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Vibration Systems with Combined Nonlinearities

Mohsen Timoumi

ABSTRACT. This article concerns the existence of fast homoclinic
solutions for the following damped vibration system
d . .
2 POu) +q()P(O)a(t) — LE)u(t) + VW (¢, u(t)) = 0,

where P, L € C (R, RN2) are symmetric and positive definite matri-

ces, ¢ € C (R,R) and W € C*! (]R x RN, R). Applying the Fountain
Theorem and Dual Fountain Theorem, we prove the above system
possesses two different sequences of fast homoclinic solutions when
L satisfies a new coercive condition and the potential W (¢, x) is
combined nonlinearity.

1. INTRODUCTION

In this paper, we are interested in the following second-order differ-
ential system with damped term

(1.1) %(P(t)ﬂ(t)) + q(t)P(t)a(t) — L(t)u(t) + VW (¢, u(t)) = 0,
where P,L € C(R,RY 2) are symmetric and positive definite matrices
for t € R, ¢ € C(R,R) and W : R x RY — R is a continuous func-
tion, differentiable in the second variable with continuous derivative
VW (t,x) = %—V;(t,x).

When_P be the identity matrix of dimension N and ¢ = 0, formally,
system ([L.1]) reduces to the classical Hamiltonian system

(1.2) i(t) — L(t)u(t) + VIV (t,u(t)) = 0.
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As usual, we say that a solution u of (@) is homoclinic (to 0) if u # 0
and u(t),u(t) — 0 as |[t| — oco. Over the past three decades, based
on critical point theory and variational methods, for various conditions
on L and the potential W, the existence and multiplicity of homoclinic
solutions for system (@) have been investigated in the literature, see
for example [2-4, 6-16, 19-30, B7, 40, 41].

When P = Iy and ¢ # 0, system (ﬁ) becomes damped vibration
system

(1.3) i(t) + q(t)a(t) — Lt)u(t) + VIV (t, u(t)) = 0.

In the last ten years, the existence and multiplicity of fast homoclinic
solutions (see Definition @) of (E) have been studied by a few math-
ematicians via critical point theory and variational methods, see [l b,
17, 18, B1-35, BY, BY]. One of the difficulties in obtaining fast homo-
clinic solutions for () is the lack of compactness of embeddings. To
solve this problem, various conditions on L were introduced in different
papers and we mention some of them below (L1) [(¢) is bounded from
below and there exists a constant ¢ < 0 such that

lim 1(t) [t]” ™ = 400,

[t|—o0
where [(t) = infi¢g—; L(t)§ - &,
(L2) I(t) is bounded from below and there exists a constant ro > 0 such
that

lim measq ({t €]s —ro,s +ro[/L(t) <bIy}) =0, Vb>0,

|s|—o0

where measq is the Lebesgue’s measure with density eQ®) where Q(t) =
Jo a(s)ds;

(L3) I(t) is bounded from below and there exists a constant ¢ > 1 such
that

measq ({t € R/|t|77 L(t) < bIy}) < oo, Vb>0.

When P # Iy and q # 0, there is no research about the existence of fast
homoclinic solutions of (@) In this paper, we investigate the existence
of two different sequences of fast homoclinic solutions of ([L.1]) via Foun-
tain Theorem and Dual Fountain Theorem when the potential is of the
form W (t,z) = Wi(t,z) + Wa(t,x), where Wi (¢, x) is superquadratic as
|z| — oo and Wa(t, z) is of subquadratic growth at infinity. To regain
the compactness of embeddings, we consider a new coercive condition
on L weaker than the above known conditions.

Now, we present the basic hypothesis on P,q,L and W in order to
announce our main result.
(P) There exists a constant pg > 0 such that P(£)¢ - & > po [¢]? for all
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£ €RY;
(Qo) There exists a constant o > 1 such that

——dt < o0;
11>1 [t ([2))

t
Qt) = / q(s)ds — 400 as |t| = o0,
0

(L,) There exists a constant [y > 0 such that
L(t)E - > lolef?, v(t,€) eRx RY

and

L(t) .

