Bi-Univalent Functions of Complex Order Defined by Hohlov Operator Associated with (*P*, *Q*) – Lucas Polynomial

Elumalai Muthaiyan

Sahand Communications in Mathematical Analysis

Print ISSN: 2322-5807 Online ISSN: 2423-3900 Volume: 21 Number: 1 Pages: 273-289

Sahand Commun. Math. Anal. DOI: 10.22130/scma.2023.1990927.1270 Volume 21, No. 1, January 2024

in

Print ISSN 2322-5807 Online ISSN 2423-3900

SCMA, P. O. Box 55181-83111, Maragheh, Iran http://scma.maragheh.ac.ir

Sahand Communications in Mathematical Analysis (SCMA) Vol. 21 No. 1 (2024), 273-289 http://scma.maragheh.ac.ir DOI: 10.22130/scma.2023.1990927.1270

Bi-Univalent Functions of Complex Order Defined by Hohlov Operator Associated with $(\mathcal{P}, \mathcal{Q})$ -Lucas Polynomial

Elumalai Muthaiyan

ABSTRACT. On this study, two new subclasses of the function class Ξ of bi-univalent functions of complex order defined in the open unit disc are introduced and investigated. These subclasses are connected to the Hohlov operator with $(\mathcal{P}, \mathcal{Q})$ -Lucas polynomial and meet subordinate criteria. For functions in these new subclasses, we also get estimates for the Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$. The results are also discussed as having a number of (old or new) repercussions.

1. INTRODUCTION AND DEFINITION

Let \mathcal{A} denote the class of functions of the form:

(1.1)
$$s(\xi) = \xi + \sum_{n=2}^{\infty} a_n \xi^n$$

which are analytic in the open unit disk

 $\mathbb{U} = \{ \xi : \xi \in \mathbb{C} \quad \text{and} \quad |\xi| < 1 \}.$

Additionally, we'll use the symbol S to represent the class of all functions in \mathcal{A} that are univalent in \mathbb{U} . The class $S^*(\alpha)$ of starlike functions of order α in \mathbb{U} and the class $\mathcal{K}(\alpha)$ of convex functions of order α in \mathbb{U} are two notable and well-studied subclasses of the univalent function class S. Every function $s \in S$ has an inverse s^{-1} , which is defined by

$$s^{-1}(s(\xi)) = \xi, \quad (\xi \in \mathbb{U})$$

²⁰²⁰ Mathematics Subject Classification. 30C45, 30C50, 30C55, 30C80.

Key words and phrases. Analytic functions, Univalent functions, Bi-univalent functions, Bi-starlike and bi-convex functions, Hohlov operator, Gaussian hypergeometric function, $(\mathcal{P}, \mathcal{Q})$ -Lucas polynomial.

Received: 07 March 2023, Accepted: 25 June 2023.

and

$$s(s^{-1}(\omega)) = \omega, \quad \left(|\omega| < r_0(s); \ r_0(s) \ge \frac{1}{4} \right)$$

where

(1.2)
$$t(\omega) = s^{-1}(\omega)$$

= $\omega - a_2\omega^2 + (2a_2^2 - a_3)\omega^3 - (5a_2^3 - 5a_2a_3 + a_4)\omega^4 + \cdots$

A function $s \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both $s(\xi)$ and $s^{-1}(\xi)$ are univalent in \mathbb{U} . Let Ξ denote the class of bi-univalent functions in \mathbb{U} given by (1.1). Note that the functions

$$s_1(\xi) = \frac{\xi}{1-\xi}, \qquad s_2(\xi) = \frac{1}{2}\log\frac{1+\xi}{1-\xi}, \qquad s_3(\xi) = -\log(1-\xi)$$

with their corresponding inverses

$$s_1^{-1}(\omega) = \frac{\omega}{1-\omega}, \qquad s_2^{-1}(\omega) = \frac{e^{2\omega}-1}{e^{2\omega}+1}, \qquad s_3^{-1}(\omega) = \frac{e^{\omega}-1}{e^{\omega}}$$

are components of Ξ . This topic is covered in great detail in the groundbreaking work by Srivastava et al. [30], who recently resurrected the study of analytic and bi-univalent functions. Many successors to Srivastava et al. [30] were produced after it.

An analytic function ω defined on \mathbb{U} with $\omega(0) = 0$ and $|\omega(\xi)| < 1$ supporting $s(\xi) = t(\omega(\xi))$, then s is subordinate to an analytic function t, written $s(\xi) \prec t(\xi)$. Recently, Ma and Minda combined different subclasses of starlike and convex functions for which the quantity $\frac{\xi s'(\xi)}{s(\xi)}$ or $1 + \frac{\xi s''(\xi)}{s'(\xi)}$ is subordinate to a more general superordinate function. They examined an analytic function ϕ with a positive real portion in the unit disc for this persistence \mathbb{U} , $\phi(0) = 1$. In addition, ϕ maps \mathbb{U} onto an area that is symmetric with respect to the real axis and starlike with respect to 1. Functions meeting the subordination $\frac{\xi s'(\xi)}{s(\xi)} \prec \phi(\xi)$ fall within the category of Ma-Minda starlike functions.

The convolution or Hadamard product of two functions $s, h \in \mathcal{A}$ is denoted by s * h and is defined as

(1.3)
$$(s*h)(\xi) = \xi + \sum_{n=2}^{\infty} a_n b_n \xi^n,$$

where (1.1) gives the value of $s(\xi)$ and $h(\xi) = \xi + \sum_{n=2}^{\infty} b_n \xi^n$. Dziok and Srivastava introduced and carefully explored the Dziok-Srivastava linear operator involving the generalised hypergeometric function in terms of the Hadamard product (or convolution) before being followed by numerous other authors. In this study, we recall the well-known convolution operator $\mathcal{J}_{a,b,c}$ attributed to Hohlov [16, 17], which is undoubtedly a

highly specialized instance of the widely (and in-depthly) investigated Dziok-Srivastava operator as well as the much more general Srivastava Wright operator [31] (also see [19]).

