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Bi-Univalent Functions of Complex Order Defined by Hohlov
Operator Associated with (P,Q)−Lucas Polynomial

Elumalai Muthaiyan

Abstract. On this study, two new subclasses of the function class
Ξ of bi-univalent functions of complex order defined in the open
unit disc are introduced and investigated. These subclasses are con-
nected to the Hohlov operator with (P,Q)−Lucas polynomial and
meet subordinate criteria. For functions in these new subclasses,
we also get estimates for the Taylor-Maclaurin coefficients |a2| and
|a3|. The results are also discussed as having a number of (old or
new) repercussions.

1. Introduction and Definition

Let A denote the class of functions of the form:

(1.1) s(ξ) = ξ +

∞∑
n=2

anξ
n

which are analytic in the open unit disk
U = {ξ : ξ ∈ C and |ξ| < 1}.

Additionally, we’ll use the symbol S to represent the class of all functions
in A that are univalent in U. The class S∗(α) of starlike functions of order
α in U and the class K(α) of convex functions of order α in U are two
notable and well-studied subclasses of the univalent function class S.
Every function s ∈ S has an inverse s−1, which is defined by

s−1(s(ξ)) = ξ, (ξ ∈ U)
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and
s(s−1(ω)) = ω,

(
|ω| < r0(s); r0(s) ≥

1

4

)
where

t(ω) = s−1(ω)(1.2)
= ω − a2ω

2 + (2a22 − a3)ω
3 − (5a32 − 5a2a3 + a4)ω

4 + · · · .

A function s ∈ A is said to be bi-univalent in U if both s(ξ) and s−1(ξ)
are univalent in U. Let Ξ denote the class of bi-univalent functions in U
given by (1.1). Note that the functions

s1(ξ) =
ξ

1− ξ
, s2(ξ) =

1

2
log

1 + ξ

1− ξ
, s3(ξ) = − log(1− ξ)

with their corresponding inverses

s−1
1 (ω) =

ω

1− ω
, s−1

2 (ω) =
e2ω − 1

e2ω + 1
, s−1

3 (ω) =
eω − 1

eω

are components of Ξ. This topic is covered in great detail in the ground-
breaking work by Srivastava et al. [30], who recently resurrected the
study of analytic and bi-univalent functions. Many successors to Srivas-
tava et al. [30]  were produced after it.

An analytic function ω defined on U with ω(0) = 0 and |ω(ξ)| < 1
supporting s(ξ) = t(ω(ξ)), then s is subordinate to an analytic function
t, written s(ξ) ≺ t(ξ). Recently, Ma and Minda combined different
subclasses of starlike and convex functions for which the quantity ξs′(ξ)

s(ξ)

or 1 + ξs′′(ξ)
s′(ξ) is subordinate to a more general superordinate function.

They examined an analytic function ϕ with a positive real portion in
the unit disc for this persistence U, ϕ(0) = 1. In addition, ϕ maps U
onto an area that is symmetric with respect to the real axis and starlike
with respect to 1. Functions meeting the subordination ξs′(ξ)

s(ξ) ≺ ϕ(ξ) fall
within the category of Ma-Minda starlike functions.

The convolution or Hadamard product of two functions s, h ∈ A is
denoted by s ∗ h and is defined as

(1.3) (s ∗ h)(ξ) = ξ +

∞∑
n=2

anbnξ
n,

where (1.1) gives the value of s(ξ) and h(ξ) = ξ+
∑∞

n=2 bnξ
n. Dziok and

Srivastava introduced and carefully explored the Dziok-Srivastava linear
operator involving the generalised hypergeometric function in terms of
the Hadamard product (or convolution) before being followed by numer-
ous other authors. In this study, we recall the well-known convolution
operator Ja,b,c attributed to Hohlov [16, 17], which is undoubtedly a
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highly specialized instance of the widely (and in-depthly) investigated
Dziok-Srivastava operator as well as the much more general Srivastava
Wright operator [31] (also see [19]).

