Bi-Univalent Functions of Complex Order Defined by Hohlov Operator Associated with (P, Q) - Lucas Polynomial

Elumalai Muthaiyan

Sahand Communications in Mathematical Analysis

Print ISSN: 2322-5807
Online ISSN: 2423-3900
Volume: 21
Number: 1
Pages: 273-289
Sahand Commun. Math. Anal.
DOI: 10.22130/scma.2023.1990927.1270

Volume 21, No. 1, January 2024	Print ISSN 2322-5807

Bi-Univalent Functions of Complex Order Defined by Hohlov Operator Associated with (\mathcal{P}, \mathcal{Q})-Lucas Polynomial

Elumalai Muthaiyan

Abstract

On this study, two new subclasses of the function class Ξ of bi-univalent functions of complex order defined in the open unit disc are introduced and investigated. These subclasses are connected to the Hohlov operator with $(\mathcal{P}, \mathcal{Q})$-Lucas polynomial and meet subordinate criteria. For functions in these new subclasses, we also get estimates for the Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. The results are also discussed as having a number of (old or new) repercussions.

1. Introduction and Definition

Let \mathcal{A} denote the class of functions of the form:

$$
\begin{equation*}
s(\xi)=\xi+\sum_{n=2}^{\infty} a_{n} \xi^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}=\{\xi: \xi \in \mathbb{C} \quad \text { and } \quad|\xi|<1\} .
$$

Additionally, we'll use the symbol \mathcal{S} to represent the class of all functions in \mathcal{A} that are univalent in \mathbb{U}. The class $\mathcal{S}^{*}(\alpha)$ of starlike functions of order α in \mathbb{U} and the class $\mathcal{K}(\alpha)$ of convex functions of order α in \mathbb{U} are two notable and well-studied subclasses of the univalent function class \mathcal{S}. Every function $s \in \mathcal{S}$ has an inverse s^{-1}, which is defined by

$$
s^{-1}(s(\xi))=\xi, \quad(\xi \in \mathbb{U})
$$

[^0]and
$$
s\left(s^{-1}(\omega)\right)=\omega, \quad\left(|\omega|<r_{0}(s) ; r_{0}(s) \geq \frac{1}{4}\right)
$$
where
\[

$$
\begin{align*}
t(\omega) & =s^{-1}(\omega) \tag{1.2}\\
& =\omega-a_{2} \omega^{2}+\left(2 a_{2}^{2}-a_{3}\right) \omega^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) \omega^{4}+\cdots
\end{align*}
$$
\]

A function $s \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both $s(\xi)$ and $s^{-1}(\xi)$ are univalent in \mathbb{U}. Let Ξ denote the class of bi-univalent functions in \mathbb{U} given by (1.1). Note that the functions

$$
s_{1}(\xi)=\frac{\xi}{1-\xi}, \quad s_{2}(\xi)=\frac{1}{2} \log \frac{1+\xi}{1-\xi}, \quad s_{3}(\xi)=-\log (1-\xi)
$$

with their corresponding inverses

$$
s_{1}^{-1}(\omega)=\frac{\omega}{1-\omega}, \quad s_{2}^{-1}(\omega)=\frac{e^{2 \omega}-1}{e^{2 \omega}+1}, \quad s_{3}^{-1}(\omega)=\frac{e^{\omega}-1}{e^{\omega}}
$$

are components of Ξ. This topic is covered in great detail in the groundbreaking work by Srivastava et al. [30], who recently resurrected the study of analytic and bi-univalent functions. Many successors to Srivastava et al. [30] were produced after it.

An analytic function ω defined on \mathbb{U} with $\omega(0)=0$ and $|\omega(\xi)|<1$ supporting $s(\xi)=t(\omega(\xi))$, then s is subordinate to an analytic function t, written $s(\xi) \prec t(\xi)$. Recently, Ma and Minda combined different subclasses of starlike and convex functions for which the quantity $\frac{\xi s^{\prime}(\xi)}{s(\xi)}$ or $1+\frac{\xi s^{\prime \prime}(\xi)}{s^{\prime}(\xi)}$ is subordinate to a more general superordinate function. They examined an analytic function ϕ with a positive real portion in the unit disc for this persistence $\mathbb{U}, \phi(0)=1$. In addition, ϕ maps \mathbb{U} onto an area that is symmetric with respect to the real axis and starlike with respect to 1 . Functions meeting the subordination $\frac{\xi s^{\prime}(\xi)}{s(\xi)} \prec \phi(\xi)$ fall within the category of Ma-Minda starlike functions.

The convolution or Hadamard product of two functions $s, h \in \mathcal{A}$ is denoted by $s * h$ and is defined as

$$
\begin{equation*}
(s * h)(\xi)=\xi+\sum_{n=2}^{\infty} a_{n} b_{n} \xi^{n} \tag{1.3}
\end{equation*}
$$

where (1.1) gives the value of $s(\xi)$ and $h(\xi)=\xi+\sum_{n=2}^{\infty} b_{n} \xi^{n}$. Dziok and Srivastava introduced and carefully explored the Dziok-Srivastava linear operator involving the generalised hypergeometric function in terms of the Hadamard product (or convolution) before being followed by numerous other authors. In this study, we recall the well-known convolution operator $\mathcal{J}_{a, b, c}$ attributed to Hohlov [16, 17], which is undoubtedly a
highly specialized instance of the widely (and in-depthly) investigated Dziok-Srivastava operator as well as the much more general Srivastava Wright operator [31] (also see [19]).

For the complex parameters a, b and c with $c \neq 0,-1,-2,-3, \ldots$, the Gaussian hypergeometric function ${ }_{2} F_{1}(a, b, c ; \xi)$ is defined as

$$
\begin{align*}
{ }_{2} F_{1}(a, b, c ; \xi) & =\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{\xi^{n}}{n!} \tag{1.4}\\
& =1+\sum_{n=0}^{\infty} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}} \frac{\xi^{n-1}}{(n-1)!} \quad(\xi \in \mathbb{U})
\end{align*}
$$

where $(a)_{n}$ is the Pochhammer symbol (or the shifted factorial) defined as follows:

$$
\begin{equation*}
(a)_{n}=\frac{\Gamma(a+n)}{\Gamma(a)} . \tag{1.5}
\end{equation*}
$$

For the positive real numbers a, b and c with $c \neq 0,-1,-2,-3, \ldots$. In order to present the well-known convolution operator $\mathcal{J}_{a, b, c}$ Hohlov introduced the Gaussian hypergeometric function provided by (1.4) as follows:

$$
\begin{align*}
\mathcal{J}_{a, b, c} s(\xi) & =\xi_{2} F_{1}(a, b, c ; \xi) * s(\xi) \tag{1.6}\\
& =\xi+\sum_{n=2}^{\infty} \kappa_{n} a_{n} \xi^{n}, \quad(\xi \in \mathbb{U})
\end{align*}
$$

where

$$
\begin{equation*}
\kappa_{n}=\frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(n-1)!} . \tag{1.7}
\end{equation*}
$$

Hohlov described some intriguing geometrical characteristics by the operator $\mathcal{J}_{a, b, c}$. The majority of the well-known linear integral or differential operators are included as special cases in the three-parameter family of operators $\mathcal{J}_{a, b, c}$. In instance, $\mathcal{J}_{a, b, c}$ reduces to the Carlson-Shaffer operator if $b=1$ in (1.6). Similar to this, it is clear that the Bernardi-Libera-Livingston operator and the Ruscheweyh derivative operator are both generalizations of the Hohlov operator $\mathcal{J}_{a, b, c}$.

