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Infinitely Many Fast Homoclinic Solutions for Damped
Vibration Systems with Combined Nonlinearities

Mohsen Timoumi

Abstract. This article concerns the existence of fast homoclinic
solutions for the following damped vibration system

d

dt
(P (t)u̇(t)) + q(t)P (t)u̇(t)− L(t)u(t) +∇W (t, u(t)) = 0,

where P,L ∈ C
(
R,RN2

)
are symmetric and positive definite matri-

ces, q ∈ C (R,R) and W ∈ C1
(
R× RN ,R

)
. Applying the Fountain

Theorem and Dual Fountain Theorem, we prove the above system
possesses two different sequences of fast homoclinic solutions when
L satisfies a new coercive condition and the potential W (t, x) is
combined nonlinearity.

1. Introduction

In this paper, we are interested in the following second-order differ-
ential system with damped term

(1.1) d

dt
(P (t)u̇(t)) + q(t)P (t)u̇(t)− L(t)u(t) +∇W (t, u(t)) = 0,

where P,L ∈ C(R,RN2
) are symmetric and positive definite matrices

for t ∈ R, q ∈ C(R,R) and W : R × RN → R is a continuous func-
tion, differentiable in the second variable with continuous derivative
∇W (t, x) = ∂W

∂x (t, x).
When P be the identity matrix of dimension N and q = 0, formally,

system (1.1) reduces to the classical Hamiltonian system
(1.2) ü(t)− L(t)u(t) +∇W (t, u(t)) = 0.

2020 Mathematics Subject Classification. 34C37, 37J45, 58E05.
Key words and phrases. Damped vibration systems, Fast homoclinic solutions,

Variational methods, Fountain Theorem, Dual Fountain Theorem.
Received: 02 December 2022, Accepted: 07 May 2023.
∗ Corresponding author.

237

http://scma.maragheh.ac.ir


238 M. TIMOUMI

As usual, we say that a solution u of (1.2) is homoclinic (to 0) if u 6= 0
and u(t), u̇(t) → 0 as |t| → ∞. Over the past three decades, based
on critical point theory and variational methods, for various conditions
on L and the potential W , the existence and multiplicity of homoclinic
solutions for system (1.2) have been investigated in the literature, see
for example [2–4, 6–16, 19–30, 37, 40, 41].

When P = IN and q 6= 0, system (1.1) becomes damped vibration
system

(1.3) ü(t) + q(t)u̇(t)− L(t)u(t) +∇W (t, u(t)) = 0.

In the last ten years, the existence and multiplicity of fast homoclinic
solutions (see Definition 2.6) of (1.3) have been studied by a few math-
ematicians via critical point theory and variational methods, see [1, 5,
17, 18, 31–35, 38, 39]. One of the difficulties in obtaining fast homo-
clinic solutions for (1.3) is the lack of compactness of embeddings. To
solve this problem, various conditions on L were introduced in different
papers and we mention some of them below (L1) l(t) is bounded from
below and there exists a constant σ < 0 such that

lim
|t|→∞

l(t) |t|σ−1 = +∞,

where l(t) = inf |ξ|=1 L(t)ξ · ξ,
(L2) l(t) is bounded from below and there exists a constant r0 > 0 such
that

lim
|s|→∞

measQ ({t ∈]s− r0, s+ r0[/L(t) < bIN}) = 0, ∀b > 0,

where measQ is the Lebesgue’s measure with density eQ(t) where Q(t) =∫ t
0 q(s)ds;
(L3) l(t) is bounded from below and there exists a constant σ > 1 such
that

measQ
({

t ∈ R/ |t|−σ L(t) < bIN
})

< ∞, ∀b > 0.

When P 6= IN and q 6= 0, there is no research about the existence of fast
homoclinic solutions of (1.1). In this paper, we investigate the existence
of two different sequences of fast homoclinic solutions of (1.1) via Foun-
tain Theorem and Dual Fountain Theorem when the potential is of the
form W (t, x) = W1(t, x) +W2(t, x), where W1(t, x) is superquadratic as
|x| → ∞ and W2(t, x) is of subquadratic growth at infinity. To regain
the compactness of embeddings, we consider a new coercive condition
on L weaker than the above known conditions.