For the complex parameters a, b and c with c ̸= 0,−1,−2,−3, . . . , the
Gaussian hypergeometric function 2F1(a, b, c; ξ) is defined as

2F1(a, b, c; ξ) =

∞∑
n=0

(a)n(b)n
(c)n

ξn

n!
(1.4)

= 1 +
∞∑
n=0

(a)n−1(b)n−1

(c)n−1

ξn−1

(n− 1)!
(ξ ∈ U)

where (a)n is the Pochhammer symbol (or the shifted factorial) defined
as follows:

(1.5) (a)n =
Γ(a+ n)

Γ(a)
.

For the positive real numbers a, b and c with c ̸= 0,−1,−2,−3, . . . .
In order to present the well-known convolution operator Ja,b,c Hohlov
introduced the Gaussian hypergeometric function provided by (1.4) as
follows:

Ja,b,cs(ξ) = ξ 2F1(a, b, c; ξ) ∗ s(ξ)(1.6)

= ξ +

∞∑
n=2

κnanξ
n, (ξ ∈ U)

where

(1.7) κn =
(a)n−1(b)n−1

(c)n−1(n− 1)!
.

Hohlov described some intriguing geometrical characteristics by the op-
erator Ja,b,c. The majority of the well-known linear integral or differen-
tial operators are included as special cases in the three-parameter fam-
ily of operators Ja,b,c. In instance, Ja,b,c reduces to the Carlson-Shaffer
operator if b = 1 in (1.6). Similar to this, it is clear that the Bernardi-
Libera-Livingston operator and the Ruscheweyh derivative operator are
both generalizations of the Hohlov operator Ja,b,c.

Interest in the study of the bi-univalent function class Ξ has recently
increased, and non-sharp coefficient estimates have been found for the
first two coefficients |a2| and |a3| of (1.1). However, the coefficient issue
for each of the subsequent Taylor-Maclaurin coefficients is as follows:

|an|, (n ∈ N {1, 2}; N := {1, 2, 3, . . . }).
It’s still an open issue. The first two Taylor-Maclaurin coefficients |a2|
and |a3| have non-sharp estimates, according to recent research that
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has introduced and examined a number of intriguing subclasses of the
bi-univalent function class Ξ.

Definition 1.1. Let P(x) and Q(x) be polynomials with real coeffi-
cients. The (P,Q)− Lucas polynomials LP,Q,n(x) are defined by the
reccurence relation

(1.8) LP,Q,n(x) = P(x)LP,Q,n−1(x) +Q(x)LP,Q,n−2(x), (n ≥ 2)

from which the first few Lucas polynomials cab be found as follows:
LP,Q,0(x) = 2

LP,Q,1(x) = P(x)

LP,Q,2(x) = P2(x) + 2Q(x)

LP,Q,3(x) = P3(x) + 3P(x)Q(x).

(1.9)

Definition 1.2. Let G{Ln(x)}(ξ) be the generating function of the (P,Q)−
Lucas polynomial sequence LP,Q,n(x). Then

G{Ln(x)}(ξ) =
∞∑
n=0

LP,Q,n(x)ξ
n(1.10)

=
2− P(x)ξ

1− P(x)ξ −Q(x)ξ2
.

Note that for particular values of P and Q, the (P,Q)-polynomial
LP,Q,n(x) leads to various polynomials, among those, we list few cases
here (see, [23] for more details, also [1, 18]):

• For P(x) = x and Q(x) = 1, we obtain the Lucas polynomials
Ln(x).

• For P(x) = 2x and Q(x) = 1, we attain the Pell-Lucas polyno-
mials Qn(x).

• For P(x) = 1 and Q(x) = 2x, we attain the Jacobsthal-Lucas
polynomials jn(x).

• For P(x) = 3x and Q(x) = −2, we attain the Fermat-Lucas
polynomials fn(x).