For the complex parameters a, b and c with $c \neq 0, -1, -2, -3, \ldots$, the Gaussian hypergeometric function ${}_{2}F_{1}(a, b, c; \xi)$ is defined as

(1.4)
$${}_{2}F_{1}(a,b,c;\xi) = \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{\xi^{n}}{n!}$$
$$= 1 + \sum_{n=0}^{\infty} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}} \frac{\xi^{n-1}}{(n-1)!} \qquad (\xi \in \mathbb{U})$$

where $(a)_n$ is the Pochhammer symbol (or the shifted factorial) defined as follows:

(1.5)
$$(a)_n = \frac{\Gamma(a+n)}{\Gamma(a)}.$$

For the positive real numbers a, b and c with $c \neq 0, -1, -2, -3, \ldots$. In order to present the well-known convolution operator $\mathcal{J}_{a,b,c}$ Hohlov introduced the Gaussian hypergeometric function provided by (1.4) as follows:

(1.6)
$$\mathcal{J}_{a,b,c}s(\xi) = \xi \,_2F_1(a,b,c;\xi) * s(\xi)$$
$$= \xi + \sum_{n=2}^{\infty} \kappa_n a_n \xi^n, \quad (\xi \in \mathbb{U})$$

where

(1.7)
$$\kappa_n = \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!}.$$

Hohlov described some intriguing geometrical characteristics by the operator $\mathcal{J}_{a,b,c}$. The majority of the well-known linear integral or differential operators are included as special cases in the three-parameter family of operators $\mathcal{J}_{a,b,c}$. In instance, $\mathcal{J}_{a,b,c}$ reduces to the Carlson-Shaffer operator if b = 1 in (1.6). Similar to this, it is clear that the Bernardi-Libera-Livingston operator and the Ruscheweyh derivative operator are both generalizations of the Hohlov operator $\mathcal{J}_{a,b,c}$.

(-)

Interest in the study of the bi-univalent function class Ξ has recently increased, and non-sharp coefficient estimates have been found for the first two coefficients $|a_2|$ and $|a_3|$ of (1.1). However, the coefficient issue for each of the subsequent Taylor-Maclaurin coefficients is as follows:

$$|a_n|, (n \in \mathbb{N} \{1, 2\}; \mathbb{N} := \{1, 2, 3, \dots\}).$$

It's still an open issue. The first two Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ have non-sharp estimates, according to recent research that has introduced and examined a number of intriguing subclasses of the bi-univalent function class Ξ .

Definition 1.1. Let $\mathcal{P}(x)$ and $\mathcal{Q}(x)$ be polynomials with real coefficients. The $(\mathcal{P}, \mathcal{Q})$ -Lucas polynomials $L_{\mathcal{P},\mathcal{Q},n}(x)$ are defined by the reccurrence relation

(1.8)
$$\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x) = \mathcal{P}(x)\mathcal{L}_{\mathcal{P},\mathcal{Q},n-1}(x) + \mathcal{Q}(x)\mathcal{L}_{\mathcal{P},\mathcal{Q},n-2}(x), \quad (n \ge 2)$$

from which the first few Lucas polynomials cab be found as follows:

(1.9)
$$\mathcal{L}_{\mathcal{P},\mathcal{Q},0}(x) = 2$$
$$\mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x) = \mathcal{P}(x)$$
$$\mathcal{L}_{\mathcal{P},\mathcal{Q},2}(x) = \mathcal{P}^{2}(x) + 2\mathcal{Q}(x)$$
$$\mathcal{L}_{\mathcal{P},\mathcal{Q},3}(x) = \mathcal{P}^{3}(x) + 3\mathcal{P}(x)\mathcal{Q}(x).$$

Definition 1.2. Let $\mathcal{G}_{\{\mathcal{L}_n(x)\}}(\xi)$ be the generating function of the $(\mathcal{P}, \mathcal{Q})$ -Lucas polynomial sequence $\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)$. Then

(1.10)
$$\mathcal{G}_{\{\mathcal{L}_n(x)\}}(\xi) = \sum_{n=0}^{\infty} \mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)\xi^n$$
$$= \frac{2 - \mathcal{P}(x)\xi}{1 - \mathcal{P}(x)\xi - \mathcal{Q}(x)\xi^2}.$$

Note that for particular values of \mathcal{P} and \mathcal{Q} , the $(\mathcal{P}, \mathcal{Q})$ -polynomial $\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)$ leads to various polynomials, among those, we list few cases here (see, [23] for more details, also [1, 18]):

- For $\mathcal{P}(x) = x$ and $\mathcal{Q}(x) = 1$, we obtain the Lucas polynomials $\mathcal{L}_n(x)$.
- For $\mathcal{P}(x) = 2x$ and $\mathcal{Q}(x) = 1$, we attain the Pell-Lucas polynomials $\mathcal{Q}_n(x)$.
- For $\mathcal{P}(x) = 1$ and $\mathcal{Q}(x) = 2x$, we attain the Jacobsthal-Lucas polynomials $j_n(x)$.
- For $\mathcal{P}(x) = 3x$ and $\mathcal{Q}(x) = -2$, we attain the Fermat-Lucas polynomials $f_n(x)$.
- For $\mathcal{P}(x) = 2x$ and $\mathcal{Q}(x) = -1$, we have the Chebyshev polynomials $T_n(x)$ of the first kind.

A study on bi-univalent functions by [3, 11, 13, 15, 22] as well as numerous recent works on the Fekete-Szegö functional and other coefficient estimates (see [2, 5, 6, 8, 25]), served as the inspiration for the current paper. In this paper we introduce new subclasses of the function class Ξ of complex order $\beta \in \mathbb{C} \setminus \{0\}$ other relevant classes are taken into account and connections to previously reported results are made.

Definition 1.3. A function $s \in \Xi$ given by (1.1) is said to be in the class $\mathcal{M}^{a,b;c}_{\Xi}(\beta,\delta,n;x)$ if the following conditions are satisfied:

(1.11)
$$1 + \frac{1}{\beta} \left(\frac{\xi(\mathcal{J}_{a,b,c}s(\xi))'}{(1-\delta)\xi + \delta\mathcal{J}_{a,b,c}s(\xi)} - 1 \right) \prec \mathcal{G}_{\{\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)\}}(\xi) - 1$$

and

(1.12)
$$1 + \frac{1}{\beta} \left(\frac{w(\mathcal{J}_{a,b,c}s(\omega))'}{(1-\delta)\xi + \delta\mathcal{J}_{a,b,c}s(\omega)} - 1 \right) \prec \mathcal{G}_{\{\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)\}}(\omega) - 1$$

where the function t is given by (1.2).

On specializing the parameters δ and a, b, c one can state the various new subclasses of Ξ as illustrated in the following examples.

Example 1.4. A function $s \in \Xi$, given by (1.1) is said to belong to the class $\mathcal{M}^{a,b;c}_{\Xi}(\beta,n;x)$ if the following criteria are met for $\delta = 1$ and $\beta \in \mathbb{C} \setminus \{0\}$:

(1.13)
$$1 + \frac{1}{\beta} \left(\frac{\xi(\mathcal{J}_{a,b,c}s(\xi))'}{\mathcal{J}_{a,b,c}s(\xi)} - 1 \right) \prec \mathcal{G}_{\{\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)\}}(\xi) - 1$$

and

(1.14)
$$1 + \frac{1}{\beta} \left(\frac{w(\mathcal{J}_{a,b,c}s(\omega))'}{\mathcal{J}_{a,b,c}s(\omega)} - 1 \right) \prec \mathcal{G}_{\{\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)\}}(\omega) - 1$$

where $\xi, \omega \in \mathbb{U}$ and the function t is given by (1.2).