Now, we present the basic hypothesis on P, q, L and W in order to
announce our main result.
(P ) There exists a constant p0 > 0 such that P (t)ξ · ξ ≥ p0 |ξ|2 for all
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ξ ∈ RN ;
(Qσ) There exists a constant σ > 1 such that

Q(t) =

∫ t

0
q(s)ds → +∞ as |t| → ∞,

∫
|t|≥1

eQ(t)

|t| lnσ(|t|)
dt < ∞;

(Lσ) There exists a constant l0 > 0 such that
L(t)ξ · ξ ≥ l0|ξ|2, ∀(t, ξ) ∈ R× RN

and

measQ

({
t ∈ R/

L(t)

|t| lnσ(|t|)
< bIN

})
< +∞, ∀b > 0;

(W1) There is a constant µ > 2 such that
0 < µW1(t, x) ≤ ∇W1(t, x) · x, ∀(t, x) ∈ R×

(
RN \ {0}

)
and c0 = inft∈R,|x|=1W1(t, x) > 0;
(W2) There exists a constant c > 0 such that

|∇W1(t, x)| ≤ c
(
|x|+ |x|µ−1

)
, ∀(t, x) ∈ R× RN ;

(W3) There exists a constant 1 < ν < 2 and a positive continuous
function a : R → R such that

W2(t, x) ≥ a(t) |x|ν , ∀(t, x) ∈ R× RN ;

(W4) W2(t, 0) = 0 and there exists a bounded positive continuous func-
tion b : R → R such that

|∇W2(t, x)| ≤ b(t) |x|ν−1 , ∀(t, x) ∈ R× RN ;

(W5) There exists a bounded continuous function d : R → R such that
µW2(t, x)−∇W2(t, x) · x ≤ d(t) |x|ν , ∀(t, x) ∈ R× RN ;

(W6) W1(t, x) and W2(t, x) are even in x.
Our main result reads as follows

Theorem 1.1. Assume that (P ), (Qσ), (Lσ) and (W1) − (W6) are sat-
isfied. Then the damped vibration system (1.1) possesses two different
sequences of fast homoclinic solutions (uk)k∈N and (vk)k∈N such that

1

2

∫
R
eQ(t) [P (t)u̇k(t) · u̇k(t) + L(t)uk(t) · uk(t)] dt(1.4)

−
∫
R
eQ(t)W (t, uk(t))dt → ∞, as k → ∞

and
1

2

∫
R
eQ(t) [P (t)v̇k(t) · v̇k(t) + L(t)vk(t) · vk(t)] dt(1.5)
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−
∫
R
eQ(t)W (t, vk(t))dt → 0, as k → ∞.

2. Preliminaries

We will use L2
Q(R) to denote the Hilbert space of measurable functions

from R into RN under the inner product

〈u, v〉L2
Q
=

∫
R
eQ(t)u(t) · v(t)dt,

and the induced norm

‖u‖L2
Q
=

(∫
R
eQ(t) |u(t)|2 dt

) 1
2

.

Similarly, Ls
Q(R) (1 ≤ s < ∞) denotes the Banach space of functions on

R with values in RN under the norm

‖u‖Ls
Q
=

(∫
R
eQ(t) |u(t)|s dt

) 1
s

,

and L∞
Q (R) denotes the Banach space of functions on R with values in

RN under the norm

‖u‖L∞
Q

= ess sup
{
e

Q(t)
2 |u(t)| /t ∈ R

}
.

Let E be the Banach space defined by

E =

{
u ∈ L2

Q(R)/
∫
R
eQ(t) [P (t)u̇(t) · u̇(t) + L(t)u(t) · u(t)] dt < ∞

}
,

with the inner product

〈u, v〉 =
∫
R
eQ(t) [P (t)u̇(t) · v̇(t) + L(t)u(t) · v(t)] dt,

and the associated norm
‖u‖ = 〈u, u〉

1
2 .

Lemma 2.1. Suppose that (P ), (Qσ) and (Lσ) are satisfied. Then E
is compactly embedded in Ls

Q(R) for any s ∈ [1,∞[. Moreover, for all
s ∈ [1,∞], there exists a constant ηs > 0 such that

‖u‖Ls
Q
≤ ηs ‖u‖ , ∀u ∈ E.(2.1)

Proof. For any ϵ > 0, by conditions (P ), (Qσ), (Lσ) we can choose rϵ ≥ e
such that measQ(Bϵ) ≤ ϵ, where

Bϵ =

{
t ∈ R \ [−rϵ, rϵ]/

L(t)

|t| lnσ |t|
<

1

ϵ
IN

}
,
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and ∫
|t|≥rϵ

eQ(t)

|t| lnσ(|t|)
dt < ϵ,

Let
Dϵ = R \ (Bϵ∪]− rϵ, rϵ[),

and
lϵ = inf

t∈Dϵ,|x|=1

L(t)x · x
|t| lnσ(|t|)

.