• For P(x) = 2x and Q(x) = −1, we have the Chebyshev poly-
nomials Tn(x) of the first kind.

A study on bi-univalent functions by [3, 11, 13, 15, 22] as well as nu-
merous recent works on the Fekete-Szegö functional and other coefficient
estimates (see [2, 5, 6, 8, 25]), served as the inspiration for the current
paper. In this paper we introduce new subclasses of the function class
Ξ of complex order β ∈ C \ {0} other relevant classes are taken into
account and connections to previously reported results are made.
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Definition 1.3. A function s ∈ Ξ given by (1.1) is said to be in the
class Ma,b;c

Ξ (β, δ, n;x) if the following conditions are satisfied:

(1.11) 1 +
1

β

(
ξ(Ja,b,cs(ξ))

′

(1− δ)ξ + δJa,b,cs(ξ)
− 1

)
≺ G{LP,Q,n(x)}(ξ)− 1

and

(1.12) 1 +
1

β

(
w(Ja,b,cs(ω))

′

(1− δ)ξ + δJa,b,cs(ω)
− 1

)
≺ G{LP,Q,n(x)}(ω)− 1

where the function t is given by (1.2).

On specializing the parameters δ and a, b, c one can state the various
new subclasses of Ξ as illustrated in the following examples.

Example 1.4. A function s ∈ Ξ, given by (1.1) is said to belong to
the class Ma,b;c

Ξ (β, n;x) if the following criteria are met for δ = 1 and
β ∈ C \ {0}:

(1.13) 1 +
1

β

(
ξ(Ja,b,cs(ξ))

′

Ja,b,cs(ξ)
− 1

)
≺ G{LP,Q,n(x)}(ξ)− 1

and

(1.14) 1 +
1

β

(
w(Ja,b,cs(ω))

′

Ja,b,cs(ω)
− 1

)
≺ G{LP,Q,n(x)}(ω)− 1

where ξ, ω ∈ U and the function t is given by (1.2).

Example 1.5. A function s ∈ Ξ, given by (1.1) is said to belong to
the class Ma,b;c

Ξ (β, n;x) if the following criteria are met for δ = 0 and
β ∈ C \ {0}:

(1.15) 1 +
1

β

(
(Ja,b,cs(ξ))

′ − 1
)
≺ G{LP,Q,n(x)}(ξ)− 1

and

(1.16) 1 +
1

β

(
(Ja,b,cs(ω))

′ − 1
)
≺ G{LP,Q,n(x)}(ω)− 1

where ξ, ω ∈ U and the function t is given by (1.2).

Example 1.6. In the case of δ = 1 and β ∈ C \ {0}. If the following
criteria are met, a function s ∈ Ξ, given by (1.1), is considered to belong
to the class M∗

Ξ(β, n;x):

(1.17) 1 +
1

β

(
ξs′(ξ)

s(ξ)
− 1

)
≺ G{LP,Q,n(x)}(ξ)− 1
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and

(1.18) 1 +
1

β

(
ξs′(ω)

s(ω)
− 1

)
≺ G{LP,Q,n(x)}(ω)− 1

where ξ, ω ∈ U and the function t is given by (1.2).

Example 1.7. For δ = 0 and β ∈ C \ {0}. If the following criteria are
met, a function s ∈ Ξ, given by (1.1), is considered to belong to the class
M∗

Ξ(β, n;x):

(1.19) 1 +
1

β

(
s′(ξ)− 1

)
≺ G{LP,Q,n(x)}(ξ)− 1

and

(1.20) 1 +
1

β

(
s′(ω)− 1

)
≺ G{LP,Q,n(x)}(ω)− 1

where ξ, ω ∈ U and the function t is given by (1.2).

By using the methods previously employed by Deniz in [11], we derive
estimates on the coefficients |a2| and |a3| for functions in the above
described subclasses Ma,b;c

Ξ (β, δ, n;x) of the function class Ξ.