Interest in the study of the bi-univalent function class Ξ has recently increased, and non-sharp coefficient estimates have been found for the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of (1.1). However, the coefficient issue for each of the subsequent Taylor-Maclaurin coefficients is as follows:

$$
\left|a_{n}\right|, \quad(n \in \mathbb{N}\{1,2\} ; \quad \mathbb{N}:=\{1,2,3, \ldots\})
$$

It's still an open issue. The first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ have non-sharp estimates, according to recent research that
has introduced and examined a number of intriguing subclasses of the bi-univalent function class Ξ.

Definition 1.1. Let $\mathcal{P}(x)$ and $\mathcal{Q}(x)$ be polynomials with real coefficients. The $(\mathcal{P}, \mathcal{Q})-$ Lucas polynomials $L_{\mathcal{P}, \mathcal{Q}, n}(x)$ are defined by the reccurence relation

$$
\begin{equation*}
\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)=\mathcal{P}(x) \mathcal{L}_{\mathcal{P}, \mathcal{Q}, n-1}(x)+\mathcal{Q}(x) \mathcal{L}_{\mathcal{P}, \mathcal{Q}, n-2}(x), \quad(n \geq 2) \tag{1.8}
\end{equation*}
$$

from which the first few Lucas polynomials cab be found as follows:

$$
\begin{align*}
& \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 0}(x)=2 \\
& \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x)=\mathcal{P}(x) \\
& \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2}(x)=\mathcal{P}^{2}(x)+2 \mathcal{Q}(x) \tag{1.9}\\
& \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 3}(x)=\mathcal{P}^{3}(x)+3 \mathcal{P}(x) \mathcal{Q}(x)
\end{align*}
$$

Definition 1.2. Let $\mathcal{G}_{\left\{\mathcal{L}_{n}(x)\right\}}(\xi)$ be the generating function of the $(\mathcal{P}, \mathcal{Q})-$ Lucas polynomial sequence $\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)$. Then

$$
\begin{align*}
\mathcal{G}_{\left\{\mathcal{L}_{n}(x)\right\}}(\xi) & =\sum_{n=0}^{\infty} \mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x) \xi^{n} \tag{1.10}\\
& =\frac{2-\mathcal{P}(x) \xi}{1-\mathcal{P}(x) \xi-\mathcal{Q}(x) \xi^{2}}
\end{align*}
$$

Note that for particular values of \mathcal{P} and \mathcal{Q}, the $(\mathcal{P}, \mathcal{Q})$-polynomial $\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)$ leads to various polynomials, among those, we list few cases here (see, [23] for more details, also [1, 18]):

- For $\mathcal{P}(x)=x$ and $\mathcal{Q}(x)=1$, we obtain the Lucas polynomials $\mathcal{L}_{n}(x)$.
- For $\mathcal{P}(x)=2 x$ and $\mathcal{Q}(x)=1$, we attain the Pell-Lucas polynomials $\mathcal{Q}_{n}(x)$.
- For $\mathcal{P}(x)=1$ and $\mathcal{Q}(x)=2 x$, we attain the Jacobsthal-Lucas polynomials $j_{n}(x)$.
- For $\mathcal{P}(x)=3 x$ and $\mathcal{Q}(x)=-2$, we attain the Fermat-Lucas polynomials $f_{n}(x)$.
- For $\mathcal{P}(x)=2 x$ and $\mathcal{Q}(x)=-1$, we have the Chebyshev polynomials $T_{n}(x)$ of the first kind.
A study on bi-univalent functions by $[3,11,13,15,22]$ as well as numerous recent works on the Fekete-Szegö functional and other coefficient estimates (see [2, 5, 6, 8, 25]), served as the inspiration for the current paper. In this paper we introduce new subclasses of the function class Ξ of complex order $\beta \in \mathbb{C} \backslash\{0\}$ other relevant classes are taken into account and connections to previously reported results are made.

Definition 1.3. A function $s \in \Xi$ given by (1.1) is said to be in the class $\mathcal{M}_{\Xi}^{a, b ; c}(\beta, \delta, n ; x)$ if the following conditions are satisfied:

$$
\begin{equation*}
1+\frac{1}{\beta}\left(\frac{\xi\left(\mathcal{J}_{a, b, c} s(\xi)\right)^{\prime}}{(1-\delta) \xi+\delta \mathcal{J}_{a, b, c} s(\xi)}-1\right) \prec \mathcal{G}_{\left\{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)\right\}}(\xi)-1 \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\beta}\left(\frac{w\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime}}{(1-\delta) \xi+\delta \mathcal{J}_{a, b, c} s(\omega)}-1\right) \prec \mathcal{G}_{\left\{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)\right\}}(\omega)-1 \tag{1.12}
\end{equation*}
$$

where the function t is given by (1.2).
On specializing the parameters δ and a, b, c one can state the various new subclasses of Ξ as illustrated in the following examples.