Example 1.5. A function $s \in \Xi$, given by (1.1) is said to belong to the class $\mathcal{M}_{\Xi}^{a,b;c}(\beta,n;x)$ if the following criteria are met for $\delta = 0$ and $\beta \in \mathbb{C} \setminus \{0\}$:

(1.15)
$$1 + \frac{1}{\beta} \left((\mathcal{J}_{a,b,c} s(\xi))' - 1 \right) \prec \mathcal{G}_{\{\mathcal{LP},\mathcal{Q},n(x)\}}(\xi) - 1$$

and

(1.16)
$$1 + \frac{1}{\beta} \left((\mathcal{J}_{a,b,c} s(\omega))' - 1 \right) \prec \mathcal{G}_{\{\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)\}}(\omega) - 1$$

where $\xi, \omega \in \mathbb{U}$ and the function t is given by (1.2).

Example 1.6. In the case of $\delta = 1$ and $\beta \in \mathbb{C} \setminus \{0\}$. If the following criteria are met, a function $s \in \Xi$, given by (1.1), is considered to belong to the class $\mathcal{M}^*_{\Xi}(\beta, n; x)$:

(1.17)
$$1 + \frac{1}{\beta} \left(\frac{\xi s'(\xi)}{s(\xi)} - 1 \right) \prec \mathcal{G}_{\{\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)\}}(\xi) - 1$$

and

(1.18)
$$1 + \frac{1}{\beta} \left(\frac{\xi s'(\omega)}{s(\omega)} - 1 \right) \prec \mathcal{G}_{\{\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)\}}(\omega) - 1$$

where $\xi, \omega \in \mathbb{U}$ and the function t is given by (1.2).

Example 1.7. For $\delta = 0$ and $\beta \in \mathbb{C} \setminus \{0\}$. If the following criteria are met, a function $s \in \Xi$, given by (1.1), is considered to belong to the class $\mathcal{M}^*_{\Xi}(\beta, n; x)$:

(1.19)
$$1 + \frac{1}{\beta} \left(s'(\xi) - 1 \right) \prec \mathcal{G}_{\{\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)\}}(\xi) - 1$$

and

(1.20)
$$1 + \frac{1}{\beta} \left(s'(\omega) - 1 \right) \prec \mathcal{G}_{\{\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)\}}(\omega) - 1$$

where $\xi, \omega \in \mathbb{U}$ and the function t is given by (1.2).

By using the methods previously employed by Deniz in [11], we derive estimates on the coefficients $|a_2|$ and $|a_3|$ for functions in the above described subclasses $\mathcal{M}^{a,b;c}_{\Xi}(\beta,\delta,n;x)$ of the function class Ξ .

2. Coefficient Bounds for the Function Class $\mathcal{M}^{a,b;c}_{\Xi}(\beta,\delta,n;x)$

Theorem 2.1. Let s be given by (1.1) and in the class $\mathcal{M}^{a,b;c}_{\Xi}(\beta,\delta,n;x)$. Then

(2.1)
$$|a_2| \leq \frac{\beta^2 |\mathcal{P}(x)| \sqrt{|\mathcal{P}(x)|}}{\sqrt{|\{(2-\delta)[(1-2\beta)\delta-2]\kappa_2^2 + 2\beta(3-\delta)\kappa_3\}\mathcal{P}^2(x) - 2(2-\delta)^2\kappa_2^2\mathcal{Q}(x)|}}$$

and

(2.2)
$$|a_3| \le \frac{\beta^2 \mathcal{P}^2(x)}{(2-\delta)^2 \kappa_2^2} + \frac{\beta |\mathcal{P}(x)|}{2(3-\delta)\kappa_3}.$$

Proof. Let $s \in \mathcal{M}^{a,b;c}_{\Xi}(\beta,\delta,n;x)$. Then, from Definition 1.2, for some analytic functions, Ω, Λ such that $\Omega(0) = \Lambda(0) = 0$ and $|\Omega(\xi)| < 1$, $|\Lambda(\omega)| < 1$ for all $\xi, \omega \in \mathbb{U}$, we can write

$$(2.3) \quad 1 + \frac{1}{\beta} \left(\frac{\xi(\mathcal{J}_{a,b,c}s(\xi))'}{(1-\delta)\xi + \delta\mathcal{J}_{a,b,c}s(\xi)} - 1 \right) = \mathcal{G}_{\{\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)\}}(\Omega(\xi)) - 1$$

$$(2.4) \quad 1 + \frac{1}{\beta} \left(\frac{\omega(\mathcal{J}_{a,b,c}s(\omega))'}{(1-\delta)\xi + \delta\mathcal{J}_{a,b,c}s(\omega)} + 1 \right) = \mathcal{C}_{(1-\delta)\xi}(\Omega(\xi)) - 1$$

(2.4)
$$1 + \frac{1}{\beta} \left(\frac{\omega(\mathcal{J}_{a,b,c}s(\omega))}{(1-\delta)\omega + \delta \mathcal{J}_{a,b,c}s(\omega)} - 1 \right) = \mathcal{G}_{\{\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)\}}(\Lambda(\omega)) - 1$$

or equivalently

(2.5)
$$1 + \frac{1}{\beta} \left(\frac{\xi(\mathcal{J}_{a,b,c}s(\xi))'}{(1-\delta)\xi + \delta\mathcal{J}_{a,b,c}s(\xi)} - 1 \right)$$

$$(2.6) = -1 + \mathcal{L}_{\mathcal{P},\mathcal{Q},0}(x) + \mathcal{L}_{\mathcal{P},\mathcal{Q},1}\Omega(\xi) + \mathcal{L}_{\mathcal{P},\mathcal{Q},2}\Omega^{2}(\xi) + \cdots$$
$$1 + \frac{1}{\beta} \left(\frac{\omega(\mathcal{J}_{a,b,c}s(\omega))'}{(1-\delta)w + \delta\mathcal{J}_{a,b,c}s(\omega)} - 1 \right)$$
$$= -1 + \mathcal{L}_{\mathcal{P},\mathcal{Q},0}(x) + \mathcal{L}_{\mathcal{P},\mathcal{Q},1}\Lambda(\omega) + \mathcal{L}_{\mathcal{P},\mathcal{Q},2}\Lambda^{2}(\omega) + \cdots$$