2. Coefficient Bounds for the Function Class Ma,b;c
Ξ (β, δ, n;x)

Theorem 2.1. Let s be given by (1.1) and in the class Ma,b;c
Ξ (β, δ, n;x).

Then

(2.1) |a2| ≤
β2|P(x)|

√
|P(x)|√

|{(2− δ)[(1− 2β)δ − 2]κ22 + 2β(3− δ)κ3}P2(x)
− 2(2− δ)2κ22Q(x)|

and

(2.2) |a3| ≤
β2P2(x)

(2− δ)2κ22
+

β|P(x)|
2(3− δ)κ3

.

Proof. Let s ∈ Ma,b;c
Ξ (β, δ, n;x). Then, from Definition 1.2, for some

analytic functions, Ω,Λ such that Ω(0) = Λ(0) = 0 and |Ω(ξ)| < 1,
|Λ(ω)| < 1 for all ξ, ω ∈ U, we can write

1 +
1

β

(
ξ(Ja,b,cs(ξ))

′

(1− δ)ξ + δJa,b,cs(ξ)
− 1

)
= G{LP,Q,n(x)}(Ω(ξ))− 1(2.3)

1 +
1

β

(
ω(Ja,b,cs(ω))

′

(1− δ)ω + δJa,b,cs(ω)
− 1

)
= G{LP,Q,n(x)}(Λ(ω))− 1(2.4)

or equivalently

1 +
1

β

(
ξ(Ja,b,cs(ξ))

′

(1− δ)ξ + δJa,b,cs(ξ)
− 1

)
(2.5)
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= −1 + LP,Q,0(x) + LP,Q,1Ω(ξ) + LP,Q,2Ω
2(ξ) + · · ·

1 +
1

β

(
ω(Ja,b,cs(ω))

′

(1− δ)w + δJa,b,cs(ω)
− 1

)
(2.6)

= −1 + LP,Q,0(x) + LP,Q,1Λ(ω) + LP,Q,2Λ
2(ω) + · · · .

From equalities (2.5) and (2.6)

1 +
1

β

(
ξ(Ja,b,cs(ξ))

′

(1− δ)ξ + δJa,b,cs(ξ)
− 1

)
(2.7)

= 1 + LP,Q,1(x)l1ξ + [LP,Q,1(x)l2 + LP,Q,2(x)l
2
1]ξ

2 + · · ·

1 +
1

β

(
ω(Ja,b,cs(ω))

′

(1− δ)ω + δJa,b,cs(ω)
− 1

)
(2.8)

= 1 + LP,Q,1(x)r1ω + [LP,Q,1(x)r2 + LP,Q,2(x)r
2
1]ω

2 + · · · .
It is already known that if for ξ, ω ∈ U,

Ω(ξ) =

∣∣∣∣∣
n∑

i=1

liξ
i

∣∣∣∣∣ < 1

and

Λ(ω) =

∣∣∣∣∣
n∑

i=1

riω
i

∣∣∣∣∣ < 1

then
Ω(ξ) = |li| < 1

and
Λ(ω) = |ri| < 1

where i ∈ N. Thus, comparing the corresponding coefficients in (2.7)
and (2.8), we get

2− δ

β
κ2a2 = LP,Q,1(x)l1(2.9)

δ2 − 2δ

β
κ22a

2
2 +

3− δ

β
κ3a3 = LP,Q,1(x)l2 + LP,Q,2(x)l

2
1(2.10)

− 2− δ

β
κ2a2 = LP,Q,1(x)r1(2.11)

δ2 − 2δ

β
κ22a

2
2 +

3− δ

β
κ3(2a

2
2 − a3) = LP,Q,1(x)r2 + LP,Q,2(x)r

2
1.(2.12)

From (2.9) and (2.11),

a2 =
βl1

(2− δ)κ2
=

−βr1
(2− δ)κ2

(2.13)

l1 = −r1(2.14)
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(2− δ)2κ22a
2
2 = β2L2

P,Q,1(x)(l
2
1 + r21)(2.15)

adding (2.10) and (2.12),

2

(
δ2 − 2δ

β
κ22 +

3− δ

β
κ3

)
a22(2.16)

= LP,Q,1(x)(l2 + r2) + LP,Q,2(x)(l
2
1 + r21).