Example 1.4. A function $s \in \Xi$, given by (1.1) is said to belong to the class $\mathcal{M}_{\Xi}^{a, b ; c}(\beta, n ; x)$ if the following criteria are met for $\delta=1$ and $\beta \in \mathbb{C} \backslash\{0\}:$

$$
\begin{equation*}
1+\frac{1}{\beta}\left(\frac{\xi\left(\mathcal{J}_{a, b, c} s(\xi)\right)^{\prime}}{\mathcal{J}_{a, b, c} s(\xi)}-1\right) \prec \mathcal{G}_{\left\{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)\right\}}(\xi)-1 \tag{1.13}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\beta}\left(\frac{w\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime}}{\mathcal{J}_{a, b, c} s(\omega)}-1\right) \prec \mathcal{G}_{\left\{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)\right\}}(\omega)-1 \tag{1.14}
\end{equation*}
$$

where $\xi, \omega \in \mathbb{U}$ and the function t is given by (1.2).
Example 1.5. A function $s \in \Xi$, given by (1.1) is said to belong to the class $\mathcal{M}_{\Xi}^{a, b ; c}(\beta, n ; x)$ if the following criteria are met for $\delta=0$ and $\beta \in \mathbb{C} \backslash\{0\}:$

$$
\begin{equation*}
1+\frac{1}{\beta}\left(\left(\mathcal{J}_{a, b, c} s(\xi)\right)^{\prime}-1\right) \prec \mathcal{G}_{\left\{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)\right\}}(\xi)-1 \tag{1.15}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\beta}\left(\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime}-1\right) \prec \mathcal{G}_{\left\{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)\right\}}(\omega)-1 \tag{1.16}
\end{equation*}
$$

where $\xi, \omega \in \mathbb{U}$ and the function t is given by (1.2).
Example 1.6. In the case of $\delta=1$ and $\beta \in \mathbb{C} \backslash\{0\}$. If the following criteria are met, a function $s \in \Xi$, given by (1.1), is considered to belong to the class $\mathcal{M}_{\Xi}^{*}(\beta, n ; x)$:

$$
\begin{equation*}
1+\frac{1}{\beta}\left(\frac{\xi s^{\prime}(\xi)}{s(\xi)}-1\right) \prec \mathcal{G}_{\left\{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)\right\}}(\xi)-1 \tag{1.17}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\beta}\left(\frac{\xi s^{\prime}(\omega)}{s(\omega)}-1\right) \prec \mathcal{G}_{\left\{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)\right\}}(\omega)-1 \tag{1.18}
\end{equation*}
$$

where $\xi, \omega \in \mathbb{U}$ and the function t is given by (1.2).
Example 1.7. For $\delta=0$ and $\beta \in \mathbb{C} \backslash\{0\}$. If the following criteria are met, a function $s \in \Xi$, given by (1.1), is considered to belong to the class $\mathcal{M}_{\Xi}^{*}(\beta, n ; x):$

$$
\begin{equation*}
1+\frac{1}{\beta}\left(s^{\prime}(\xi)-1\right) \prec \mathcal{G}_{\left\{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)\right\}}(\xi)-1 \tag{1.19}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\beta}\left(s^{\prime}(\omega)-1\right) \prec \mathcal{G}_{\left\{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)\right\}}(\omega)-1 \tag{1.20}
\end{equation*}
$$

where $\xi, \omega \in \mathbb{U}$ and the function t is given by (1.2).
By using the methods previously employed by Deniz in [11], we derive estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the above described subclasses $\mathcal{M}_{\Xi}^{a, b ; c}(\beta, \delta, n ; x)$ of the function class Ξ.
2. Coefficient Bounds for the Function Class $\mathcal{M}_{\Xi}^{a, b ; c}(\beta, \delta, n ; x)$

Theorem 2.1. Let s be given by (1.1) and in the class $\mathcal{M}_{\Xi}^{a, b ; c}(\beta, \delta, n ; x)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\beta^{2}|\mathcal{P}(x)| \sqrt{|\mathcal{P}(x)|}}{\sqrt{\mid\left\{(2-\delta)[(1-2 \beta) \delta-2] \kappa_{2}^{2}+2 \beta(3-\delta) \kappa_{3}\right\} \mathcal{P}^{2}(x)}} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\beta^{2} \mathcal{P}^{2}(x)}{(2-\delta)^{2} \kappa_{2}^{2}}+\frac{\beta|\mathcal{P}(x)|}{2(3-\delta) \kappa_{3}} \tag{2.2}
\end{equation*}
$$

Proof. Let $s \in \mathcal{M}_{\Xi}^{a, b ; c}(\beta, \delta, n ; x)$. Then, from Definition 1.2, for some analytic functions, Ω, Λ such that $\Omega(0)=\Lambda(0)=0$ and $|\Omega(\xi)|<1$, $|\Lambda(\omega)|<1$ for all $\xi, \omega \in \mathbb{U}$, we can write

$$
\begin{align*}
& 1+\frac{1}{\beta}\left(\frac{\xi\left(\mathcal{J}_{a, b, c} s(\xi)\right)^{\prime}}{(1-\delta) \xi+\delta \mathcal{J}_{a, b, c} s(\xi)}-1\right)=\mathcal{G}_{\left\{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)\right\}}(\Omega(\xi))-1 \tag{2.3}\\
& 1+\frac{1}{\beta}\left(\frac{\omega\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime}}{(1-\delta) \omega+\delta \mathcal{J}_{a, b, c} s(\omega)}-1\right)=\mathcal{G}_{\left\{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)\right\}}(\Lambda(\omega))-1 \tag{2.4}
\end{align*}
$$

or equivalently

$$
\begin{equation*}
1+\frac{1}{\beta}\left(\frac{\xi\left(\mathcal{J}_{a, b, c} s(\xi)\right)^{\prime}}{(1-\delta) \xi+\delta \mathcal{J}_{a, b, c} s(\xi)}-1\right) \tag{2.5}
\end{equation*}
$$

$$
\begin{align*}
& =-1+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 0}(x)+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1} \Omega(\xi)+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2} \Omega^{2}(\xi)+\cdots \\
1+ & \frac{1}{\beta}\left(\frac{\omega\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime}}{(1-\delta) w+\delta \mathcal{J}_{a, b, c} s(\omega)}-1\right) \tag{2.6}\\
& =-1+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 0}(x)+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1} \Lambda(\omega)+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2} \Lambda^{2}(\omega)+\cdots
\end{align*}
$$

From equalities (2.5) and (2.6)

$$
\begin{align*}
1+ & \frac{1}{\beta}\left(\frac{\xi\left(\mathcal{J}_{a, b, c} s(\xi)\right)^{\prime}}{(1-\delta) \xi+\delta \mathcal{J}_{a, b, c} s(\xi)}-1\right) \tag{2.7}\\
& =1+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x) l_{1} \xi+\left[\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x) l_{2}+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2}(x) l_{1}^{2}\right] \xi^{2}+\cdots \\
1+ & \frac{1}{\beta}\left(\frac{\omega\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime}}{(1-\delta) \omega+\delta \mathcal{J}_{a, b, c} s(\omega)}-1\right) \\
& =1+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x) r_{1} \omega+\left[\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x) r_{2}+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2}(x) r_{1}^{2}\right] \omega^{2}+\cdots
\end{align*}
$$