Then 1
lϵ
≤ ϵ. Let (uk) be a sequence such that uk ⇀ u weakly in E. The

Banach-Steinhauss Theorem implies that
(2.2) M = sup

k∈N
‖uk − u‖ < ∞.

From (P ) and (Lσ), we have E ⊂ H1
Q(R) ⊂ Ls

Q(R) for all s ∈ [2,∞]
with continuous embedding, there exists a constant Ms > 0 such that
(2.3) ‖uk − u‖Ls

Q
≤ Ms, ∀k ∈ N.

Since P (t) ≥ p0IN and L(t) ≥ l0IN on Iϵ =] − rϵ, rϵ[, the operator
E → H1

Q(Iϵ), u 7−→ u|Iϵ is a continuous linear operator, where H1
Q(Iϵ)

denotes the weighted Sobolev space

H1
Q(Iϵ) =

{
u : Iϵ → RN/

∫
Iϵ

eQ(t)[|u̇(t)|2 + |u(t)|2]dt < +∞
}
.

Sobolev’s embedding Theorem implies that
uk → u uniformly in Iϵ.(2.4)

Step 1. E is compactly embedded in L2
Q(R). In fact, we have

∫
|t|≥rϵ

eQ(t) |uk(t)− u(t)|2 dt

(2.5)

=

∫
Bϵ

eQ(t) |uk(t)− u(t)|2 dt+
∫
Dϵ

eQ(t) |uk(t)− u(t)|2 dt

≤ measQ(Bϵ) ‖uk − u‖2∞ +

∫
Dϵ

eQ(t) |t| lnσ(|t|) |uk(t)− u(t)|2 dt

≤ measQ(Bϵ)
M2

∞
m0

+
1

lϵ

∫
Dϵ

eQ(t)L(t)(uk(t)− u(t)) · (uk(t)− u(t))dt

≤ M2
∞

m0
ϵ+ ϵ ‖uk − u‖2

≤
(
M2 +

M2
∞

m0

)
ϵ,
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where m0 = mint∈R eQ(t). Combining (2.4) and (2.5) yields ‖uk − u‖L2
Q
→

0 as k → ∞.
Step 2. s ∈]2,∞[. We claim that E is compactly embedded in Ls

Q(R).
We have

‖uk − u‖sLs
Q
=

∫
R
eQ(t) |uk − u|s dt

≤ m
− s−2

2
0 ‖uk − u‖s−2

L∞
Q

‖uk − u‖2L2
Q
.

From step 1, we deduce that uk → u in Ls
Q(R).

Step 3. For s ∈ [1, 2[, we claim that uk → u in Ls
Q(R). Let τ = σ

2−s .
Then s > 2

1+σ and τs > 1. For v ∈ Ls
Q(R), Hölder’s inequality implies∫

|t|≥rϵ

eQ(t) |v(t)|s dt

=

∫
Bϵ

eQ(t) |v(t)|s dt+
∫
Dϵ

eQ(t) |v(t)|s dt

≤
(∫

Bϵ

eQ(t)dt

) 1
2
(∫

Bϵ

eQ(t) |v(t)|2s dt
) 1

2

+

∫
{
t∈Dϵ/|t|

1
s lnτ (|t|)|v(t)|≤1

} eQ(t)

|t| lnτs |t|

(
|t|

1
s lnτ (|t|) |v(t)|

)s
dt

+

∫
{
t∈Dϵ/|t|

1
s lnτ (|t|)|v(t)|≥1

} eQ(t)

|t| lnτs |t|

(
|t|

1
s lnτ (|t|) |v(t)|

)s
dt

≤ (measQ(Bϵ))
1
2 ‖v‖sL2s

Q
+

∫
|t|≥rϵ

eQ(t)

|t| lnτs(|t|)
dt

+

∫
{
t∈Dϵ/|t|

1
s lnτ (|t|)|v(t)|≥1

} eQ(t)

|t| lnτs |t|

(
|t|

1
s lnτ (|t|) |v(t)|

)2
dt

≤ (measQ(Bϵ))
1
2 ‖v‖sL2s

Q
+

∫
|t|≥rϵ

eQ(t)

|t| lnσ(|t|)
dt

+

∫
|t|≥rϵ

eQ(t) |t|
2
s
−1 ln(2−s)τ (|t|) |v(t)|2 dt

≤ ϵ
1
2 ‖v‖sL2s

Q
+ ϵ+

∫
|t|≥rϵ

eQ(t) |t| lnσ(|t|) |v(t)|2 dt

≤ ϵ
1
2 ‖v‖sL2s

Q
+ ϵ+

1

lϵ

∫
|t|≥rϵ

eQ(t)L(t)v(t) · v(t)dt

≤ ϵ
1
2 ‖v‖sL2s

Q
+ ϵ+

1

lϵ
‖v‖2 .
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Hence, we have∫
|t|≥rϵ

eQ(t) |uk(t)− u(t)|s dt ≤ ϵ
1
2 ‖uk − u‖p

L2s
Q
+ ϵ+ ϵ

1
2 ‖uk − u‖2 .