By using (2.15) and (2.16), we have
[2βL2

P,Q,1(x)[(δ
2 − 2δ)κ22 + (3− δ)κ3]− LP,Q,2(x)(2− δ)2κ22]a

2
2(2.17)

= β2L3
P,Q,1(x)(l2 + r2)

a22 =
β2L3

P,Q,1(x)(l2 + r2)

[2βL2
P,Q,1(x)[(δ

2 − 2δ)κ22 + (3− δ)κ3]− LP,Q,2(x)(2− δ)2κ22]

which gives

|a2| ≤
β2|P(x)|

√
|P(x)|√

|{(2− δ)[(1− 2β)δ − 2]κ22 + 2β(3− δ)κ3}P2(x)
− 2(2− δ)2κ22Q(x)|

also, by subtracting (2.12) from (2.10), we get

(2.18) 2(3− δ)

β
κ3a3 −

2(3− δ)

β
κ3a

2
2 = LP,Q,1(x)(l2 − r2).

Then, by using (2.14) and (2.15) in (2.18), we have

a3 =
β2L2

P,Q,1(x)(l
2
1 + r1)

2

(2− δ)2κ22
+

βLP,Q,1(x)(l2 − r2)

2(3− δ)κ3
,

and by the help of (1.9), we conclude that

|a3| ≤
β2P2(x)

(2− δ)2κ22
+

β|P(x)|
2(3− δ)κ3

. □

Fixing δ = 1 in Theorem 2.1, we have the following:

Corollary 2.2. Let s be given by (1.1) and in the class Ma,b;c
Ξ (β, n;x).

Then

(2.19) |a2| ≤
β2|P(x)|

√
|P(x)|√

|{[(1− 2β)− 2]κ22 + 4βκ3}P2(x)− 2κ22Q(x)|
and

(2.20) |a3| ≤
β2P2(x)

κ22
+

β|P(x)|
4κ3

.

Assuming that a = c and b = 1, in Corollary 2.2 we obtain the
following:
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Corollary 2.3. Let s be given by (1.1) and in the class Ma,b;c
Ξ (β, n;x).

Then

(2.21) |a2| ≤
β2|P(x)|

√
|P(x)|√

|{[(1− 2β)− 2] + 4β}P2(x)− 2Q(x)|
and

(2.22) |a3| ≤ β2P2(x) +
β|P(x)|

4
.

Fixing δ = 0 in Theorem 2.1, we have the following:

Corollary 2.4. Let s be given by (1.1) and in the class Ma,b;c
Ξ (β, n;x).

Then

(2.23) |a2| ≤
β2|P(x)|

√
|P(x)|√

|{−4κ22 + 6βκ3}P2(x)− 8κ22Q(x)|
and

(2.24) |a3| ≤
β2P2(x)

4κ22
+

β|P(x)|
6κ3

.

Using the above corollaries a = c and b = 1, we obtain the following:

Corollary 2.5. Let s be given by (1.1) and in the class Ma,b;c
Ξ (β, n;x).

Then

(2.25) |a2| ≤
β2|P(x)|

√
|P(x)|√

|{6β − 4}P2(x)− 8Q(x)|
and

(2.26) |a3| ≤
β2P2(x)

4
+

β|P(x)|
6

.

We demonstrate Fekete-Szegö inequalities for the functions
s ∈ Ma,b;c

Ξ (β, δ, n;x) to Zaprawa [37].

Theorem 2.6. Let s given by (1.1) belongs to the class Ma,b;c
Ξ (β, δ, n;x).