From equalities (2.5) and (2.6)

$$(2.7) \quad 1 + \frac{1}{\beta} \left(\frac{\xi(\mathcal{J}_{a,b,c}s(\xi))'}{(1-\delta)\xi + \delta\mathcal{J}_{a,b,c}s(\xi)} - 1 \right)$$

$$= 1 + \mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)l_1\xi + [\mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)l_2 + \mathcal{L}_{\mathcal{P},\mathcal{Q},2}(x)l_1^2]\xi^2 + \cdots$$

$$(2.8) \quad 1 + \frac{1}{\beta} \left(\frac{\omega(\mathcal{J}_{a,b,c}s(\omega))'}{(1-\delta)\omega + \delta\mathcal{J}_{a,b,c}s(\omega)} - 1 \right)$$

$$= 1 + \mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)r_1\omega + [\mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)r_2 + \mathcal{L}_{\mathcal{P},\mathcal{Q},2}(x)r_1^2]\omega^2 + \cdots$$

It is already known that if for $\xi, \omega \in \mathbb{U}$,

$$\Omega(\xi) = \left|\sum_{i=1}^{n} l_i \xi^i\right| < 1$$

and

$$\Lambda(\omega) = \left|\sum_{i=1}^{n} r_i \omega^i\right| < 1$$

then

$$\Omega(\xi) = |l_i| < 1$$

and

$$\Lambda(\omega) = |r_i| < 1$$

where $i \in \mathbb{N}$. Thus, comparing the corresponding coefficients in (2.7) and (2.8), we get

$$(2.9) \quad \frac{2-\delta}{\beta}\kappa_{2}a_{2} = \mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)l_{1}$$

$$(2.10) \quad \frac{\delta^{2}-2\delta}{\beta}\kappa_{2}^{2}a_{2}^{2} + \frac{3-\delta}{\beta}\kappa_{3}a_{3} = \mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)l_{2} + \mathcal{L}_{\mathcal{P},\mathcal{Q},2}(x)l_{1}^{2}$$

$$(2.11) \quad -\frac{2-\delta}{\beta}\kappa_{2}a_{2} = \mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)r_{1}$$

$$(2.12) \quad \frac{\delta^{2}-2\delta}{\beta}\kappa_{2}^{2}a_{2}^{2} + \frac{3-\delta}{\beta}\kappa_{3}(2a_{2}^{2}-a_{3}) = \mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)r_{2} + \mathcal{L}_{\mathcal{P},\mathcal{Q},2}(x)r_{1}^{2}.$$
From (2.9) and (2.11),

(2.13)
$$a_{2} = \frac{\beta l_{1}}{(2-\delta)\kappa_{2}} = \frac{-\beta r_{1}}{(2-\delta)\kappa_{2}}$$

(2.14)
$$l_{1} = -r_{1}$$

$$(2.14)$$
 $l_1 =$

(2.15)
$$(2-\delta)^2 \kappa_2^2 a_2^2 = \beta^2 \mathcal{L}^2_{\mathcal{P},\mathcal{Q},1}(x) (l_1^2 + r_1^2)$$

adding (2.10) and (2.12),

(2.16)
$$2\left(\frac{\delta^2 - 2\delta}{\beta}\kappa_2^2 + \frac{3 - \delta}{\beta}\kappa_3\right)a_2^2 = \mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)(l_2 + r_2) + \mathcal{L}_{\mathcal{P},\mathcal{Q},2}(x)(l_1^2 + r_1^2).$$

By using (2.15) and (2.16), we have

$$(2.17) \quad [2\beta\mathcal{L}^{2}_{\mathcal{P},\mathcal{Q},1}(x)[(\delta^{2}-2\delta)\kappa_{2}^{2}+(3-\delta)\kappa_{3}]-\mathcal{L}_{\mathcal{P},\mathcal{Q},2}(x)(2-\delta)^{2}\kappa_{2}^{2}]a_{2}^{2} \\ = \beta^{2}\mathcal{L}^{3}_{\mathcal{P},\mathcal{Q},1}(x)(l_{2}+r_{2}) \\ a_{2}^{2} = \frac{\beta^{2}\mathcal{L}^{3}_{\mathcal{P},\mathcal{Q},1}(x)(l_{2}+r_{2})}{[2\beta\mathcal{L}^{2}_{\mathcal{P},\mathcal{Q},1}(x)[(\delta^{2}-2\delta)\kappa_{2}^{2}+(3-\delta)\kappa_{3}]-\mathcal{L}_{\mathcal{P},\mathcal{Q},2}(x)(2-\delta)^{2}\kappa_{2}^{2}]}$$

which gives

$$|a_{2}| \leq \frac{\beta^{2} |\mathcal{P}(x)| \sqrt{|\mathcal{P}(x)|}}{\sqrt{|\{(2-\delta)[(1-2\beta)\delta-2]\kappa_{2}^{2}+2\beta(3-\delta)\kappa_{3}\}\mathcal{P}^{2}(x)} - 2(2-\delta)^{2}\kappa_{2}^{2}\mathcal{Q}(x)|}}$$

also, by subtracting (2.12) from (2.10), we get

(2.18)
$$\frac{2(3-\delta)}{\beta}\kappa_3 a_3 - \frac{2(3-\delta)}{\beta}\kappa_3 a_2^2 = \mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)(l_2-r_2).$$

Then, by using (2.14) and (2.15) in (2.18), we have

$$a_{3} = \frac{\beta^{2} \mathcal{L}^{2}_{\mathcal{P},\mathcal{Q},1}(x)(l_{1}^{2} + r_{1})^{2}}{(2-\delta)^{2} \kappa_{2}^{2}} + \frac{\beta \mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)(l_{2} - r_{2})}{2(3-\delta)\kappa_{3}},$$

and by the help of (1.9), we conclude that

$$|a_3| \le \frac{\beta^2 \mathcal{P}^2(x)}{(2-\delta)^2 \kappa_2^2} + \frac{\beta |\mathcal{P}(x)|}{2(3-\delta)\kappa_3}.$$

Fixing $\delta = 1$ in Theorem 2.1, we have the following:

Corollary 2.2. Let s be given by (1.1) and in the class $\mathcal{M}^{a,b;c}_{\Xi}(\beta,n;x)$. Then

(2.19)
$$|a_2| \le \frac{\beta^2 |\mathcal{P}(x)| \sqrt{|\mathcal{P}(x)|}}{\sqrt{|\{[(1-2\beta)-2]\kappa_2^2 + 4\beta\kappa_3\}\mathcal{P}^2(x) - 2\kappa_2^2\mathcal{Q}(x)|}}$$

and

(2.20)
$$|a_3| \le \frac{\beta^2 \mathcal{P}^2(x)}{\kappa_2^2} + \frac{\beta |\mathcal{P}(x)|}{4\kappa_3}.$$

Assuming that a = c and b = 1, in Corollary 2.2 we obtain the following:

Corollary 2.3. Let s be given by (1.1) and in the class $\mathcal{M}^{a,b;c}_{\Xi}(\beta,n;x)$. Then