Since 2s ≥ 2, we deduce that∫
|t|≥rϵ

eQ(t) |uk(t)− u(t)|s dt ≤ ϵ
1
2
(
M2s

2s + 1 +M2
)
.

As above
∫
Iϵ
eQ(t) |uk(t)− u(t)|s dt → 0 as k → ∞. Hence uk → u in

Ls
Q(R). □
In order to obtain two different sequences of fast homoclinic solutions

of (1.1), we will apply the following two critical point theorems [42]. Let
E be a reflexive and separable Banach space with the norm ‖.‖, and let
(ek)k∈N be an orthonormal basis of E. For any k ∈ N, denote by

Xk = span {ek} , Yk = ⊕k
j=0Xj , Zk = ⊕∞

j=kXj .

Definition 2.2. Let f ∈ C1(E,R) and c ∈ R, then
1) f satisfies the (PS)c−condition if every sequence (un)n∈N ⊂ E

such that f(un) → c and f ′(un) → 0 possesses a convergent
subsequence.

2) f satisfies the (PS)∗c−condition with respect to (Yn)n∈N if any
sequence (unk

)k⊂N ∈ E such that
nk → ∞, unk

∈ Ynk
, f(unk

) → c, f ′
|Ynk

(unk
) → 0,

has a subsequence converging to a critical point of f .
Lemma 2.3 (Fountain Theorem). Let E be a Banach space and f ∈
C1(E,R) be an even functional and suppose that for any k ∈ N, there
exist two constants ρk > rk > 0 such that

ak = inf
u∈Zk,∥u∥=rk

f(u) → +∞, as k → ∞(2.6)

bk = max
u∈Yk,∥u∥=ρk

f(u) ≤ 0,(2.7)

and f satisfies the (PS)c−condition for every c > 0. Then f has an
unbounded sequence of critical values.
Lemma 2.4 (Dual Fountain Theorem). Let f ∈ C1(R,R) be an even
functional. If there exists a constant k0 ∈ N such that for every k ≥ k0,
there exists ρk > rk such that

ak = inf
u∈Zk,∥u∥=ρk

f(u) ≥ 0,(2.8)

bk = max
u∈Yk,∥u∥=rk

f(u) < 0,(2.9)
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dk = inf
u∈Zk,∥u∥≤ρk

f(u) → 0, as k → ∞(2.10)

and f satisfies the (PS)∗c−condition for every c ∈ [dk0 , 0]. Then f has
a sequence of negative critical values converging to zero.
Remark 2.5. Since the (PS)∗c−condition implies the (PS)c−condition,
then Lemma 2.3 also holds if in (A3) we replace the (PS)c−condition
by the (PS)∗c−condition.
Definition 2.6. A solution u of (1.1) is called a fast homoclinic solution
if u is in E.

3. Proof of Theorem 1.1

Let us consider the variational functional f : E → R associated to the
system (1.1)

f(u) =
1

2

∫
R
eQ(t) [P (t)u̇(t) · u̇(t) + L(t)u(t) · u(t)] dt−

∫
R
eQ(t)W (t, u(t))dt.

Lemma 3.1. Assume that (P ), (Qσ), (Lσ), (W2) and (W4) are satisfied.
If un ⇀ u, then ∇W (t, un) → ∇W (t, u) in L

ν
ν−1

Q (R) as n → ∞.
Proof. Let un ⇀ u. Arguing indirectly, by Lemma 2.1 we may assume
that there exists a subsequence (unk

) such that as k → ∞

unk
→ u both in Lν

Q(R) and in L
ν(µ−1)
ν−1

Q (R)(3.1)
and unk

→ u a.e. in R
and ∫

R
eQ(t) |∇W (t, unk

(t))−∇W (t, u(t))|
ν

ν−1 dt ≥ ϵ0, ∀k ∈ N,(3.2)

for a positive constant ϵ0. Using (3.1) and up to a subsequence if neces-
sary, we may assume that

∞∑
k=1

‖unk
− u‖

L
ν

ν−1
Q

< ∞,

∞∑
k=1

‖unk
− u‖

L
ν(µ−1)
ν−1

Q

< ∞.