Then,

(2.27) |a3 − τa22| ≤


|P(x)|

(3− δ)κ3
, 0 ≤ |T (τ ;x)| < β

2(3−δ)κ3

2|P(x)||T (τ ;x)|, |T (τ ;x)| ≥ β
2(3−δ)κ3

where

T (τ ;x) =
(1− τ)β2L2

P,Q,1(x)

[2βL2
P,Q,1(x)[(δ

2 − 2δ)κ22 + (3− δ)κ3]− LP,Q,2(x)(2− δ)2κ22]
.
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Proof. From equations (2.17) and (2.18), we get

a3 − τa22 =
βL2

P,Q,1(x)(l2 − r2)

2(3− δ)κ3
+ (1− τ)a22

=
βL2

P,Q,1(x)(l2 − r2)

2(3− δ)κ3

+
(1− τ)β2L3

P,Q,1(x)(l2 + r2)

[2βL2
P,Q,1(x)[(δ

2 − 2δ)κ2
2 + (3− δ)κ3]− LP,Q,2(x)(2− δ)2κ2

2]

= LP,Q,1(x)

[(
T (τ ;x) +

β

2(3− δ)κ3

)
l2 +

(
T (τ ;x)− β

2(3− δ)κ3

)
l2

]
where

T (τ ;x) =
(1− τ)β2L2

P,Q,1(x)

[2βL2
P,Q,1(x)[(δ

2 − 2δ)κ22 + (3− δ)κ3]− LP,Q,2(x)(2− δ)2κ22]
.

□

One may easily assert the following by assuming that τ = 1 in above
Theorem 2.1.

Remark 2.7. Let the function s be assumed by s ∈ Ma,b;c
Ξ (β, δ, n;x).

Then
|a3 − a22| ≤

|P(x)|
(3− δ)κ3

3. Subclass of Bi-Univalent Function Va,b;c
Ξ (ς, n;x)

Obradovic et al. provided several requirements for univalence in the
cited work, expressing them mathematically as R(s′(ξ)) > 0, for the
linear combinations

ς

(
1 +

ξs′′(ξ)

s′(ξ)

)
+ (1− ς)

1

s′(ξ)
> 0, (ς ≥ 1, ξ ∈ U).

Recently, Lashin in [20] introduced and explored the new subclasses of
bi-univalent function based on the aforementioned definitions.

Definition 3.1. If a function s ∈ Ξ given by (1.1) satisfies the following
criteria, it is said to belong to the class Va,b;c

Ξ (ς, n;x):

(3.1) ς

(
1 +

ξ(Ja,b,cs(ξ))
′′

(Ja,b,cs(ξ))′

)
+ (1− ς)

1

(Ja,b,cs(ξ))′
≺ G{LP,Q,n(x)}(ξ)− 1

and

(3.2) ς

(
1 +

ω(Ja,b,cs(ω))
′′

(Ja,b,cs(ω))′

)
+(1−ς)

1

(Ja,b,cs(ω))′
≺ G{LP,Q,n(x)}(ω)−1

where ς ≥ 1, ξ, ω ∈ U and the function t is given by (1.2).



BI-UNIVALENT FUNCTIONS OF COMPLEX ORDER ... 283

Remark 3.2. If a function s ∈ Ξ provided by (1.1) satisfies the following
criteria, it is said to belong to the class Va,b;c

Ξ (1, n;x) = Ra,b;c
Ξ (n;x):(

1 +
ξ(Ja,b,cs(ξ))

′′

(Ja,b,cs(ξ))′

)
≺ G{LP,Q,n(x)}(ξ)− 1

and (
1 +

ω(Ja,b,cs(ω))
′′

(Ja,b,cs(ω))′

)
≺ G{LP,Q,n(x)}(ω)− 1

where ξ, ω ∈ U and the function t is given by (1.2).