It is already known that if for $\xi, \omega \in \mathbb{U}$,

$$
\Omega(\xi)=\left|\sum_{i=1}^{n} l_{i} \xi^{i}\right|<1
$$

and

$$
\Lambda(\omega)=\left|\sum_{i=1}^{n} r_{i} \omega^{i}\right|<1
$$

then

$$
\Omega(\xi)=\left|l_{i}\right|<1
$$

and

$$
\Lambda(\omega)=\left|r_{i}\right|<1
$$

where $i \in \mathbb{N}$. Thus, comparing the corresponding coefficients in (2.7) and (2.8), we get
(2.9) $\quad \frac{2-\delta}{\beta} \kappa_{2} a_{2}=\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x) l_{1}$

$$
\begin{equation*}
\frac{\delta^{2}-2 \delta}{\beta} \kappa_{2}^{2} a_{2}^{2}+\frac{3-\delta}{\beta} \kappa_{3} a_{3}=\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x) l_{2}+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2}(x) l_{1}^{2} \tag{2.10}
\end{equation*}
$$

(2.11) $-\frac{2-\delta}{\beta} \kappa_{2} a_{2}=\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x) r_{1}$
(2.12) $\frac{\delta^{2}-2 \delta}{\beta} \kappa_{2}^{2} a_{2}^{2}+\frac{3-\delta}{\beta} \kappa_{3}\left(2 a_{2}^{2}-a_{3}\right)=\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x) r_{2}+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2}(x) r_{1}^{2}$.

From (2.9) and (2.11),

$$
\begin{align*}
& a_{2}=\frac{\beta l_{1}}{(2-\delta) \kappa_{2}}=\frac{-\beta r_{1}}{(2-\delta) \kappa_{2}} \tag{2.13}\\
& l_{1}=-r_{1} \tag{2.14}
\end{align*}
$$

$$
\begin{equation*}
(2-\delta)^{2} \kappa_{2}^{2} a_{2}^{2}=\beta^{2} \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{2}(x)\left(l_{1}^{2}+r_{1}^{2}\right) \tag{2.15}
\end{equation*}
$$

adding (2.10) and (2.12),

$$
\begin{align*}
& 2\left(\frac{\delta^{2}-2 \delta}{\beta} \kappa_{2}^{2}+\frac{3-\delta}{\beta} \kappa_{3}\right) a_{2}^{2} \tag{2.16}\\
& \quad=\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x)\left(l_{2}+r_{2}\right)+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2}(x)\left(l_{1}^{2}+r_{1}^{2}\right) .
\end{align*}
$$

By using (2.15) and (2.16), we have

$$
\begin{align*}
& {\left[2 \beta \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{2}(x)\left[\left(\delta^{2}-2 \delta\right) \kappa_{2}^{2}+(3-\delta) \kappa_{3}\right]-\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2}(x)(2-\delta)^{2} \kappa_{2}^{2}\right] a_{2}^{2}} \tag{2.17}\\
& =\beta^{2} \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{3}(x)\left(l_{2}+r_{2}\right) \\
& a_{2}^{2}=\frac{\beta^{2} \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{3}(x)\left(l_{2}+r_{2}\right)}{\left[2 \beta \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{2}(x)\left[\left(\delta^{2}-2 \delta\right) \kappa_{2}^{2}+(3-\delta) \kappa_{3}\right]-\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2}(x)(2-\delta)^{2} \kappa_{2}^{2}\right]}
\end{align*}
$$

which gives

$$
\left|a_{2}\right| \leq \frac{\beta^{2}|\mathcal{P}(x)| \sqrt{|\mathcal{P}(x)|}}{\sqrt{\mid\left\{(2-\delta)[(1-2 \beta) \delta-2] \kappa_{2}^{2}+2 \beta(3-\delta) \kappa_{3}\right\} \mathcal{P}^{2}(x)}}
$$

also, by subtracting (2.12) from (2.10), we get

$$
\begin{equation*}
\frac{2(3-\delta)}{\beta} \kappa_{3} a_{3}-\frac{2(3-\delta)}{\beta} \kappa_{3} a_{2}^{2}=\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x)\left(l_{2}-r_{2}\right) \tag{2.18}
\end{equation*}
$$

Then, by using (2.14) and (2.15) in (2.18), we have

$$
a_{3}=\frac{\beta^{2} \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{2}(x)\left(l_{1}^{2}+r_{1}\right)^{2}}{(2-\delta)^{2} \kappa_{2}^{2}}+\frac{\beta \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x)\left(l_{2}-r_{2}\right)}{2(3-\delta) \kappa_{3}}
$$

and by the help of (1.9), we conclude that

$$
\left|a_{3}\right| \leq \frac{\beta^{2} \mathcal{P}^{2}(x)}{(2-\delta)^{2} \kappa_{2}^{2}}+\frac{\beta|\mathcal{P}(x)|}{2(3-\delta) \kappa_{3}}
$$

Fixing $\delta=1$ in Theorem 2.1, we have the following:
Corollary 2.2. Let s be given by (1.1) and in the class $\mathcal{M}_{\Xi}^{a, b ; c}(\beta, n ; x)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\beta^{2}|\mathcal{P}(x)| \sqrt{|\mathcal{P}(x)|}}{\sqrt{\left|\left\{[(1-2 \beta)-2] \kappa_{2}^{2}+4 \beta \kappa_{3}\right\} \mathcal{P}^{2}(x)-2 \kappa_{2}^{2} \mathcal{Q}(x)\right|}} \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\beta^{2} \mathcal{P}^{2}(x)}{\kappa_{2}^{2}}+\frac{\beta|\mathcal{P}(x)|}{4 \kappa_{3}} \tag{2.20}
\end{equation*}
$$

Assuming that $a=c$ and $b=1$, in Corollary 2.2 we obtain the following:

Corollary 2.3. Let s be given by (1.1) and in the class $\mathcal{M}_{\Xi}^{a, b ; c}(\beta, n ; x)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\beta^{2}|\mathcal{P}(x)| \sqrt{|\mathcal{P}(x)|}}{\sqrt{\left|\{[(1-2 \beta)-2]+4 \beta\} \mathcal{P}^{2}(x)-2 \mathcal{Q}(x)\right|}} \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \beta^{2} \mathcal{P}^{2}(x)+\frac{\beta|\mathcal{P}(x)|}{4} \tag{2.22}
\end{equation*}
$$