Let w(t) =
∞∑
k=1

|unk
(t)− u(t)| for t ∈ R. Then w belongs to L

ν
ν−1

Q (R) and

L
ν(µ−1)
ν−1

Q (R). Combining (W2) and (W4), there exists a positive constant
c1 > 0 such that

(3.3) |∇W (t, x)| ≤ c1

(
|x|ν−1 + |x|µ−1

)
, ∀(t, x) ∈ R× RN.

Hence, for any k ∈ N and t ∈ R, for a positive constant c2 > 0, we have
|∇W (t, unk

(t))−∇W (t, u(t))|
ν

ν−1
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≤ [|∇W (t, unk
(t))|+ |∇W (t, u(t))|]

ν
ν−1

≤ 2
1

ν−1

[
|∇W (t, unk

(t))|
ν

ν−1 + |∇W (t, u(t))|
ν

ν−1

]
≤ 2

1
ν−1 c

ν
ν−1

1

[(
|unk

|ν−1 + |unk
|µ−1

) ν
ν−1

+
(
|u|ν−1 + |u|µ−1

) ν
ν−1

]
≤ 2

2
ν−1 c

ν
ν−1

1

[
|unk

|ν + |unk
|
ν(µ−1)
ν−1 + |u|ν + |u|

ν(µ−1)
ν−1

]
≤ 2

2
ν−1 c

ν
ν−1

1

[
(|unk

− u|+ |u|)ν + (|unk
− u|+ |u|)

ν(µ−1)
ν−1

]
+ 2

2
ν−1 c

ν
ν−1

1

[
|u|ν + |u|

ν(µ−1)
ν−1

]
≤ 2

2
ν−1 c

ν
ν−1

1

[
(|w|+ |u|)ν + (|w|+ |u|)

ν(µ−1)
ν−1 + |u|ν + |u|

ν(µ−1)
ν−1

]
≤ c2

[
wν + |u|ν + w

ν(µ−1)
ν−1 + |u|

ν(µ−1)
ν−1

]
,

which with the Dominated Convergence Theorem implies

lim
k→∞

∫
R
eQ(t) |∇W (t, unk

(t))−∇W (t, u(t))|
ν

ν−1 dt = 0,

and contradicts (3.2). Hence the above claim holds. □

Lemma 3.2. Assume that (P ), (Qσ), (Lσ) and (W4) are satisfied. Then
f ∈ C1(E,R) and for all u, v ∈ E

f ′(u)v =

∫
R
eQ(t) [P (t)u̇(t) · v̇(t) + L(t)u(t) · v(t)] dt

−
∫
R
eQ(t)∇W (t, u(t)) · v(t)dt.

Moreover, any critical point u of f on E is a fast homoclinic solution of
(1.1).

Proof. Let g : E → R defined by

g(u) =

∫
R
eQ(t)W (t, u(t))dt, u ∈ E.

By the Mean Value Theorem, Hölder’s inequality and Lemma 2.1, we
have for all u, v ∈ E∣∣∣∣g(u+ v)− g(u)−

∫
R
eQ(t)∇W (t, u(t)) · v(t)dt

∣∣∣∣
=

∣∣∣∣∫
R
eQ(t) [[W (t, u(t) + v(t))−W (t, u(t))] dt−

∫
R
eQ(t)∇W (t, u(t)) · v(t)dt

∣∣∣∣
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=

∣∣∣∣∫
R
eQ(t)

∫ 1

0

[∇W (t, u(t) + sv(t))−∇W (t, u(t))] · v(t)dsdt
∣∣∣∣

≤
∫ 1

0

∫
R
eQ(t) |∇W (t, u(t) + sv(t))−∇W (t, u(t))| |v(t)| dtds

≤
∫ 1

0

(∫
R
eQ(t) |∇W (t, u(t) + sv(t))−∇W (t, u(t))|

ν
ν−1 dt

) ν−1
ν

×
(∫

R
eQ(t) |v(t)|ν dt

) 1
ν

ds

≤ ην

∫ 1

0

(∫
R
eQ(t) |∇W (t, u(t) + sv(t))−∇W (t, u(t))|

ν
ν−1 dt

) ν−1
ν

‖v‖ ds.