Theorem 3.3. Let s be given by (1.1) and s ∈ Va,b;c
Ξ (ς, n;x), ς ≥ 1.

Then

(3.3) |a2| ≤ min


|P(x)|

2(2ς−1)κ2
,

√
2|P(x)|

√
|P(x)|√

|([2(1+ς)−8(2ς−1)2]P(x)2−16Q(x)(2ς−1)2)κ2
2|

and
(3.4)

|a3| ≤ min


|P(x)|

3(3ς−1)κ3
+ |P2(x)|

4(2ς−1)2κ2
2
,

|P(x)|
3(3ς−1)κ3

+ 2P3(x)
|([2(1+ς)−8(2ς−1)2]P(x)2−16Q(x)(2ς−1)2)κ2

2|
.

Proof. From (3.1) and (3.2), it is evident that

ς

(
1 +

ξ(Ja,b,cs(ξ))
′′

(Ja,b,cs(ξ))′

)
+ (1− ς)

1

(Ja,b,cs(ξ))′
(3.5)

= G{LP,Q,n(x)}(Ω(ξ))− 1

and

ς

(
1 +

ω(Ja,b,cs(ω))
′′

(Ja,b,cs(ω))′

)
+ (1− ς)

1

(Ja,b,cs(ω))′
(3.6)

= G{LP,Q,n(x)}(Λ(ω))− 1

or equivalently

ς

(
1 +

ξ(Ja,b,cs(ξ))
′′

(Ja,b,cs(ξ))′

)
+ (1− ς)

1

(Ja,b,cs(ξ))′
(3.7)

= −1 + LP,Q,0(x) + LP,Q,1Ω(ξ) + LP,Q,2Ω
2(ξ) + · · ·

ς

(
1 +

ω(Ja,b,cs(ω))
′′

(Ja,b,cs(ω))′

)
+ (1− ς)

1

(Ja,b,cs(ω))′
(3.8)

= −1 + LP,Q,0(x) + LP,Q,1Λ(ω) + LP,Q,2Λ
2(ω) + · · ·
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from equalities (3.7) and (3.8)

ς

(
1 +

ω(Ja,b,cs(ω))
′′

(Ja,b,cs(ω))′

)
+ (1− ς)

1

(Ja,b,cs(ω))′
(3.9)

= 1 + LP,Q,1(x)l1ξ + [LP,Q,1(x)l2 + LP,Q,2(x)l
2
1]ξ

2 + · · ·

ς

(
1 +

ω(Ja,b,cs(ω))
′′

(Ja,b,cs(ω))′

)
+ (1− ς)

1

(Ja,b,cs(ω))′
(3.10)

= 1 + LP,Q,1(x)r1ω + [LP,Q,1(x)r2 + LP,Q,2(x)r
2
1]ω

2 + · · ·
it is already known that if for ξ, ω ∈ U.

Consequently, we obtain by comparing the equivalent coefficients in
(3.9) and (3.10)

2(2ς − 1)κ2a2 = LP,Q,1(x)l1(3.11)
3(3ς − 1)κ3a3 + 4(1− 2ς)κ22a

2
2 = LP,Q,1(x)l2 + LP,Q,2(x)l

2
1(3.12)

− 2(2ς − 1)κ2a2 = LP,Q,1(x)r1(3.13)
2(5ς − 1)κ2a2 − 3(3ς − 1)κ3a3 = LP,Q,1(x)r2 + LP,Q,2(x)r

2
1.(3.14)

From (3.11) and (3.13),
(3.15) l1 = −r1

from (3.11) by using (1.9)

(3.16) |a2| ≤
LP,Q,1(x)

2(2ς − 1)κ2
≤ |P(x)|

2(2ς − 1)κ2
.

Also
8(2ς − 1)2κ22a

2
2 = L2

P,Q,1(x)(l
2
1 + r21)

and

(3.17) a22 =
L2
P,Q,1(x)(l

2
1 + r21)

8(2ς − 1)2κ22
.