(W1) There is a constant p > 2 such that
0 < uWi(t,z) < VWi(t,x) -z, Y(t,x)€Rx (RV\{0})
and ¢ = infyep =1 Wi(t, z) > 0;
(W3) There exists a constant ¢ > 0 such that
VWit )] < e (jal + o)Vt w) € R X RY;
(W3) There exists a constant 1 < v < 2 and a positive continuous
function a : R — R such that
Wa(t,z) > a(t) |z|”, V(t,z) € R x RY;

(Wy4) Wa(t,0) = 0 and there exists a bounded positive continuous func-
tion b : R — R such that

[VWa(t, )] < b(t) 2|1, V(t,z) € R x RY,;
(W5) There exists a bounded continuous function d : R — R such that
pWo(t, z) — VWo(t,x) -z < d(t) |z|”, V(t,z) € R x RY;

(We) Wi(t,z) and Wa(t,x) are even in x.
Our main result reads as follows

Theorem 1.1. Assume that (P),(Qs),(Ls) and (W1) — (Ws) are sat-
isfied. Then the damped vibration system (|L.1]) possesses two different
sequences of fast homoclinic solutions (ug)ren and (vg)ren such that

14 5 [ COPOuO -0 + Lo - no)

— / eCOW (¢, up,(t))dt — 00, as k — oo
R

15) 5 [ COPOO 0O + LOuWO - o]
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— / CLOW (t,v5(t))dt — 0, as k — oo.
R

2. PRELIMINARIES

We will use Lé(R) to denote the Hilbert space of measurable functions
from R into RY under the inner product

(u, vz = /R eQOy(t) - v(t)dt,

and the induced norm
1

ull2 = ( [0 \u<t>12dt)2 .
Q@ R

Similarly, L, (R) (1 < s < 00) denotes the Banach space of functions on

R with values in RY under the norm
1

lull, = ( [ @9 utorar)”
R

and L%O(R) denotes the Banach space of functions on R with values in

RY under the norm
Q(t)
HUHL%O = esssup {eTt lu(t)| /t € ]R} )
Let F be the Banach space defined by

E = {u € LH(R)/ /R QO [P(t)a(t) - at) + L(t)u(t) - u(t)] dt < oo} :
with the inner product

(u,v) = /R QO [P(t)ya(t) - o(t) + L(t)u(t) - v(t)] dt,
and the associated norm
] = (u, )%

Lemma 2.1. Suppose that (P), (Q,) and (L) are satisfied. Then E
is compactly embedded in LSQ(R) for any s € [1,00[. Moreover, for all
s € [1,00], there exists a constant ns > 0 such that

(2.1) lullpg, < ns llull, Vue B

Proof. For any € > 0, by conditions (P), (Q,), (L) we can choose r, > e
such that measg(Be) < €, where

B, = {t ER\ [—re,re]/mii?m < lfN} ,
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and
Q)
t|=>r (LN ([¢])
Let
DE = R\ (BGU] - T€7T6[)7
and

Lt)x - x

le= in —_—t

teDe,|z|=1 |t In7 (|t])
Then i < e. Let (uy) be a sequence such that up — u weakly in E. The
Banach-Steinhauss Theorem implies that
(2.2) M = sup |lug, — u|| < oo.

keN

From (P) and (L), we have E C H&z(R) C LH(R) for all s € [2,00]
with continuous embedding, there exists a constant M, > 0 such that

(2.3) llug — u||L5Q < M, Yk € N.
Since P(t) > poly and L(t) > lpIy on I, =] — re, 7, the operator

E — Hb([e), u —> wuyy, is a continuous linear operator, where Hé([e)
denotes the weighted Sobolev space

HY(I) = {u ) ]RN//I QO + |u(t)*)dt < +oo}.