Fixing $\delta=0$ in Theorem 2.1, we have the following:
Corollary 2.4. Let s be given by (1.1) and in the class $\mathcal{M}_{\Xi}^{a, b ; c}(\beta, n ; x)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\beta^{2}|\mathcal{P}(x)| \sqrt{|\mathcal{P}(x)|}}{\sqrt{\left|\left\{-4 \kappa_{2}^{2}+6 \beta \kappa_{3}\right\} \mathcal{P}^{2}(x)-8 \kappa_{2}^{2} \mathcal{Q}(x)\right|}} \tag{2.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\beta^{2} \mathcal{P}^{2}(x)}{4 \kappa_{2}^{2}}+\frac{\beta|\mathcal{P}(x)|}{6 \kappa_{3}} \tag{2.24}
\end{equation*}
$$

Using the above corollaries $a=c$ and $b=1$, we obtain the following:
Corollary 2.5. Let s be given by (1.1) and in the class $\mathcal{M}_{\Xi}^{a, b ; c}(\beta, n ; x)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\beta^{2}|\mathcal{P}(x)| \sqrt{|\mathcal{P}(x)|}}{\sqrt{\left|\{6 \beta-4\} \mathcal{P}^{2}(x)-8 \mathcal{Q}(x)\right|}} \tag{2.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\beta^{2} \mathcal{P}^{2}(x)}{4}+\frac{\beta|\mathcal{P}(x)|}{6} . \tag{2.26}
\end{equation*}
$$

We demonstrate Fekete-Szegö inequalities for the functions $s \in \mathcal{M}_{\Xi}^{a, b ; c}(\beta, \delta, n ; x)$ to Zaprawa [37].
Theorem 2.6. Let s given by (1.1) belongs to the class $\mathcal{M}_{\Xi}^{a, b ; c}(\beta, \delta, n ; x)$. Then,

$$
\left|a_{3}-\tau a_{2}^{2}\right| \leq \begin{cases}\frac{|\mathcal{P}(x)|}{(3-\delta) \kappa_{3}}, & 0 \leq|\mathcal{T}(\tau ; x)|<\frac{\beta}{2(3-\delta) \kappa_{3}} \tag{2.27}\\ 2|\mathcal{P}(x)||\mathcal{T}(\tau ; x)|, & |\mathcal{T}(\tau ; x)| \geq \frac{\beta}{2(3-\delta) \kappa_{3}}\end{cases}
$$

where

$$
\mathcal{T}(\tau ; x)=\frac{(1-\tau) \beta^{2} \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{2}(x)}{\left[2 \beta \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{2}(x)\left[\left(\delta^{2}-2 \delta\right) \kappa_{2}^{2}+(3-\delta) \kappa_{3}\right]-\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2}(x)(2-\delta)^{2} \kappa_{2}^{2}\right]}
$$

Proof. From equations (2.17) and (2.18), we get

$$
\begin{aligned}
a_{3}-\tau a_{2}^{2}= & \frac{\beta \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{2}(x)\left(l_{2}-r_{2}\right)}{2(3-\delta) \kappa_{3}}+(1-\tau) a_{2}^{2} \\
= & \frac{\beta \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{2}(x)\left(l_{2}-r_{2}\right)}{2(3-\delta) \kappa_{3}} \\
& +\frac{(1-\tau) \beta^{2} \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{3}(x)\left(l_{2}+r_{2}\right)}{\left[2 \beta \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{2}(x)\left[\left(\delta^{2}-2 \delta\right) \kappa_{2}^{2}+(3-\delta) \kappa_{3}\right]-\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2}(x)(2-\delta)^{2} \kappa_{2}^{2}\right]} \\
= & \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x)\left[\left(\mathcal{T}(\tau ; x)+\frac{\beta}{2(3-\delta) \kappa_{3}}\right) l_{2}+\left(\mathcal{T}(\tau ; x)-\frac{\beta}{2(3-\delta) \kappa_{3}}\right) l_{2}\right]
\end{aligned}
$$

where
$\mathcal{T}(\tau ; x)=\frac{(1-\tau) \beta^{2} \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{2}(x)}{\left[2 \beta \mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{2}(x)\left[\left(\delta^{2}-2 \delta\right) \kappa_{2}^{2}+(3-\delta) \kappa_{3}\right]-\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2}(x)(2-\delta)^{2} \kappa_{2}^{2}\right]}$.

One may easily assert the following by assuming that $\tau=1$ in above Theorem 2.1.
Remark 2.7. Let the function s be assumed by $s \in \mathcal{M}_{\Xi}^{a, b ; c}(\beta, \delta, n ; x)$. Then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{|\mathcal{P}(x)|}{(3-\delta) \kappa_{3}}
$$

3. Subclass of Bi-Univalent Function $\mathcal{V}_{\Xi}^{a, b ; c}(\varsigma, n ; x)$

Obradovic et al. provided several requirements for univalence in the cited work, expressing them mathematically as $\mathcal{R}\left(s^{\prime}(\xi)\right)>0$, for the linear combinations

$$
\varsigma\left(1+\frac{\xi s^{\prime \prime}(\xi)}{s^{\prime}(\xi)}\right)+(1-\varsigma) \frac{1}{s^{\prime}(\xi)}>0, \quad(\varsigma \geq 1, \xi \in \mathbb{U})
$$

Recently, Lashin in [20] introduced and explored the new subclasses of bi-univalent function based on the aforementioned definitions.

Definition 3.1. If a function $s \in \Xi$ given by (1.1) satisfies the following criteria, it is said to belong to the class $\mathcal{V}_{\Xi}^{a, b ; c}(\varsigma, n ; x)$:

$$
\begin{equation*}
\varsigma\left(1+\frac{\xi\left(\mathcal{J}_{a, b, c} s(\xi)\right)^{\prime \prime}}{\left(\mathcal{J}_{a, b, c} s(\xi)\right)^{\prime}}\right)+(1-\varsigma) \frac{1}{\left(\mathcal{J}_{a, b, c} s(\xi)\right)^{\prime}} \prec \mathcal{G}_{\left\{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)\right\}}(\xi)-1 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\varsigma\left(1+\frac{\omega\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime \prime}}{\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime}}\right)+(1-\varsigma) \frac{1}{\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime}} \prec \mathcal{G}_{\left\{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)\right\}}(\omega)-1 \tag{3.2}
\end{equation*}
$$

where $\varsigma \geq 1, \xi, \omega \in \mathbb{U}$ and the function t is given by (1.2).