Thus by (1.9), we get

(3.18) |a2| ≤
L2
P,Q,1(x)

2(2ς − 1)κ2
=

|P(x)|
2(2ς − 1)κ2

.

Now from (3.12), (3.14) and using (3.17), we obtain
[4(1− 2ς)κ22 + 2(5ς − 1)κ22]a

2
2(3.19)

= LP,Q,1(x)(l2 + r2) + LP,Q,2(x)(l
2
1 + r21).

Thus, by (3.19) we obtain

a22 =
L3
P,Q,1(x)(l2 + r2)

[L2
P,Q,1(x)2(1 + ς)− LP,Q,2(x)8(2ς − 1)2]κ22
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|a22| =
2|P3(x)|

|[P2(x)2(1 + ς)− (P2(x) + 2Q(x))8(2ς − 1)2]κ22|

|a2| ≤
√
2|P (x)||

√
P(x)|√

|[P2(x)2(1 + ς)− (P2(x) + 2Q(x))8(2ς − 1)2]κ22|
.

From (3.12),(3.14) and using (3.15), we get

(3.20) a3 =
LP,Q,1(x)(l2 − r2)

6(3ς − 1)κ3
+ a22.

Then taking modulus, we get

(3.21) |a3| ≤
LP,Q,1(x)

3(3ς − 1)κ3
+ |a22|

using (3.16) and (3.18), we get

|a3| ≤
LP,Q,1(x)

3(3ς − 1)κ3
+

L2
P,Q,1(x)

4(2ς − 1)2κ22
(3.22)

=
|P(x)|

3(3ς − 1)κ3
+

P2(x)

4(2ς − 1)2κ22
.

Now by using (3.19) in (3.21)

|a3| ≤
LP,Q,1(x)

3(3ς − 1)κ3
+ |a22|

=
|P(x)|

3(3ς − 1)κ3

+
2P3(x)

| ([2(1 + ς)− 8(2ς − 1)2]P(x)2 − 16Q(x)(2ς − 1)2)κ22|
.

□

Due to Zaprawa [37], we prove Fekete-Szegö inequalities [12] for func-
tions s ∈ Va,b;c

Ξ (ς, n;x).

Theorem 3.4. Let s given by (1.1) belongs to the class Va,b;c
Ξ (ς, n;x).

Then,

(3.23) |a3 − τa22| ≤


|P(x)|

3(3ς − 1)κ3
, 0 ≤ |T (τ ;x)| < 1

6(3ς−1)κ3

2|P(x)||T (τ ;x)|, |T (τ ;x)| ≥ 1
6(3ς−1)κ3

where

T (τ ;x) =
(1− τ)P2(x)

[(2(1 + ς)− 8(2ς − 1)2)P2(x)− 16Q(x)(2ς − 1)2]κ22
.
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Proof. From equations (3.20), we get

a3 − τa22 =
P(x)(l2 − r2)

6(3ς − 1)κ3
+ (1− τ)a22

=
P(x)(l2 − r2)

6(3ς − 1)κ3

+
(1− τ)P3(x)(l2 + r2)

[(2(1 + ς)− 8(2ς − 1)2)P2(x)− 16Q(x)(2ς − 1)2]κ22

= P(x)

[(
T (τ ;x) +

1

6(3ς − 1)κ3

)
l2 +

(
T (τ ;x)− 1

6(3ς − 1)κ3

)
l2

]
where

T (τ ;x) =
(1− τ)P2(x)

[(2(1 + ς)− 8(2ς − 1)2)P2(x)− 16Q(x)(2ς − 1)2]κ22
. □

One can easily assert the following by using the above Theorem 3.4
and taking τ = 1.

Remark 3.5. Let s ∈ Va,b;c
Ξ (ς, n;x) represent the function s. Then

|a3 − a22| ≤
|P(x)|

3(3ς − 1)κ3
.
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