(2.21)
$$|a_2| \le \frac{\beta^2 |\mathcal{P}(x)| \sqrt{|\mathcal{P}(x)|}}{\sqrt{|\{[(1-2\beta)-2]+4\beta\} \mathcal{P}^2(x) - 2\mathcal{Q}(x)|}}$$

and

(2.22)
$$|a_3| \le \beta^2 \mathcal{P}^2(x) + \frac{\beta |\mathcal{P}(x)|}{4}.$$

Fixing $\delta = 0$ in Theorem 2.1, we have the following:

Corollary 2.4. Let s be given by (1.1) and in the class $\mathcal{M}^{a,b;c}_{\Xi}(\beta,n;x)$. Then

(2.23)
$$|a_2| \leq \frac{\beta^2 |\mathcal{P}(x)| \sqrt{|\mathcal{P}(x)|}}{\sqrt{|\{-4\kappa_2^2 + 6\beta\kappa_3\}\mathcal{P}^2(x) - 8\kappa_2^2\mathcal{Q}(x)|}}$$

and

(2.24)
$$|a_3| \le \frac{\beta^2 \mathcal{P}^2(x)}{4\kappa_2^2} + \frac{\beta |\mathcal{P}(x)|}{6\kappa_3}.$$

Using the above corollaries a = c and b = 1, we obtain the following:

Corollary 2.5. Let s be given by (1.1) and in the class $\mathcal{M}^{a,b;c}_{\Xi}(\beta,n;x)$. Then

(2.25)
$$|a_2| \le \frac{\beta^2 |\mathcal{P}(x)| \sqrt{|\mathcal{P}(x)|}}{\sqrt{|\{6\beta - 4\} \mathcal{P}^2(x) - 8\mathcal{Q}(x)|}}$$

and

(2.26)
$$|a_3| \le \frac{\beta^2 \mathcal{P}^2(x)}{4} + \frac{\beta |\mathcal{P}(x)|}{6}$$

We demonstrate Fekete-Szegö inequalities for the functions $s \in \mathcal{M}^{a,b;c}_{\Xi}(\beta,\delta,n;x)$ to Zaprawa [37].

Theorem 2.6. Let s given by (1.1) belongs to the class $\mathcal{M}^{a,b;c}_{\Xi}(\beta,\delta,n;x)$. Then,

$$(2.27) \quad |a_3 - \tau a_2^2| \le \begin{cases} \frac{|\mathcal{P}(x)|}{(3-\delta)\kappa_3}, & 0 \le |\mathcal{T}(\tau;x)| < \frac{\beta}{2(3-\delta)\kappa_3}\\ 2|\mathcal{P}(x)||\mathcal{T}(\tau;x)|, & |\mathcal{T}(\tau;x)| \ge \frac{\beta}{2(3-\delta)\kappa_3} \end{cases}$$

where

$$\mathcal{T}(\tau;x) = \frac{(1-\tau)\beta^2 \mathcal{L}^2_{\mathcal{P},\mathcal{Q},1}(x)}{[2\beta \mathcal{L}^2_{\mathcal{P},\mathcal{Q},1}(x)[(\delta^2 - 2\delta)\kappa_2^2 + (3-\delta)\kappa_3] - \mathcal{L}_{\mathcal{P},\mathcal{Q},2}(x)(2-\delta)^2\kappa_2^2]}$$

Proof. From equations (2.17) and (2.18), we get

$$\begin{aligned} a_{3} - \tau a_{2}^{2} &= \frac{\beta \mathcal{L}_{\mathcal{P},\mathcal{Q},1}^{2}(x)(l_{2} - r_{2})}{2(3 - \delta)\kappa_{3}} + (1 - \tau)a_{2}^{2} \\ &= \frac{\beta \mathcal{L}_{\mathcal{P},\mathcal{Q},1}^{2}(x)(l_{2} - r_{2})}{2(3 - \delta)\kappa_{3}} \\ &+ \frac{(1 - \tau)\beta^{2}\mathcal{L}_{\mathcal{P},\mathcal{Q},1}^{3}(x)(l_{2} + r_{2})}{[2\beta\mathcal{L}_{\mathcal{P},\mathcal{Q},1}^{2}(x)[(\delta^{2} - 2\delta)\kappa_{2}^{2} + (3 - \delta)\kappa_{3}] - \mathcal{L}_{\mathcal{P},\mathcal{Q},2}(x)(2 - \delta)^{2}\kappa_{2}^{2}]} \\ &= \mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x) \left[\left(\mathcal{T}(\tau; x) + \frac{\beta}{2(3 - \delta)\kappa_{3}} \right) l_{2} + \left(\mathcal{T}(\tau; x) - \frac{\beta}{2(3 - \delta)\kappa_{3}} \right) l_{2} \right] \end{aligned}$$

where

$$\mathcal{T}(\tau;x) = \frac{(1-\tau)\beta^2 \mathcal{L}^2_{\mathcal{P},\mathcal{Q},1}(x)}{[2\beta \mathcal{L}^2_{\mathcal{P},\mathcal{Q},1}(x)[(\delta^2 - 2\delta)\kappa_2^2 + (3-\delta)\kappa_3] - \mathcal{L}_{\mathcal{P},\mathcal{Q},2}(x)(2-\delta)^2 \kappa_2^2]}$$

. .

One may easily assert the following by assuming that $\tau = 1$ in above Theorem 2.1.

Remark 2.7. Let the function s be assumed by $s \in \mathcal{M}^{a,b;c}_{\Xi}(\beta,\delta,n;x)$. Then

$$|a_3 - a_2^2| \le \frac{|\mathcal{P}(x)|}{(3-\delta)\kappa_3}$$

3. Subclass of Bi-Univalent Function $\mathcal{V}^{a,b;c}_{\Xi}(\varsigma,n;x)$

Obradovic et al. provided several requirements for univalence in the cited work, expressing them mathematically as $\mathcal{R}(s'(\xi)) > 0$, for the linear combinations

$$\varsigma\left(1+\frac{\xi s''(\xi)}{s'(\xi)}\right)+(1-\varsigma)\frac{1}{s'(\xi)}>0,\quad (\varsigma\geq 1,\ \xi\in\mathbb{U}).$$

Recently, Lashin in [20] introduced and explored the new subclasses of bi-univalent function based on the aforementioned definitions.

Definition 3.1. If a function $s \in \Xi$ given by (1.1) satisfies the following criteria, it is said to belong to the class $\mathcal{V}_{\Xi}^{a,b;c}(\varsigma,n;x)$:

$$(3.1) \quad \varsigma \left(1 + \frac{\xi(\mathcal{J}_{a,b,c}s(\xi))''}{(\mathcal{J}_{a,b,c}s(\xi))'} \right) + (1-\varsigma) \frac{1}{(\mathcal{J}_{a,b,c}s(\xi))'} \prec \mathcal{G}_{\{\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)\}}(\xi) - 1$$

and

$$(3.2) \quad \varsigma \left(1 + \frac{\omega(\mathcal{J}_{a,b,c}s(\omega))''}{(\mathcal{J}_{a,b,c}s(\omega))'}\right) + (1-\varsigma)\frac{1}{(\mathcal{J}_{a,b,c}s(\omega))'} \prec \mathcal{G}_{\{\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)\}}(\omega) - 1$$

where $\varsigma \ge 1, \xi, \omega \in \mathbb{U}$ and the function t is given by (1.2).

