

ω
|t2 − t1|,

and

|ν(t2)− ν(t1)| ≤
3σ

ω
|t22 − t21| ≤

6σ

ω
|t2 − t1|.

Therefore,
∥(Λ2u) (t2) − (Λ2u) (t1)∥

≤
[
6(1− γ)

ω

(
|λ|γξϕ

Γ(ϱ+ ϑ+ 2)
+

γξψ
Γ(ϱ+ 2)

)
+
6σ

ω

(
|λ|(ϱ+ ϑ+ σ)ξϕ
Γ(ϱ+ ϑ+ 2)

+
(ϱ+ σ)ξψ
Γ(ϱ+ 2)

)]
|t2 − t1|.

Hence, Λ2 is equicontinuous. Then, it is relatively compact on
Br.

Thus, according to Arzelà-Ascoli theorem, Λ2 is compact.
Consequently, all conditions of Krasnoselskii’s fixed-point theo-
rem hold.

The result is then proved. □
Based on Banach contraction, the result of existence and uniqueness

will be the subject of the next theorem.

Theorem 3.2. Suppose that (H1) is satisfied. Suppose also that
(3.15) k := λ1kϕ + λ2kψ < 1

Then, there exists a unique solution for problem (1.1).
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Proof. Denote
ηϕ = sup

t∈I
|ϕ(t, 0)|, ηψ = sup

t∈I
|ψ(t, 0)|,

let
Bρ = {u ∈ X : ∥u∥ ≤ ρ} ,

the closed ball of radius ρ defined by

ρ ≥
λ1ηϕ + λ2ηψ

1− k
.

Firstly, show that Λ is defined on Bρ into itself.
For t ∈ I and x ∈ R, we have

|ϕ(t, x)| ≤ |ϕ(t, x)− ϕ(t, 0)|+ |ϕ(t, 0)|
≤ kϕ|x|+ ηϕ.

Then,
|ϕ(t, u(t))| ≤ kϕ∥u∥+ ηϕ

≤ kϕρ+ ηϕ, ∀(t, u) ∈ I × Bρ.

Similarly, we have
|ψ(t, u(t))| ≤ kψρ+ ηψ, ∀(t, u) ∈ I × Bρ,

let u ∈ Bρ. In a similar way to the proof given in (i), we get
∥Λu∥ ≤ λ1 sup

t∈I
|ϕ(t, u(t))|+ λ2 sup

t∈I
|ψ(t, u(t))|

≤ λ1 (kϕρ+ ηϕ) + λ2 (kψρ+ ηψ)

≤ kρ+ λ1ηϕ + λ2ηψ

≤ ρ.

Now, let us prove that Λ is a contraction.
For u, v ∈ Bρ, we have
∥Λv − Λu∥

≤ sup
t∈I

{
1

Γ(ϱ)

∫ t

0
(t− τ)ϱ−1|ψ(τ, v(τ))− ψ(τ, u(τ))|dτ

+
|λ|

Γ(ϱ+ ϑ)

∫ t

0
(t− τ)ϱ+ϑ−1|ϕ(τ, v(τ))− ϕ(τ, u(τ))|dτ

}
+ ∥µ∥

[
1

Γ(ϱ+ 1)

∫ γ

0
(γ − τ)ϱ|ψ(τ, v(τ))− ψ(τ, u(τ))|dτ

+
|λ|

Γ(ϱ+ ϑ+ 1)

∫ γ

0
(γ − τ)ϱ+ϑ|ϕ(τ, v(τ))− ϕ(τ, u(τ))|dτ

]
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+ ∥ν∥
[∫ 1

0

∣∣∣∣ (1− τ)ϱ

Γ(ϱ+ 1)
− (1− τ)ϱ−1

Γ(ϱ)

∣∣∣∣ |ψ(τ, v(τ))− ψ(τ, u(τ))|dτ

+ |λ|
∫ 1

0

∣∣∣∣ (1− τ)ϱ+ϑ

Γ(ϱ+ ϑ+ 1)
− (1− τ)ϱ+ϑ−1

Γ(ϱ+ ϑ)

∣∣∣∣ |ϕ(τ, v(τ))− ϕ(τ, u(τ))|dτ

+ |λ|
∫ σ

0

(σ − τ)ϱ+ϑ

Γ(ϱ+ ϑ+ 1)
|ϕ(τ, v(τ))− ϕ(τ, u(τ))|dτ

+

∫ σ

0

(σ − τ)ϱ

Γ(ϱ+ 1)
|ψ(τ, v(τ))− ψ(τ, u(τ))|dτ

]
≤

[
kϕ|λ|

(
1

Γ(ϱ+ ϑ+ 1)
+

(ϱ+ ϑ+ σ)∥ν∥+ γ∥µ∥
Γ(ϱ+ ϑ+ 2)

)
+kψ

(
1

Γ(ϱ+ 1)
+

(ϱ+ σ)∥ν∥+ γ∥µ∥
Γ(ϱ+ 2)

)]
∥v − u∥

≤ (λ1kϕ + λ2kψ) ∥v − u∥
≤ k∥v − u∥,

hence, the existence and uniqueness of the solution due to Banach’s
theorem □

Remark 3.3. We observe that,

k = ξ +

(
|λ| [(ϱ+ ϑ+ σ)∥ν∥+ γ∥µ∥]

Γ(ϱ+ ϑ+ 2)
kϕ +

(ϱ+ σ)∥ν∥+ γ∥µ∥
Γ(ϱ+ 2)

kψ

)
.

Which means that, if the condition (3.15) of Theorem 3.2 holds, then
the one given by (3.14) in Theorem 3.1 also holds.

To illustrate our results, we consider the following example.

Example 3.4. we consider the problem defined by

(3.16)



cD
5
2

0+
u(t) +

1

3
I

1
2

0+

[
cos(u(t)) + sin(t)

30 + t2

]
=

1√
2500 + t2

(
|u(t)|

1 + |u(t)|
+ e−t

)
, t ∈ I,

u(0) =
∫ 1

4
0 u(τ)dτ,

u(1) =
∫ 1

1
2
u(τ)dτ,

u′(0) = 0.

The problem (3.16) can be abstracted into (1.1), with

ϕ(t, u) =
cos(u(t)) + sin(t)

30 + t2
, ψ(t, u) =

1√
2500 + t2

(
|u|

1 + |u|
+ e−t

)
,

ϑ = σ =
1

2
, γ =

1

4
, ϱ =

5

2
andλ =

1

3
.
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Note that assumption (H1) holds, where

kϕ =
1

30
, kψ =

1

50
.

We have also

µ(t) =
272

205
− 192

205
t2, ν(t) =

2

205
+

288

205
t2.

Then, we get k = 0.0182 < 1. According to Theorem 3.2, problem (3.16)
has a unique solution.

Note that, according to the Remark 3.3, the existence of the solution
is guaranteed.
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