By Lemma 3.1, the map

h : v 7−→
(∫

R
eQ(t) |∇W (t, u(t) + v(t))−∇W (t, u(t))|

ν
ν−1 dt

) ν−1
ν

is continuous on zero, so for all ϵ > 0, there exists a constant α > 0 such
that h(v) ≤ ϵ for all ‖v‖ ≤ α. Therefore, for all v ∈ E, ‖v‖ ≤ α, we
have ∣∣∣∣g(u+ v)− g(u)−

∫
R
eQ(t)∇W (t, u(t)) · v(t)dt

∣∣∣∣ ≤ ϵην ‖v‖ ,

which implies g is differentiable and

g′(u)v =

∫
R
eQ(t)∇W (t, u(t)) · v(t)dt, ∀u, v ∈ E.

Now, let un → u. By Hölder’s inequality and Lemma 3.1, as n → ∞,
we have

‖g′(un)− g′(u)‖ = sup
∥v∥=1

∣∣∣∣∫
R
eQ(t) (∇W (t, un(t))−∇W (t, u(t))) · v(t)dt

∣∣∣∣
≤ sup

∥v∥=1

(∫
R
eQ(t) |∇W (t, un(t))−∇W (t, u(t))|

ν
ν−1 dt

) ν−1
ν

‖v‖Lν
Q

≤ ην

(∫
R
eQ(t) |∇W (t, un(t))−∇W (t, u(t))|

ν
ν−1 dt

) ν−1
ν

→ 0.

So, g ∈ C1(E,R). It is clear that the quadratic form

φ : u 7−→
∫
R
eQ(t) [P (t)u̇(t) · u̇(t) + L(t)u(t) · u(t)] dt,

is continuously differentiable on E and

φ′(u)v =

∫
R
eQ(t) [P (t)u̇(t) · v̇(t) + L(t)u(t) · v(t)] dt, ∀u, v ∈ E.



FAST HOMOCLINIC SOLUTIONS FOR DAMPED VIBRATION SYSTEMS 247

Consequently f ∈ C1(E,R) and

f ′(u)v =

∫
R
eQ(t) [P (t)u̇(t) · v̇(t) + L(t)u(t) · v(t)] dt

−
∫
R
eQ(t)∇W (t, u(t)) · v(t)dt, ∀u, v ∈ E.

Let u ∈ E be a critical point of f , we have for v ∈ E∫
R
eQ(t)P (t)u̇(t) · v̇(t) = −

∫
R
eQ(t) [L(t)u(t)−∇W (t, u(t))] · v(t)dt,

which implies that
d

dt

(
eQ(t)P (t)u̇(t)

)
= eQ(t) (L(t)u(t)−∇W (t, u(t))) ,

and
d

dt
(P (t)u̇(t)) + q(t)P (t)u̇(t) = L(t)u(t)−∇W (t, u(t)).

Hence u is a fast homoclinic solution of (1.1). □

Next, we consider an orthonormal basis (en)n∈N of E and we denote

Xk = Rek, Yk = ⊕k
j=0Xj , Zk = ⊕∞

j=kXj .

Lemma 3.3. Assume that (P ), (Qσ), (Lσ), (W1), (W2), (W4) and (W5)
are satisfied. Then f satisfies the (PS)∗c−condition for any c ∈ R.

Proof. Let c ∈ R and (unk
) ⊂ E be a sequence such that

nk → ∞, unk
∈ Ynk

, f(unk
) → c and f ′

|Ynk
(unk

) → 0(3.4)

as k → ∞. Let c3 be a positive constant such that
|f(unk

)| ≤ c3 and
∥∥f ′(unk

)
∥∥ ≤ c3, ∀k ∈ N.(3.5)

By (W1), (W5) and Lemma 2.1, we have

c3 +
1

µ
c3 ‖unk

‖ ≥ f(unk
)− 1

µ
f ′(unk

)unk

=

(
1

2
− 1

µ

)
‖unk

‖2

−
∫
R
eQ(t)

[
W1(t, unk

(t))− 1

µ
∇W1(t, unk

(t)) · unk
(t)

]
dt

−
∫
R
eQ(t)

[
W2(t, unk

(t))− 1

µ
∇W2(t, unk

(t)) · unk
(t)

]
dt

≥
(
1

2
− 1

µ

)
‖unk

‖2 −
∫
R
eQ(t)d(t) |unk

(t)|ν dt
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≥
(
1

2
− 1

µ

)
‖unk

‖2 − 1

µ
‖d‖∞ ηνν ‖unk

‖ν ,

which implies that (unk
) is bounded in E since 1 < ν < 2. A classical

computation shows that
(f ′(unk

)− f ′(u)) (unk
− u)

= ‖unk
− u‖2 −

∫
R
eQ(t) (∇W (t, unk

(t))−∇W (t, u(t))) · (unk
(t)− u(t))dt.