Remark 3.2. If a function $s \in \Xi$ provided by (1.1) satisfies the following criteria, it is said to belong to the class $\mathcal{V}_{\Xi}^{a,b;c}(1,n;x) = \mathcal{R}_{\Xi}^{a,b;c}(n;x)$:

$$\left(1 + \frac{\xi(\mathcal{J}_{a,b,c}s(\xi))''}{(\mathcal{J}_{a,b,c}s(\xi))'}\right) \prec \mathcal{G}_{\{\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)\}}(\xi) - 1$$

and

$$\left(1 + \frac{\omega(\mathcal{J}_{a,b,c}s(\omega))''}{(\mathcal{J}_{a,b,c}s(\omega))'}\right) \prec \mathcal{G}_{\{\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)\}}(\omega) - 1$$

where $\xi, \omega \in \mathbb{U}$ and the function t is given by (1.2).

Theorem 3.3. Let s be given by (1.1) and $s \in \mathcal{V}^{a,b;c}_{\Xi}(\varsigma,n;x), \varsigma \geq 1$. Then

(3.3)
$$|a_2| \le \min \begin{cases} \frac{|\mathcal{P}(x)|}{2(2\varsigma-1)\kappa_2}, \\ \frac{\sqrt{2}|\mathcal{P}(x)|\sqrt{|\mathcal{P}(x)|}}{\sqrt{|([2(1+\varsigma)-8(2\varsigma-1)^2]\mathcal{P}(x)^2-16\mathcal{Q}(x)(2\varsigma-1)^2)\kappa_2^2|}} \end{cases}$$

and(3.4)

$$|a_3| \le \min \begin{cases} \frac{|\mathcal{P}(x)|}{3(3\varsigma-1)\kappa_3} + \frac{|\mathcal{P}^2(x)|}{4(2\varsigma-1)^2\kappa_2^2}, \\ \frac{|\mathcal{P}(x)|}{3(3\varsigma-1)\kappa_3} + \frac{2\mathcal{P}^3(x)}{|([2(1+\varsigma)-8(2\varsigma-1)^2]\mathcal{P}(x)^2-16\mathcal{Q}(x)(2\varsigma-1)^2)\kappa_2^2|}. \end{cases}$$

Proof. From (3.1) and (3.2), it is evident that

(3.5)
$$\varsigma \left(1 + \frac{\xi(\mathcal{J}_{a,b,c}s(\xi))''}{(\mathcal{J}_{a,b,c}s(\xi))'} \right) + (1-\varsigma)\frac{1}{(\mathcal{J}_{a,b,c}s(\xi))'} = \mathcal{G}_{\{\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)\}}(\Omega(\xi)) - 1$$

and

(3.6)
$$\varsigma \left(1 + \frac{\omega(\mathcal{J}_{a,b,c}s(\omega))''}{(\mathcal{J}_{a,b,c}s(\omega))'} \right) + (1-\varsigma)\frac{1}{(\mathcal{J}_{a,b,c}s(\omega))'} = \mathcal{G}_{\{\mathcal{L}_{\mathcal{P},\mathcal{Q},n}(x)\}}(\Lambda(\omega)) - 1$$

or equivalently

(3.7)
$$\varsigma \left(1 + \frac{\xi(\mathcal{J}_{a,b,c}s(\xi))''}{(\mathcal{J}_{a,b,c}s(\xi))'} \right) + (1-\varsigma) \frac{1}{(\mathcal{J}_{a,b,c}s(\xi))'} = -1 + \mathcal{L}_{\mathcal{P},\mathcal{Q},0}(x) + \mathcal{L}_{\mathcal{P},\mathcal{Q},1}\Omega(\xi) + \mathcal{L}_{\mathcal{P},\mathcal{Q},2}\Omega^2(\xi) + \cdots$$

(3.8)
$$\varsigma \left(1 + \frac{\omega(\mathcal{J}_{a,b,c}s(\omega))''}{(\mathcal{J}_{a,b,c}s(\omega))'} \right) + (1-\varsigma)\frac{1}{(\mathcal{J}_{a,b,c}s(\omega))'} = -1 + \mathcal{L}_{\mathcal{P},\mathcal{Q},0}(x) + \mathcal{L}_{\mathcal{P},\mathcal{Q},1}\Lambda(\omega) + \mathcal{L}_{\mathcal{P},\mathcal{Q},2}\Lambda^{2}(\omega) + \cdots$$

from equalities (3.7) and (3.8)

(3.9)
$$\varsigma \left(1 + \frac{\omega(\mathcal{J}_{a,b,c}s(\omega))''}{(\mathcal{J}_{a,b,c}s(\omega))'} \right) + (1-\varsigma)\frac{1}{(\mathcal{J}_{a,b,c}s(\omega))'}$$
$$= 1 + \mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)l_1\xi + [\mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)l_2 + \mathcal{L}_{\mathcal{P},\mathcal{Q},2}(x)l_1^2]\xi^2 + \cdots$$

(3.10)
$$\varsigma \left(1 + \frac{\omega(\mathcal{J}_{a,b,c}s(\omega))''}{(\mathcal{J}_{a,b,c}s(\omega))'} \right) + (1-\varsigma)\frac{1}{(\mathcal{J}_{a,b,c}s(\omega))'}$$
$$= 1 + \mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)r_1\omega + [\mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)r_2 + \mathcal{L}_{\mathcal{P},\mathcal{Q},2}(x)r_1^2]\omega^2 + \cdots$$

it is already known that if for $\xi, \omega \in U$.