Sobolev’s embedding Theorem implies that

(2.4) ug — u uniformly in 7.

Step 1. F is compactly embedded in L%(R). In fact, we have
(2.5)

/ Q) () — u(t) | dt
\t|27‘€

= / €9 |y () — uw(®)|® dt + / €@ |uy, (8) — u(t)|? dt
Be

De

< measq(Be) [lux — ull3, + / W [t] in? (|t]) [ur () — u(t)[ dt
2
< measQ(Be)% 41 / O L) (ug(t) — u(t)) - (up(t) — u(t))dt

mo le

€

M2
—2e+€||lug — uH2
mo

M2
<M2+ oo>€7

mo

IA

IN



242 M. TIMOUMI

where mg = min,cg €?®. Combining (@) and (@) yields |lug — UHL% —
0 as k — oo.

Step 2. s €]2,00[. We claim that E is compactly embedded in L§(R).
We have

Jue = g, = [ <@ e = e
R
-552 52 2
< 2 — o - .
<y 7 i =l e —
From step 1, we deduce that u, — u in L) (R).
Step 3. For s € [1,2[, we claim that uy — u in L§)(R). Let 7 = 5%.
Then s > H_% and 7s > 1. For v € L, (R), Holder’s inequality implies

/ 9D |u(t)|* dt
[t1>7
:/ @ |v(t)|sdt+/ 9 |u(t)|* dt
Be D,

1 1
§< / eQ(t)dt>2< / £Q() |v(t)|2sdt>2
B. Be

/ o (11 17 (1t fo®)) "t
+ e LT ;
{tene /¥ mm (o<t} 18107 [¢]

Q)

e 1 s
+/ ——— (|t|5 InT(|t]) |v(t dt
{teDe/ltd (e =1 ) [E1 07 1] <| = in([t]) | ()I)

(measq(B) Ielizg + [ A
< (measp(Be))2 ||v||5a2s + —dt
9 L8 Jusr 1t[17s(]t])

Q)

< o (11 17 () o))
{teDe/ltl5 tnm(eDlo(r)|>1} It in7s |t]

(measq(B)* |lv] / A
< (measp(Be))2 ||v||5a2s + —dt
v K" Juyzr, 1t1ine (Jt])

. / Q0 21 1207 (18]) Ju o) de
[t|>re

<ol et [ 8O an ) o) a

|t|>re

[N

1
<2 ||v)3es + e+ / eCOL(t)(t) - v(t)dt
Q l€ [t]>re

IN

1 s 1 2
€2 (|U||72s + €+ —||v]|”.
lollz + €+ - ol
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Hence, we have
1 1
/ ) Juy,(t) — u(t)]® dt < €2 |lug — ullh,, + €+ €2 [Jug, — ul®
[t|>7e ©
Since 2s > 2, we deduce that

/ €0 Juy (1) — w(t)* dt < 3 (M2 + 14+ M?) .
|t|ZT6

As above fle eQW |uy(t) —u(t)|®dt — 0 as k — co. Hence up — u in
Ly (R). O

In order to obtain two different sequences of fast homoclinic solutions
of ([L.1]), we will apply the following two critical point theorems [42]. Let
E be a reflexive and separable Banach space with the norm ||.||, and let
(ex)ken be an orthonormal basis of E. For any k € N, denote by

X = span{er}, Yi= EB?:OXj, Z = @72, X;.

Definition 2.2. Let f € C*(E,R) and ¢ € R, then
1) f satisfies the (PS).—condition if every sequence (up)neny C E
such that f(u,) — ¢ and f'(u,) — 0 possesses a convergent
subsequence.
2) f satisfies the (PS)—condition with respect to (Y,)nen if any
sequence (un, )xcn € E such that

N — 00, Up, € Ynka f(unk) — C, f|,Ynk (unk) — 0,
has a subsequence converging to a critical point of f.