Remark 3.2. If a function $s \in \Xi$ provided by (1.1) satisfies the following criteria, it is said to belong to the class $\mathcal{V}_{\Xi}^{a, b ; c}(1, n ; x)=\mathcal{R}_{\Xi}^{a, b ; c}(n ; x)$:

$$
\left(1+\frac{\xi\left(\mathcal{J}_{a, b, c} s(\xi)\right)^{\prime \prime}}{\left(\mathcal{J}_{a, b, c} s(\xi)\right)^{\prime}}\right) \prec \mathcal{G}_{\left\{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)\right\}}(\xi)-1
$$

and

$$
\left(1+\frac{\omega\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime \prime}}{\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime}}\right) \prec \mathcal{G}_{\left\{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)\right\}}(\omega)-1
$$

where $\xi, \omega \in \mathbb{U}$ and the function t is given by (1.2).
Theorem 3.3. Let s be given by (1.1) and $s \in \mathcal{V}_{\Xi}^{a, b ; c}(\varsigma, n ; x), \varsigma \geq 1$. Then

$$
\left|a_{2}\right| \leq \min \left\{\begin{array}{l}
\frac{|\mathcal{P}(x)|}{2(2 \varsigma-1) \kappa_{2}}, \tag{3.3}\\
\frac{\sqrt{2}|\mathcal{P}(x)| \sqrt{|\mathcal{P}(x)|}}{\sqrt{\left|\left(\left[2(1+\varsigma)-8(2 \varsigma-1)^{2}\right] \mathcal{P}(x)^{2}-16 \mathcal{Q}(x)(2 \varsigma-1)^{2}\right) \kappa_{2}^{2}\right|}}
\end{array}\right.
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\begin{array}{l}
\frac{|\mathcal{P}(x)|}{3(3 \varsigma-1) \kappa_{3}}+\frac{\left|\mathcal{P}^{2}(x)\right|}{4(2 \varsigma-1)^{2} \kappa_{2}^{2}}, \tag{3.4}\\
\frac{|\mathcal{P}(x)|}{3(3 \varsigma-1) \kappa_{3}}+\frac{2 \mathcal{P}^{3}(x)}{\left|\left(\left[2(1+\varsigma)-8(2 \varsigma-1)^{2}\right] \mathcal{P}(x)^{2}-16 \mathcal{Q}(x)(2 \varsigma-1)^{2}\right) \kappa_{2}^{2}\right|} .
\end{array}\right.
$$

Proof. From (3.1) and (3.2), it is evident that

$$
\begin{align*}
& \varsigma\left(1+\frac{\xi\left(\mathcal{J}_{a, b, c} s(\xi)\right)^{\prime \prime}}{\left(\mathcal{J}_{a, b, c} s(\xi)\right)^{\prime}}\right)+(1-\varsigma) \frac{1}{\left(\mathcal{J}_{a, b, c} s(\xi)\right)^{\prime}} \tag{3.5}\\
& \quad=\mathcal{G}_{\left\{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)\right\}}(\Omega(\xi))-1
\end{align*}
$$

and

$$
\begin{align*}
& \varsigma\left(1+\frac{\omega\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime \prime}}{\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime}}\right)+(1-\varsigma) \frac{1}{\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime}} \tag{3.6}\\
& \quad=\mathcal{G}_{\left\{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, n}(x)\right\}}(\Lambda(\omega))-1
\end{align*}
$$

or equivalently

$$
\begin{align*}
& \varsigma\left(1+\frac{\xi\left(\mathcal{J}_{a, b, c} s(\xi)\right)^{\prime \prime}}{\left(\mathcal{J}_{a, b, c} s(\xi)\right)^{\prime}}\right)+(1-\varsigma) \frac{1}{\left(\mathcal{J}_{a, b, c} s(\xi)\right)^{\prime}} \tag{3.7}\\
& \quad=-1+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 0}(x)+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1} \Omega(\xi)+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2} \Omega^{2}(\xi)+\cdots
\end{align*}
$$

$$
\begin{align*}
& \varsigma\left(1+\frac{\omega\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime \prime}}{\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime}}\right)+(1-\varsigma) \frac{1}{\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime}} \tag{3.8}\\
& \quad=-1+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 0}(x)+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1} \Lambda(\omega)+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2} \Lambda^{2}(\omega)+\cdots
\end{align*}
$$

from equalities (3.7) and (3.8)

$$
\begin{align*}
& \varsigma\left(1+\frac{\omega\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime \prime}}{\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime}}\right)+(1-\varsigma) \frac{1}{\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime}} \tag{3.9}\\
& \quad=1+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x) l_{1} \xi+\left[\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x) l_{2}+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2}(x) l_{1}^{2}\right] \xi^{2}+\cdots \\
& \varsigma\left(1+\frac{\omega\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime \prime}}{\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime}}\right)+(1-\varsigma) \frac{1}{\left(\mathcal{J}_{a, b, c} s(\omega)\right)^{\prime}} \tag{3.10}\\
& \quad=1+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x) r_{1} \omega+\left[\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x) r_{2}+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2}(x) r_{1}^{2}\right] \omega^{2}+\cdots
\end{align*}
$$

it is already known that if for $\xi, \omega \in U$.
Consequently, we obtain by comparing the equivalent coefficients in (3.9) and (3.10)

$$
\begin{align*}
& 2(2 \varsigma-1) \kappa_{2} a_{2}=\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x) l_{1} \tag{3.11}\\
& 3(3 \varsigma-1) \kappa_{3} a_{3}+4(1-2 \varsigma) \kappa_{2}^{2} a_{2}^{2}=\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x) l_{2}+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2}(x) l_{1}^{2} \tag{3.12}\\
& -2(2 \varsigma-1) \kappa_{2} a_{2}=\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x) r_{1} \tag{3.13}\\
& 2(5 \varsigma-1) \kappa_{2} a_{2}-3(3 \varsigma-1) \kappa_{3} a_{3}=\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x) r_{2}+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2}(x) r_{1}^{2} \tag{3.14}
\end{align*}
$$

From (3.11) and (3.13),

$$
\begin{equation*}
l_{1}=-r_{1} \tag{3.15}
\end{equation*}
$$

from (3.11) by using (1.9)

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x)}{2(2 \varsigma-1) \kappa_{2}} \leq \frac{|\mathcal{P}(x)|}{2(2 \varsigma-1) \kappa_{2}} \tag{3.16}
\end{equation*}
$$

Also

$$
8(2 \varsigma-1)^{2} \kappa_{2}^{2} a_{2}^{2}=\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{2}(x)\left(l_{1}^{2}+r_{1}^{2}\right)
$$

and

$$
\begin{equation*}
a_{2}^{2}=\frac{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{2}(x)\left(l_{1}^{2}+r_{1}^{2}\right)}{8(2 \varsigma-1)^{2} \kappa_{2}^{2}} \tag{3.17}
\end{equation*}
$$

Thus by (1.9), we get

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{2}(x)}{2(2 \varsigma-1) \kappa_{2}}=\frac{|\mathcal{P}(x)|}{2(2 \varsigma-1) \kappa_{2}} \tag{3.18}
\end{equation*}
$$