Consequently, we obtain by comparing the equivalent coefficients in (3.9) and (3.10)

$$\begin{array}{ll} (3.11) & 2(2\varsigma - 1)\kappa_2 a_2 = \mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)l_1 \\ (3.12) & 3(3\varsigma - 1)\kappa_3 a_3 + 4(1 - 2\varsigma)\kappa_2^2 a_2^2 = \mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)l_2 + \mathcal{L}_{\mathcal{P},\mathcal{Q},2}(x)l_1^2 \\ (3.13) & -2(2\varsigma - 1)\kappa_2 a_2 = \mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)r_1 \\ (3.14) & 2(5\varsigma - 1)\kappa_2 a_2 - 3(3\varsigma - 1)\kappa_3 a_3 = \mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)r_2 + \mathcal{L}_{\mathcal{P},\mathcal{Q},2}(x)r_1^2. \\ \end{array}$$
 From (3.11) and (3.13),
$$l_1 = -r_1$$

from (3.11) by using (1.9)

(3.16)
$$|a_2| \leq \frac{\mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)}{2(2\varsigma-1)\kappa_2} \leq \frac{|\mathcal{P}(x)|}{2(2\varsigma-1)\kappa_2}.$$

 Also

$$8(2\varsigma - 1)^2 \kappa_2^2 a_2^2 = \mathcal{L}^2_{\mathcal{P},\mathcal{Q},1}(x)(l_1^2 + r_1^2)$$

and

(3.17)
$$a_2^2 = \frac{\mathcal{L}_{\mathcal{P},\mathcal{Q},1}^2(x)(l_1^2 + r_1^2)}{8(2\varsigma - 1)^2\kappa_2^2}.$$

Thus by (1.9), we get

(3.18)
$$|a_2| \le \frac{\mathcal{L}^2_{\mathcal{P},\mathcal{Q},1}(x)}{2(2\varsigma-1)\kappa_2} = \frac{|\mathcal{P}(x)|}{2(2\varsigma-1)\kappa_2}.$$

Now from (3.12), (3.14) and using (3.17), we obtain

(3.19)
$$[4(1-2\varsigma)\kappa_2^2 + 2(5\varsigma - 1)\kappa_2^2]a_2^2$$
$$= \mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)(l_2 + r_2) + \mathcal{L}_{\mathcal{P},\mathcal{Q},2}(x)(l_1^2 + r_1^2).$$

Thus, by (3.19) we obtain

$$a_{2}^{2} = \frac{\mathcal{L}_{\mathcal{P},\mathcal{Q},1}^{3}(x)(l_{2}+r_{2})}{[\mathcal{L}_{\mathcal{P},\mathcal{Q},1}^{2}(x)2(1+\varsigma) - \mathcal{L}_{\mathcal{P},\mathcal{Q},2}(x)8(2\varsigma-1)^{2}]\kappa_{2}^{2}}$$

$$\begin{aligned} |a_2^2| &= \frac{2|\mathcal{P}^3(x)|}{|[\mathcal{P}^2(x)2(1+\varsigma) - (\mathcal{P}^2(x) + 2\mathcal{Q}(x))8(2\varsigma - 1)^2]\kappa_2^2|} \\ |a_2| &\leq \frac{\sqrt{2}|\mathcal{P}(x)||\sqrt{\mathcal{P}(x)}|}{\sqrt{|[\mathcal{P}^2(x)2(1+\varsigma) - (\mathcal{P}^2(x) + 2\mathcal{Q}(x))8(2\varsigma - 1)^2]\kappa_2^2|}}. \end{aligned}$$

From (3.12), (3.14) and using (3.15), we get

(3.20)
$$a_3 = \frac{\mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)(l_2 - r_2)}{6(3\varsigma - 1)\kappa_3} + a_2^2.$$

Then taking modulus, we get

$$(3.21) |a_3| \le \frac{\mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)}{3(3\varsigma-1)\kappa_3} + |a_2^2|$$

using (3.16) and (3.18), we get

(3.22)
$$|a_3| \leq \frac{\mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)}{3(3\varsigma-1)\kappa_3} + \frac{\mathcal{L}_{\mathcal{P},\mathcal{Q},1}^2(x)}{4(2\varsigma-1)^2\kappa_2^2} \\ = \frac{|\mathcal{P}(x)|}{3(3\varsigma-1)\kappa_3} + \frac{\mathcal{P}^2(x)}{4(2\varsigma-1)^2\kappa_2^2}.$$

Now by using (3.19) in (3.21)

$$\begin{aligned} |a_3| &\leq \frac{\mathcal{L}_{\mathcal{P},\mathcal{Q},1}(x)}{3(3\varsigma-1)\kappa_3} + |a_2^2| \\ &= \frac{|\mathcal{P}(x)|}{3(3\varsigma-1)\kappa_3} \\ &+ \frac{2\mathcal{P}^3(x)}{|\left([2(1+\varsigma) - 8(2\varsigma-1)^2]\mathcal{P}(x)^2 - 16\mathcal{Q}(x)(2\varsigma-1)^2\right)\kappa_2^2|}. \end{aligned}$$

Due to Zaprawa [37], we prove Fekete-Szegö inequalities [12] for functions $s \in \mathcal{V}^{a,b;c}_{\Xi}(\varsigma,n;x)$.

Theorem 3.4. Let s given by (1.1) belongs to the class $\mathcal{V}^{a,b;c}_{\Xi}(\varsigma,n;x)$. Then,

$$(3.23) \quad |a_3 - \tau a_2^2| \le \begin{cases} \frac{|\mathcal{P}(x)|}{3(3\varsigma - 1)\kappa_3}, & 0 \le |\mathcal{T}(\tau; x)| < \frac{1}{6(3\varsigma - 1)\kappa_3}\\ 2|\mathcal{P}(x)||\mathcal{T}(\tau; x)|, & |\mathcal{T}(\tau; x)| \ge \frac{1}{6(3\varsigma - 1)\kappa_3} \end{cases}$$

where

$$\mathcal{T}(\tau; x) = \frac{(1-\tau)\mathcal{P}^2(x)}{[(2(1+\varsigma) - 8(2\varsigma - 1)^2)\mathcal{P}^2(x) - 16\mathcal{Q}(x)(2\varsigma - 1)^2]\kappa_2^2}.$$

Proof. From equations (3.20), we get

$$\begin{aligned} a_3 - \tau a_2^2 &= \frac{\mathcal{P}(x)(l_2 - r_2)}{6(3\varsigma - 1)\kappa_3} + (1 - \tau)a_2^2 \\ &= \frac{\mathcal{P}(x)(l_2 - r_2)}{6(3\varsigma - 1)\kappa_3} \\ &+ \frac{(1 - \tau)\mathcal{P}^3(x)(l_2 + r_2)}{[(2(1 + \varsigma) - 8(2\varsigma - 1)^2)\mathcal{P}^2(x) - 16\mathcal{Q}(x)(2\varsigma - 1)^2]\kappa_2^2} \\ &= \mathcal{P}(x) \left[\left(\mathcal{T}(\tau; x) + \frac{1}{6(3\varsigma - 1)\kappa_3}\right) l_2 + \left(\mathcal{T}(\tau; x) - \frac{1}{6(3\varsigma - 1)\kappa_3}\right) l_2 \right] \end{aligned}$$

where

$$\mathcal{T}(\tau;x) = \frac{(1-\tau)\mathcal{P}^2(x)}{[(2(1+\varsigma) - 8(2\varsigma - 1)^2)\mathcal{P}^2(x) - 16\mathcal{Q}(x)(2\varsigma - 1)^2]\kappa_2^2}.$$

One can easily assert the following by using the above Theorem 3.4 and taking $\tau = 1$.