On the other hand, we have f ′(u)(unk
− u) → 0 as k → ∞. Since

E =
⋃∞

k=0 Ynk
, there exists a sequence (vnk

) ⊂ E with vnk
∈ Ynk

for all
k ∈ N such that vnk

→ u as k → ∞, which implies
lim
k→∞

f ′(unk
)(unk

− u) = lim
k→∞

f ′(unk
)(unk

− vnk
) + lim

k→∞
f ′(unk

)(vnk
− u)

= lim
k→∞

f ′
|Ynk

(unk
)(unk

− vnk
)

= 0.

On the other hand, by Hölder’s inequality, Lemma 2.1 and Lemma 3.1,
we have∣∣∣∣∫

R
eQ(t) (∇W (t, unk

(t))−∇W (t, u(t))) · (unk
(t)− u(t))dt

∣∣∣∣
≤ ην

(∫
R
eQ(t) |W (t, unk

(t))−∇W (t, u(t))|
ν

ν−1 dt

) ν−1
ν

‖unk
− u‖ → 0.

Therefore unk
→ u in E. It remains to prove that f ′(u) = 0. Let m ∈ N

and v ∈ Ym, then for all k ∈ N with nk ≥ m, we have v ∈ Ynk
. Hence

f ′(u)v =
(
f ′(u)− f ′(unk

)
)
v + f ′

|Ynk
(unk

)v → 0, as k → ∞.

Therefore f ′(u)v = 0 for all m ∈ N and v ∈ Ym, so that f ′(u) = 0.
Hence for all c ∈ R, the functional f satisfies the (PS)∗c−condition. □
3.1. Proof of Theorem 1.1 (1.4).
Lemma 3.4. Assume that (P ), (Qσ), (Lσ), (W2) and (W4) are satisfied.
Then there exists a constant rk > 0 such that

bk = inf
u∈Zk,∥u∥=rk

f(u) → +∞, as k → ∞.

Proof. For any k ∈ N, define

ζk = sup
v∈Zk,∥u∥=1

∫
R
eQ(t) |v(t)|ν dt,

and

ξk = sup
v∈Zk,∥u∥=1

∫
R
eQ(t) |v(t)|µ dt.
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Then it is well known that ζk > 0, ξk > 0 for any k ∈ N and ζk → 0,
ξk → 0 as k → ∞. Let u ∈ Zk \ {0} and define v = u

∥u∥ , then v ∈ Zk

and ‖v‖ = 1. Since W (t, 0) = 0 for all t ∈ R, then (3.3) implies∫
R
eQ(t)W (t, u(t))dt ≤ c1

∫
R
eQ(t) [|u(t)|ν + |u(t)|µ] dt(3.6)

= c1

∫
R
eQ(t) [‖u‖ν |v(t)|ν + ‖u‖µ |v(t)|µ] d

≤ c1 [ζk ‖u‖ν + ξk ‖u‖µ] .
Hence, we obtain

f(u) ≥ 1

2
‖u‖2 − c1ζk ‖u‖ν − c1ξk ‖u‖µ .

Since ζk → 0 as k → ∞, then for k large enough, c1ζk < 1
4 . So, one gets

f(u) ≥ 1

4
‖u‖2 − c1ξk ‖u‖µ , ∀u ∈ Zk, ‖u‖ ≥ 1.

Let rk =
(

1
2µc1ξk

) 1
µ−2 , then for any u ∈ Zk with ‖u‖ = rk, we have

f(u) ≥ 1

2

(
1

2
− 1

µ

)
r2k.

Since ξk → 0 as k → ∞ we deduce
inf

{u∈Zk,∥u∥=rk}
f(u) → +∞, as k → ∞. □

Lemma 3.5. Assume that (P ), (Qσ), (Lσ) and (W1) are satisfied. Then
there exists a constant ρk > rk such that

ak = max
u∈Yk,∥u∥=ρk

f(u) < 0.

Proof. Firstly, let us remark that according to (W1), it is easy to verify
that the function φ : R∗

+ → R, ξ 7−→ W1(t, ξ
−1x)ξµ is non-increasing.

Consequently, for all t ∈ R and |x| ≥ 1,

W1(t, x) ≥ W1

(
t,

x

|x|

)
|x|µ ≥ c0 |x|µ .

As a result, we deduce

W1(t, x) ≥ c0

(
|x|µ − |x|2

)
, ∀(t, x) ∈ R× RN

which with Lemma 2.1 implies

f(u) =
1

2
‖u‖2 −

∫
R
eQ(t)W (t, u(t))dt(3.7)

≤ 1

2
‖u‖2 −

∫
R
eQ(t)W1(t, u(t))dt
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≤ 1

2
‖u‖2 − c0

∫
R
eQ(t) |u(t)|µ dt+ c0

∫
R
eQ(t) |u(t)|2 dt

≤
(
1

2
+ c0η

2
2

)
‖u‖2 − c0

∫
R
eQ(t) |u(t)|µ dt.