Lemma 2.3 (Fountain Theorem). Let E be a Banach space and f €
CY(E,R) be an even functional and suppose that for any k € N, there
exist two constants py, > i, > 0 such that

(2.6) ap = inf  f(u) = 400, ask — oo
u€Z, ||lull=rk

(2.7) by = max f(u) <0,
u€Yy,||lull=pr

and f satisfies the (PS).—condition for every ¢ > 0. Then f has an
unbounded sequence of critical values.

Lemma 2.4 (Dual Fountain Theorem). Let f € C1(R,R) be an even
functional. If there exists a constant kg € N such that for every k > kg,
there exists py > 1 such that

(2.8) ak = inf f(u) >0,
UEZy, |lull=pk
(2.9) by = max f(u) <0,

UEYy, |lull=rk
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(2.10) dj, = inf f(u) =0, as k— oo

i
u€Zp,|lull<pk

and f satisfies the (PS)%—condition for every c € [dg,,0]. Then f has
a sequence of negative critical values converging to zero.

Remark 2.5. Since the (PS)%—condition implies the (PS).—condition,
then Lemma also holds if in (A3) we replace the (PS).—condition
by the (PS)—condition.

Definition 2.6. A solution u of (@) is called a fast homoclinic solution
if wisin F.
3. PROOF OF THEOREM

Let us consider the variational functional f : F — R associated to the

system ([L.1))
flu) = % /R e [P(t)ya(t) - u(t) + L(t)u(t) - u(t)] dt— /R ePOW (t,u(t))dt.

Lemma 3.1. Assume that (P),(Qs), (Ls), (W2) and (Wy) are satisfied.
If up, — u, then VW (t,u,) — VW (t,u) in L? (R) as n — oc.
Proof. Let u, — wu. Arguing indirectly, by Lemma @ we may assume

that there exists a subsequence (uy, ) such that as k — oo

v(p—1)

(3.1) Un, — u both in LH(R) and in Ly (R)

and u,, —u a.. inR

and
(3.2) /ReQ(t) VW (£, un, () — VW (£, u(t))|7T dt > e, Yk €N,

for a positive constant €y. Using (@) and up to a subsequence if neces-
sary, we may assume that

o0
S, — ull,
k=1

Let w(t) = " |up, (t) —u(t)| for t € R. Then w belongs to LZ? (R) and
k=1

v(p—1)

LQ”’1 (R). Combining (W2) and (Wy), there exists a positive constant
c1 > 0 such that

(3.3) VW (t,2)] < &1 (W‘l + yva) . V(t,z) e R x RV,

o0
k=1 Q

Hence, for any £ € N and t € R, for a positive constant cy > 0, we have

VW (t, t, () — VW (t,u(t))] 7T
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< (VW (¢, (8)] + [V (£, u(t)[] 7T
< 2ui1 [’VW(t,unk (t))’ﬁ + ‘VW(t,u<t))|ﬁ:|

I =1 _ 1\ o1
<27t (runkr”-lﬂunm—l) S () ]

2 v I v(p=1)
e [ T = +Iu! + Ju] T

2 e v(p=1)
<20 Tey ™ | (Juny, — ul + |u])” + (Jup, — ul + |ul) v }

e ey~ oo [|u +|u| v=1

o

2 X -1
< 975 [(\wr+ru\> T (feo] + ) S5l + o] ]

v(p—=1) v(p—=1)
<cz[w + Jul” +w =T A fu] T ],

which with the Dominated Convergence Theorem implies

m [ QD [VW(t,un, (1)) — VW (t,u(t)|71 dt =0,

k—o0 R

and contradicts (@) Hence the above claim holds. O

Lemma 3.2. Assume that (P), (Qy), (Ly) and (Wy) are satisfied. Then
f € CHE,R) and for all u,v € E

f'(w)v = /R QD [P(t)ya(t) - o(t) + L(t)u(t) - v(t)] dt
— / COTW (¢, u(t)) - v(t)dt.
R

Moreover, any critical point w of f on E is a fast homoclinic solution of

(L.
Proof. Let g : E — R defined by

glu) = /R CLOW (¢, u(t))dt, ueE.