Now from (3.12), (3.14) and using (3.17), we obtain

$$
\begin{align*}
& {\left[4(1-2 \varsigma) \kappa_{2}^{2}+2(5 \varsigma-1) \kappa_{2}^{2}\right] a_{2}^{2}} \tag{3.19}\\
& \quad=\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x)\left(l_{2}+r_{2}\right)+\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2}(x)\left(l_{1}^{2}+r_{1}^{2}\right)
\end{align*}
$$

Thus, by (3.19) we obtain

$$
a_{2}^{2}=\frac{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{3}(x)\left(l_{2}+r_{2}\right)}{\left[\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{2}(x) 2(1+\varsigma)-\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 2}(x) 8(2 \varsigma-1)^{2}\right] \kappa_{2}^{2}}
$$

$$
\begin{aligned}
& \left|a_{2}^{2}\right|=\frac{2\left|\mathcal{P}^{3}(x)\right|}{\left|\left[\mathcal{P}^{2}(x) 2(1+\varsigma)-\left(\mathcal{P}^{2}(x)+2 \mathcal{Q}(x)\right) 8(2 \varsigma-1)^{2}\right] \kappa_{2}^{2}\right|} \\
& \left|a_{2}\right| \leq \frac{\sqrt{2}|\mathcal{P}(x)||\sqrt{\mathcal{P}(x)}|}{\sqrt{\left|\left[\mathcal{P}^{2}(x) 2(1+\varsigma)-\left(\mathcal{P}^{2}(x)+2 \mathcal{Q}(x)\right) 8(2 \varsigma-1)^{2}\right] \kappa_{2}^{2}\right|}}
\end{aligned}
$$

From (3.12), (3.14) and using (3.15), we get

$$
\begin{equation*}
a_{3}=\frac{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x)\left(l_{2}-r_{2}\right)}{6(3 \varsigma-1) \kappa_{3}}+a_{2}^{2} \tag{3.20}
\end{equation*}
$$

Then taking modulus, we get

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x)}{3(3 \varsigma-1) \kappa_{3}}+\left|a_{2}^{2}\right| \tag{3.21}
\end{equation*}
$$

using (3.16) and (3.18), we get

$$
\begin{align*}
\left|a_{3}\right| & \leq \frac{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x)}{3(3 \varsigma-1) \kappa_{3}}+\frac{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}^{2}(x)}{4(2 \varsigma-1)^{2} \kappa_{2}^{2}} \tag{3.22}\\
& =\frac{|\mathcal{P}(x)|}{3(3 \varsigma-1) \kappa_{3}}+\frac{\mathcal{P}^{2}(x)}{4(2 \varsigma-1)^{2} \kappa_{2}^{2}}
\end{align*}
$$

Now by using (3.19) in (3.21)

$$
\begin{aligned}
\left|a_{3}\right| \leq & \frac{\mathcal{L}_{\mathcal{P}, \mathcal{Q}, 1}(x)}{3(3 \varsigma-1) \kappa_{3}}+\left|a_{2}^{2}\right| \\
= & \frac{|\mathcal{P}(x)|}{3(3 \varsigma-1) \kappa_{3}} \\
& +\frac{2 \mathcal{P}^{3}(x)}{\left|\left(\left[2(1+\varsigma)-8(2 \varsigma-1)^{2}\right] \mathcal{P}(x)^{2}-16 \mathcal{Q}(x)(2 \varsigma-1)^{2}\right) \kappa_{2}^{2}\right|}
\end{aligned}
$$

Due to Zaprawa [37], we prove Fekete-Szegö inequalities [12] for functions $s \in \mathcal{V}_{\Xi}^{a, b ; c}(\varsigma, n ; x)$.

Theorem 3.4. Let s given by (1.1) belongs to the class $\mathcal{V}_{\Xi}^{a, b ; c}(\varsigma, n ; x)$. Then,

$$
\left|a_{3}-\tau a_{2}^{2}\right| \leq \begin{cases}\frac{|\mathcal{P}(x)|}{3(3 \varsigma-1) \kappa_{3}}, & 0 \leq|\mathcal{T}(\tau ; x)|<\frac{1}{6(3 \varsigma-1) \kappa_{3}} \tag{3.23}\\ 2|\mathcal{P}(x) \| \mathcal{T}(\tau ; x)|, & |\mathcal{T}(\tau ; x)| \geq \frac{1}{6(3 \varsigma-1) \kappa_{3}}\end{cases}
$$

where

$$
\mathcal{T}(\tau ; x)=\frac{(1-\tau) \mathcal{P}^{2}(x)}{\left[\left(2(1+\varsigma)-8(2 \varsigma-1)^{2}\right) \mathcal{P}^{2}(x)-16 \mathcal{Q}(x)(2 \varsigma-1)^{2}\right] \kappa_{2}^{2}}
$$

Proof. From equations (3.20), we get

$$
\begin{aligned}
a_{3}-\tau a_{2}^{2}= & \frac{\mathcal{P}(x)\left(l_{2}-r_{2}\right)}{6(3 \varsigma-1) \kappa_{3}}+(1-\tau) a_{2}^{2} \\
= & \frac{\mathcal{P}(x)\left(l_{2}-r_{2}\right)}{6(3 \varsigma-1) \kappa_{3}} \\
& +\frac{(1-\tau) \mathcal{P}^{3}(x)\left(l_{2}+r_{2}\right)}{\left[\left(2(1+\varsigma)-8(2 \varsigma-1)^{2}\right) \mathcal{P}^{2}(x)-16 \mathcal{Q}(x)(2 \varsigma-1)^{2}\right] \kappa_{2}^{2}} \\
= & \mathcal{P}(x)\left[\left(\mathcal{T}(\tau ; x)+\frac{1}{6(3 \varsigma-1) \kappa_{3}}\right) l_{2}+\left(\mathcal{T}(\tau ; x)-\frac{1}{6(3 \varsigma-1) \kappa_{3}}\right) l_{2}\right]
\end{aligned}
$$

where

$$
\mathcal{T}(\tau ; x)=\frac{(1-\tau) \mathcal{P}^{2}(x)}{\left[\left(2(1+\varsigma)-8(2 \varsigma-1)^{2}\right) \mathcal{P}^{2}(x)-16 \mathcal{Q}(x)(2 \varsigma-1)^{2}\right] \kappa_{2}^{2}}
$$

One can easily assert the following by using the above Theorem 3.4 and taking $\tau=1$.
Remark 3.5. Let $s \in \mathcal{V}_{\Xi}^{a, b ; c}(\varsigma, n ; x)$ represent the function s. Then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{|\mathcal{P}(x)|}{3(3 \varsigma-1) \kappa_{3}} .
$$

Acknowledgment. The author would like to thank the editor and referees for their insightful suggestions.