Since Yk ⊂ E is a finite dimensional subspace, all the norms on Yk are
equivalent, so there exists a constant dk > 0 such that

dk ‖u‖µ ≤ ‖u‖µ
Lµ
Q
, ∀u ∈ Yk.(3.8)

Combining (3.7) and (3.8) yields

f(u) ≤
(
1

2
+ c0η

2
2

)
‖u‖2 − c0dk ‖u‖µ , ∀u ∈ Yk.

Since µ > 2, there exists a constant ρk > rk such that

max
u∈Yk,∥u∥=ρk

f(u) < 0. □

According to (W6), f is even. Lemmas 3.2-3.5 imply that all Lemma
2.3 conditions are satisfied. Therefore, f has an unbounded sequence
of critical values, i.e., (1.1) possesses infinitely many fast homoclinic
solutions satisfying condition (1.4) of Theorem 1.1.

3.2. Proof of Theorem 1.1 (1.5).

Lemma 3.6. Assume that (P ), (Qσ), (Lσ), (W2) and (W4) are satisfied.
Then there exists k0 ∈ N such that for all k ≥ k0, there exists a constant
ρk > 0 such that

ak = inf
u∈Zk,∥u∥=ρk

f(u) ≥ 0.

Proof. For every v ∈ Zk with ‖v‖ = 1 and 0 < s < 1, from (3.6) we have

f(sv) ≥ s2

2
− c1ζks

ν − c1ξks
µ

where ζk and ξk are defined in the proof of Lemma 3.4. Since ξk → 0
as k → ∞, then there exists k1 ∈ N such that c1ξk < 1

4 for all k ≥ k1.
Moreover, since µ > 2 and 0 < s < 1, one gets

f(sv) ≥ s2

4
− c1ζks

ν .(3.9)

Taking ρk = (8νc1ζk)
ν

2−ν , we can find k0 ≥ k1 such that 0 < ρk < 1.
For v ∈ Zk with ‖v‖ = 1, we have u = ρkv ∈ Zk with ‖u‖ = ρk and
f(u) ≥ (2ν − 1)ρνkc1ζk > 0. Therefore ak ≥ 0 for all k ≥ k0. □
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Lemma 3.7. Assume that (P ), (Qσ), (Lσ), (W1) and (W3) are satisfied.
Then there exist 0 < rk < ρk such that

bk = max
u∈Yk,∥u∥=rk

f(u) < 0.

Proof. For k ≥ k0, put

δk = inf
v∈Yk,∥v∥=1

∫
R
a(t) |v(t)|ν dt.

It is clear that δk > 0. Let 0 < s < 1 and v ∈ Yk with ‖v‖ = 1, then in
view of (W1) and (W3), one has

f(sv) ≤ s2

2
− δks

ν .

Choose rk ∈
]
0, inf

{
ρk, (νδk)

1
2−ν

}[
, we obtain

f(rkv) ≤
r2k
2

− δkr
ν
k < 0, ∀v ∈ Yk with ‖v‖ = 1.

As a result, we deduce bk ≤ r2k
2 − δkr

ν
k < 0. □

Lemma 3.8. Assume that (P ), (Qσ), (Lσ) and (W1)−(W4) are satisfied.
Then

dk = inf
u∈Zk,∥u∥≤ρk

f(u) → 0, as k → ∞.

Proof. Since Yk
⋂
Zk 6= ϕ and rk < ρk, it is easy to see that

dk = inf
u∈Zk,∥u∥≤ρk

f(u) ≤ max
u∈Yk,∥u∥=rk

f(u) < 0.

On the other hand, for all u ∈ Zk with 0 < ‖u‖ ≤ ρk < 1, (3.9) implies

f(u) = f

(
‖u‖ u

‖u‖

)
≥ 1

4
‖u‖2 − c1ζk ‖u‖2 ≥ −c1ζk.

Therefore dk → 0 as k → ∞. □

Finally, f is even and Lemmas 3.2, 3.3 and Lammas 3.6-3.8 imply that
the functional f satisfies all the conditions of Lemma 2.4. Consequently,
f has a sequence of negative critical values converging to zero, i.e., (1.1)
admits a sequence of fast homoclinic solutions satisfying condition (1.5)
of Theorem 1.1.
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