By the Mean Value Theorem, Hoélder’s inequality and Lemma @, we
have for all u,v € E

‘g(quU)—g(u)—/ReQ(t)VW(t,u(t)) -U(t)dt‘

/ QO [[W (¢, u(t) + v(t)) — W (t,u(t))] dt — / QYW (¢, u(t)) -v(t)dt‘
R R
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/R Q) /O 1 (VW (L, u(t) + sv(t) — VIV (t, u(t))] ~v(t)dsdt‘

1 eQ(t) u SvU — u v S
< / / VWt ult) + su(t) — YW (t, ()] [o(t)| dtd

v—1
v

g/o (/ReQ(t) VWt ult) + sv(t)) — VIV (£, u(t))| 7T dt)

y (/ Q) |v(t)|”dt) " ds
R

1 v
< ny/ (/ QO |TW (¢, u(t) + sv(t)) — VIV (¢, u(t))| 7T dt> | v]| ds.
0 R
By Lemma @, the map

v—1
v

v @ u v(t)) — u(t))|71
hives < /R Wt u(t) + o(t)) — YW (5 u(t))] dt)

is continuous on zero, so for all € > 0, there exists a constant o > 0 such
that h(v) < e for all ||v| < a. Therefore, for all v € E, ||v]| < «a, we
have

]gw o) = gu) = [ COVIV(E(0)- v(t)dt‘ < enn o

R
which implies g is differentiable and

g (uwv = / OV (t,u(t)) - v(t)dt, Yu,v e E.
R

Now, let u, — u. By Holder’s inequality and Lemma @, as n — 00,
we have

g’ (un) — g’ ()|l = sup

/ QO (YW (t, un(t)) — VW (£, u(t))) -v(t)dt’
loll=1 /R

v—1

< swp ([ @09t 0) - I T ar) T ol
R

llvll=1

v—1
v

QW u - u(t))|7T .
<o ([ Ot (0) - IW a0 T ) T 50

So, g € C1(E,R). It is clear that the quadratic form

©:u— / QO [P(t)a(t) - at) + L(t)u(t) - u(t)] dt,
R
is continuously differentiable on F and

& (u)o = /R Q0 [P(t)i(t) - 6(t) + LE)ult) - v(t)] dt, Vu,v € E.
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Consequently f € C*(E,R) and
£y = / QW [P(1)i(t) - 6(t) + L(E)ult) - v(t)] dt
R
- / COVIV (L, u(t)) - v(t)dt, Vu,v C E.
R

Let uw € E be a critical point of f, we have for v € E

/ eCOP@Ya(t) - o(t) = — / QO [L(t)u(t) — VW (£, u(t))] - v(t)dt,
R

R
which implies that

% (eQ(t)P(t)u(t)> = QO (L(t)u(t) — VW (¢, u(t))),
and
% (P@)a(t)) + q(t)P(t)u(t) = L(t)u(t) = VW (L, u(t)).
Hence u is a fast homoclinic solution of (EI) O

Next, we consider an orthonormal basis (e, )nen of E and we denote
Xp=Rer, Yi=0]_X;,  Zr=82X].

Lemma 3.3. Assume that (P),(Qs),(Ls), (W1), (W2), (Wa) and (W5)
are satisfied. Then f satisfies the (PS)}—condition for any c € R.