Remark 3.5. Let $s \in \mathcal{V}^{a,b;c}_{\Xi}(\varsigma,n;x)$ represent the function s. Then

$$|a_3 - a_2^2| \le \frac{|\mathcal{P}(x)|}{3(3\varsigma - 1)\kappa_3}.$$

Acknowledgment. The author would like to thank the editor and referees for their insightful suggestions.

References

- S.Altinkaya and S. Yalçin, On the (p,q)-Lucas polynomial coefficient bounds of the bi-univalent function class σ, Bol. Soc. Mat. Mex., 25 (2019), pp. 567-575.
- E.A. Adegani, A. Zireh and M. Jafari, Coefficient estimates for a new subclass of analytic and bi-univalent functions by Hadamard product, Bol. Soc. Paran. Mat., 39 (2021), pp. 87-104.
- R.M. Ali, S.K. Leo, V. Ravichandran, S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda star-like and convex functions, Appl. Math. Lett., 25 (2012), pp. 344-351.
- 4. D.A. Brannan and J.G. Clunie (Editors), Aspects of Contemporary Complex Analysis, Academic Press, London, 1980.
- 5. V.D. Breaz, A. Cătaş and L.I. Cotirla, On the Upper Bound of the Third Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function, An. St. Univ. Ovidius Constanta, 2022.

- S. Bulut, Coefficient estimates for a subclass of meromorphic biunivalent functions defined by subordination, Stud. Univ. Babes-Bolyai Math., 65 (2020), 57 66.
- B.C. Carlson and D.B. Shafer, Starlike and prestarlike Hypergeometric functions, J. Math. Anal., 15 (1984), pp. 737-745.
- 8. A. Cătaş, On the Fekete-Szegö problem for certain classes of meromorphic functions using (p,q)-derivative operator and a (p,q)wright type hypergeometric function, Symmetry, 13 (2021), 2143.
- J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), pp. 1-13.
- J. Dziok and H.M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Intergral Transforms Spec. Funct., 14 (2003), pp. 7-18.
- E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Anal., 2 (2013), pp. 49- 60.
- M. Fekete and G. Szegö, *Eine Bemerkung uber ungerade schlichte functionen*, J. London Math. Soc., 8 (1933), pp. 85-89.
- B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), pp. 1569-1573.
- A.W. Goodman, Univalent Functions, Mariner Publishing Company Inc., Tampa, FL, USA, 1983, Volumes I and II.
- T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J., 22 (2012), pp. 15-26.
- Yu.E. Hohlov, Convolution operators that preserve univalent functions, Ukrain. Mat. Zh., 37 (1985), pp. 220-226.
- Yu.E. Hohlov, Hadamard convolutions, hypergeometric functions and linear operators in the class of univalent functions, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 7 (1984), pp. 25-27.
- M.B. Khan, M.A. Noor, K.I. Noor and Y.M. Chu, New Hermite Hadamard-type inequalities for convex fuzzy-intervalvalued functions, Adv. Differ. Equ., 28 (2017), pp. 693-706.
- V. Kiryakova, Criteria for univalence of the Dziok Srivastava and the Srivastava Wright operators in the class A, Appl. Math. Comput., 218 (2011), pp. 883-892.
- A.Y. Lashin, Coefficient Estimates for Two Subclasses of Analytic and Bi-Univalent Functions, Ukr. Math. J., 70 (2019), pp. 1484-1492.
- 21. G. Lee and M.Asci, Some properties of the (p,q)-Fibonacci and (p,q)-Lucas polynomials, Journal of Applied Mathematics, 2012 (2012), 264842.

ELUMALAI MUTHAIYAN

- X.F. Li and A.P. Wang, Two new subclasses of bi-univalent functions, Internat. Math. Forum, 7 (2012), pp. 1495-1504.
- A. Lupas, A guide of Fibonacci and Lucas polynomials, Octogon Math. Mag., 7 (1999), pp. 3-12.
- W.C. Ma and D. Minda, A unified treatment of some special classes of functions, Proceedings of the Conference on Complex Analysis, Tianjin, 1992, 157 169, Conf. Proc. Lecture Notes Anal. 1. Int. Press, Cambridge, MA, 1994.
- G. Murugusundaramoorthy, H.O. Guney and K. Vijaya, Coefficient bounds for certain suclasses of bi-prestarlike functions associated with the Gegenbauer polynomial, Adv. Stud. Contemp. Math., 32 (2022), pp. 5- 15.
- M. Obradovic, T. Yaguchi and H. Saitoh, On some conditions for univalence and starlikeness in the unit disc, Rend. Math. Ser. VII., 12 (1992), pp. 869-877.
- 27. C. Pommerenke, *Univalent Functions*, Vandenhoeck and Ruprecht, Göttingen, 1975.
- T. Panigarhi and G. Murugusundaramoorthy, Coefficient bounds for bi-univalent functions analytic functions associated with Hohlov operator, Proc. Jangjeon Math. Soc., 16 (2013), pp. 91-100.
- H.M. Srivastava, G. Murugusundaramoorthy and N. Magesh, Certain subclasses of bi-univalent functions associated with the Hohlov operator, Glob. J. Math. Anal., 2 (2013), pp. 67-73.
- H.M. Srivastava, A.K. Mishra and P. Gochhayat, *Certain subclasses of analytic and bi-univalent functions*, Appl. Math. Lett., 23 (2010), pp. 1188-1192.
- H.M. Srivastava, Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators, Appl. Anal. Discrete Math., 1 (2007), pp. 56-71.
- H.M. Srivastava and P.W. Karlsson, Multiple Gaussian hypergeometric series, Wiley, New York, 1985.
- Sr Swamy and A.K. Wanas, A comprehensive family of bi-univalent functions defined by (m, n)-Lucas polynomials, Bol. Soc. Mat. Mex., 28 (2022), pp. 1-10.
- G.I. Oros and L.I. Cotîrlă, Coefficient estimates and the fekete szegö problem for new classes of m-fold symmetric bi-univalent functions, Mathematics 10 (2022), 129.
- A.K. Wanas, Applications of (M, N)-Lucas polynomials for holomorphic and bi-univalent functions, Filomat, 34 (2020), pp. 3361-3368.
- 36. A.K. Wanas and Luminiţa-Ioana Cotîrlă, Applications of (M, N)-Lucas polynomials on a certain family of bi-univalent functions,

Mathematics, 10 (2022), pp. 1-11.

 P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), pp. 169-178.

DEPARTMENT OF MATHEMATICS, ST. JOSEPH'S INSTITUTE OF TECHNOLOGY, OMR, CHENNAI - 600 119, TAMILNADU, INDIA. *Email address*: 1988malai@gmail.com