References

1. S.Altinkaya and S. Yalçin, On the (p, q)-Lucas polynomial coefficient bounds of the bi-univalent function class σ, Bol. Soc. Mat. Mex., 25 (2019), pp. 567-575.
2. E.A. Adegani, A. Zireh and M. Jafari, Coefficient estimates for a new subclass of analytic and bi-univalent functions by Hadamard product, Bol. Soc. Paran. Mat., 39 (2021), pp. 87-104.
3. R.M. Ali, S.K. Leo, V. Ravichandran, S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda star-like and convex functions, Appl. Math. Lett., 25 (2012), pp. 344-351.
4. D.A. Brannan and J.G. Clunie (Editors), Aspects of Contemporary Complex Analysis, Academic Press, London, 1980.
5. V.D. Breaz, A. Cătaş and L.I. Cotirla, On the Upper Bound of the Third Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function, An. St. Univ. Ovidius Constanta, 2022.
6. S. Bulut, Coefficient estimates for a subclass of meromorphic biunivalent functions defined by subordination, Stud. Univ. BabesBolyai Math., 65 (2020), 5766.
7. B.C. Carlson and D.B. Shafer, Starlike and prestarlike Hypergeometric functions, J. Math. Anal., 15 (1984), pp. 737- 745.
8. A. Cǎtaş, On the Fekete-Szegö problem for certain classes of meromorphic functions using (p, q)-derivative operator and a (p, q) wright type hypergeometric function, Symmetry, 13 (2021), 2143.
9. J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), pp. 1- 13.
10. J. Dziok and H.M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Intergral Transforms Spec. Funct., 14 (2003), pp. 7-18.
11. E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Anal., 2 (2013), pp. 49- 60.
12. M. Fekete and G. Szegö, Eine Bemerkung uber ungerade schlichte functionen, J. London Math. Soc., 8 (1933), pp. 85-89.
13. B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), pp. 1569-1573.
14. A.W. Goodman, Univalent Functions, Mariner Publishing Company Inc., Tampa, FL, USA, 1983, Volumes I and II.
15. T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J., 22 (2012), pp. 15- 26.
16. Yu.E. Hohlov, Convolution operators that preserve univalent functions, Ukrain. Mat. Zh., 37 (1985), pp. 220-226.
17. Yu.E. Hohlov, Hadamard convolutions, hypergeometric functions and linear operators in the class of univalent functions, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 7 (1984), pp. 25-27.
18. M.B. Khan, M.A. Noor, K.I. Noor and Y.M. Chu, New Hermite Hadamard-type inequalities for convex fuzzy-intervalvalued functions, Adv. Differ. Equ., 28 (2017), pp. 693-706.
19. V. Kiryakova, Criteria for univalence of the Dziok Srivastava and the Srivastava Wright operators in the class A, Appl. Math. Comput., 218 (2011), pp. 883-892.
20. A.Y. Lashin, Coefficient Estimates for Two Subclasses of Analytic and Bi-Univalent Functions, Ukr. Math. J., 70 (2019), pp. 14841492.
21. G. Lee and M.Asci, Some properties of the (p, q)-Fibonacci and (p, q)-Lucas polynomials, Journal of Applied Mathematics, 2012 (2012), 264842.
22. X.F. Li and A.P. Wang, Two new subclasses of bi-univalent functions, Internat. Math. Forum, 7 (2012), pp. 1495- 1504.
23. A. Lupas, A guide of Fibonacci and Lucas polynomials, Octogon Math. Mag., 7 (1999), pp. 3-12.
24. W.C. Ma and D. Minda, A unified treatment of some special classes of functions, Proceedings of the Conference on Complex Analysis, Tianjin, 1992, 157 169, Conf. Proc. Lecture Notes Anal. 1. Int. Press, Cambridge, MA, 1994.
25. G. Murugusundaramoorthy, H.O. Guney and K. Vijaya, Coefficient bounds for certain suclasses of bi-prestarlike functions associated with the Gegenbauer polynomial, Adv. Stud. Contemp. Math., 32 (2022), pp. 5- 15.
26. M. Obradovic, T. Yaguchi and H. Saitoh, On some conditions for univalence and starlikeness in the unit disc, Rend. Math. Ser. VII., 12 (1992), pp. 869-877.
27. C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
28. T. Panigarhi and G. Murugusundaramoorthy, Coefficient bounds for bi-univalent functions analytic functions associated with Hohlov operator, Proc. Jangjeon Math. Soc., 16 (2013), pp. 91-100.
29. H.M. Srivastava, G. Murugusundaramoorthy and N. Magesh, Certain subclasses of bi-univalent functions associated with the Hohlov operator, Glob. J. Math. Anal., 2 (2013), pp. 67-73.
30. H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), pp. 1188- 1192.
31. H.M. Srivastava, Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators, Appl. Anal. Discrete Math., 1 (2007), pp. 56-71.
32. H.M. Srivastava and P.W. Karlsson, Multiple Gaussian hypergeometric series, Wiley, New York, 1985.
33. Sr Swamy and A.K. Wanas, A comprehensive family of bi-univalent functions defined by (m, n)-Lucas polynomials, Bol. Soc. Mat. Mex., 28 (2022), pp. 1-10.
34. G.I. Oros and L.I. Cotîrlă, Coefficient estimates and the fekete szegö problem for new classes of m-fold symmetric bi-univalent functions, Mathematics 10 (2022), 129.
35. A.K. Wanas, Applications of (M,N)-Lucas polynomials for holomorphic and bi-univalent functions, Filomat, 34 (2020), pp. 33613368.
36. A.K. Wanas and Luminiţa-Ioana Cotîrlǎ, Applications of (M, N)Lucas polynomials on a certain family of bi-univalent functions,

Mathematics, 10 (2022), pp. 1-11.
37. P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), pp. 169178.

Department of Mathematics, St. Joseph's Institute of Technology, OMR, Chennai - 600 119, Tamilnadu, India.

Email address: 1988malai@gmail.com

[^0]: 2020 Mathematics Subject Classification. 30C45, 30C50, 30C55, 30C80.
 Key words and phrases. Analytic functions, Univalent functions, Bi-univalent functions, Bi-starlike and bi-convex functions, Hohlov operator, Gaussian hypergeometric function, $(\mathcal{P}, \mathcal{Q})$-Lucas polynomial.

 Received: 07 March 2023, Accepted: 25 June 2023.