Proof. Let ¢ € R and (uy,) C E be a sequence such that
(3.4)  np—o00, up, €Yy, fluy)—c and fIIYnk, (tun,) =0

as k — oo. Let c3 be a positive constant such that
(35) F(un)| < e and |/ (un)]| < s, VEEN.
By (W1), (Ws) and Lemma @, we have

cat | 2 Fltng) =t
N A R
—(3-2) tun
- [0 [Wt, U (0)) = WAy (8)) - 1, (”] “
R w
_ / eQ(t) |:W2(t, Unp, (t)) - EVWQ(tyunk (t)> * Uny, (t):| dt
R 1%

1 1 v
> (2 - > June 2= | @0d(t) fun, (0
“ R
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1 1 2 1
> (5= ) omlP = 2l 1

which implies that (uy, ) is bounded in E since 1 < v < 2. A classical
computation shows that

(f/(u’ﬂk) - f/(u)) (uﬂk - u)
= llun,, —ull® — /Re% (VW (t, 1, (1) = VIV (,u(t))) - (tn, () — u(t))dt.

On the other hand, we have f’(u)(u,, —u) — 0 as k — oo. Since

E = J;Zy Yn,, there exists a sequence (vy,) C E with v,, €Y}, for all
k € N such that v,, — u as kK — oo, which implies

kh—>r{>lo f/(unk)(unk - u) = klin;o f/(unk)(unk - Unk) + kh—>r{>lo f/(unk)<vnk - u)
= k:lglolo f|/Ynk (uny ) (Uny, — vny,)
=0.

On the other hand, by Holder’s inequality, Lemma @ and Lemma @,

we have

/R O (VW (¢, tn, (1) = VIV(t, () - (tn (£) — u<t>>dt‘

v—1

<y </ €90 W (£, up, (£) — VW (£, u(t))| 71 dt) " un, —ul 0.
R

Therefore u,, — u in E. It remains to prove that f’(u) = 0. Let m € N
and v € Yy, then for all k£ € N with ny > m, we have v € Y,,,. Hence

v = (f'(u) = f'(un,)) v+ f|/Y"k (un,)v —0, as k— oo.
Therefore f'(u)v = 0 for all m € N and v € Y,,,, so that f'(u) = 0.
Hence for all ¢ € R, the functional f satisfies the (PS)}—condition. [
3.1. Proof of Theorem EI (@)

Lemma 3.4. Assume that (P),(Qs), (Ls), (W2) and (Wy) are satisfied.
Then there exists a constant ri, > 0 such that

by, = inf f(u) = 400, as k— oo.
u€Z, ||lull=rk

Proof. For any k € N, define
Go= sup / Q0 |y(t)” dt,
vEZp,||ull=1 /R
and

&= sup /eQ(t) [v(t) " dt.
R

UEZ}C’H’U‘Hzl
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Then it is well known that (x > 0, & > 0 for any k£ € N and ( — 0,
& — 0 as k — oo. Let u € Z \ {0} and define v = ﬁ, then v € Z

and ||v|| = 1. Since W(¢,0) = 0 for all ¢t € R, then (B.3) implies

(3.6) /R CQOW (L, ut))dt < 1 /R QO [lu()” + [u(t)]"] dt

201/R€Q(t) [l [ + lull® o) *]d
< e [ [ul]” + & [[ull"] -
Hence, we obtain
flu) = % lull® = erg ull” = eréy flul”
Since (; — 0 as k — oo, then for k large enough, c1(x < i. So, one gets

1
flu) =7 lul® = eréillull”, Vu€ Zy, ull > 1.

1
Let ry = <2ucl1§k> 72 then for any u € Z; with |ju| = 7y, we have

Since & — 0 as k — oo we deduce

inf f(u) = 400, ask — oo. O
{u€Zk,||ull=rx}

Lemma 3.5. Assume that (P),(Qs), (Ls) and (W) are satisfied. Then
there exists a constant py > 1y, such that

ar = max  f(u) <0.
u€Yy, [lull=px

Proof. Firstly, let us remark that according to (W7), it is easy to verify
that the function ¢ : R% — R, & — Wi (¢, 12)€" is non-increasing.
Consequently, for all ¢ € R and |z| > 1,

Witta) 2 W (05 bt 2 ool

As a result, we deduce
Wit,z) > co (W - W) . V(t,z) eRxRY
which with Lemma @ implies

B0 1w =5l = [ COWue)

1
< Il = [ Q0w un)ae
R
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1
< Il = eo [ O pute)pdt o [ 2O uco)?ae
R R

1
< (5t Il = o [ @Oy,
R

Since Y), C F is a finite dimensional subspace, all the norms on Y} are
equivalent, so there exists a constant dj > 0 such that

(3.8) dy, [|ul” < [lu]
Combining (@) and (@) yields

1
) = (5 -+ o) lul? - o ", v € Vi

'Zz , Yu €Y.

Since p > 2, there exists a constant pi > 7 such that

max  f(u) <0. O

u€Yy,[lull=px
According to (W), f is even. Lemmas @—@ imply that all Lemma
conditions are satisfied. Therefore, f has an unbounded sequence

of critical values, i.e., ([l.1) possesses infinitely many fast homoclinic
solutions satisfying condition ([L.4) of Theorem [L.1].

3.2. Proof of Theorem @ (@)

Lemma 3.6. Assume that (P),(Qs),(Ls), (Wa2) and (Wy) are satisfied.
Then there exists kg € N such that for all k > kg, there exists a constant
pr > 0 such that

ap = inf  f(u)>0.
UEZp,||ull=py

Proof. For every v € Zj, with ||v|| =1and 0 < s < 1, from (@) we have

2
S
f(sv) > 3~ c1Cis” — c1&st

where (i and & are defined in the proof of Lemma @ Since & — 0
as k — oo, then there exists k1 € N such that c; &, < % for all k£ > k.
Moreover, since > 2 and 0 < s < 1, one gets

2
(3.9) f(sv) > SZ — 1S

Taking pr = (81/01@;)%, we can find kg > kj such that 0 < pp < 1.
For v € Zj, with |[v]| = 1, we have u = pgv € Zj with ||u|| = p and
f(u) > (2v — 1)pfciCr > 0. Therefore aj, > 0 for all & > k. a
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Lemma 3.7. Assume that (P),(Qs), (L), (W1) and (W3) are satisfied.
Then there exist 0 < 1 < pg such that

by = max f(u) <0.
u€Yy, [lull=ry

Proof. For k > kg, put
O = inf / a(t) |v(t)]” dt.
k VeV |[v]|=1 ( )| ( )|

It is clear that 0y > 0. Let 0 < s < 1 and v € Y}, with ||v|| = 1, then in
view of (W7) and (W3), one has

1

Choose 1, € }0, inf {pk, (voy)2—v

——

[, we obtain
2
fn) < E =g <0, voevi with ol = 1.

As a result, we deduce by, < & — o1y < 0. O

7N2

k

2
Lemma 3.8. Assume that (P), (Qs), (Ly) and (W1)— (W) are satisfied.
Then

dy, = inf u) — 0, as k— oo.
¥ UEZy, ||ul|<pg J(w)

Proof. Since Yy () Zx # ¢ and ri < pg, it is easy to see that

di, = inf flu) <  max  f(u) <O.
u€Zy, |lull<pr u€Yy, |lull=rs

On the other hand, for all u € Zj, with 0 < |ju]| < px < 1, (@) implies

=7 (Il
Therefore dj, — 0 as k — oo. O

Finally, f is even and Lemmas @, @ and Lammasg—@ imply that

the functional f satisfies all the conditions of Lemma P.4. Consequently,
f has a sequence of negative critical values converging to zero, i.e., (g)
admits a sequence of fast homoclinic solutions satisfying condition ([L.5)
of Theorem [L.1].

U 1 9 9
— | > —|lu||® = e Jul]” > —c1d.
HUH> 1
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