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Abstract. This paper is devoted to study I-convergent,I−null,
I−bounded and bounded sequence spaces in gradual normed linear
spaces, denoted by cI∥·∥G , cI0∥·∥G , ℓI∞∥·∥G , ℓ∞∥·∥G ,mI

∥·∥G and mI
0∥·∥G

respectively. We discussed some algebraic and topological prop-
erties of these classes. Also, we studied some inclusions involving
these spaces.

1. Introduction

The term fuzzy was first introduced by Zadeh [35] in 1965 to expand
the idea of classical set theory. Subsequently, the notion of fuzzy sets
was fulfilled by many scientists and researchers. At the moment, it has
spacious applications in science, engineering and technology. The ex-
pression “Fuzzy number” performs a vital role in the theory of fuzzy
sets. Essentially, the fuzzy number is not a number, but it is the gen-
eralization of intervals. Furthermore, fuzzy numbers inherit algebraic
properties of intervals, not of classical numbers. Therefore, the term
“fuzzy numbers” is arguable for many researchers and authors due to
their diverse behaviours. Many authors used the term “fuzzy intervals”
in lieu of fuzzy numbers. Considering this confusion, Forine et al. [11]
introduced a new notion in fuzzy set theory, “Gradual real numbers” as
elements (singleton) of fuzzy intervals the year 2006. They showed that
fuzzy interval can be represented as a set of gradual numbers that lie be-
tween two gradual numbers end-points, the same as the representation
of an interval of reals. Gradual numbers represents only fuzziness with
precision. Particularly, a fuzzy number can be denoted a crisp interval
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of gradual numbers. Generally, a gradual number can not be considered
as a set of fuzzy numbers because the mapping from (0, 1] to R is not
necessarily one-to-one.

In the brief time, a gradual number have been applied as tools for com-
putations on fuzzy intervals, with applications to combinatorial fuzzy
optimization and evaluation of monotonic functions (see, [1, 3, 4, 7, 10–
12, 14, 24, 36–38]). Kasperski et al. [14] used gradual numbers to solve
combinatorial optimization problems. Afterwards, Fortin et al. [12] ap-
plied gradual numbers to present some methods for the evaluation of
optimality. Also, Stock [33] used gradual numbers for the evaluation of
fuzzy optimization. Recently, Sadeqi and Azari [28] in year 2011 have
introduced the notion of gradual normed linear spaces (shortly GNLS)
and studied some algebraic and topological properties of these spaces.
Quiet recently in [8], Ettefagh et al. studied some properties of sequences
in GNLS. In 2021, Chaudhury and Debnath [5] introduced the concept
of I and I∗-convergence of sequence in GNLS.

The concept of statistical convergence was first introduced by Fast
[9] and Steinhaus [32] separately in 1951. Efficient research on statis-
tical convergence started after the studies of Fridy [13], and thereafter,
an immense quantity of literature has come into view. Afterwards, it
was explored from a sequence space point of view and connected to the
summability theory by fridy [13], Salat [29] and some other researchers.
Convergence is also applied in mathematical analysis and number the-
ory; for details, we refer the readers to [6, 13, 20, 25, 26, 29]. In the year
2000, Kostyrko et al. [21] used the notion of ideal I (⊆ N) to introduce
an improved generalization of statistical convergence, called ideal con-
vergence (I-convergence). Later, the concept of I−-convergence was
also explored from the viewpoint of sequence spaces and linked with
summability theory by Salat et al. [30, 31], Khan et al. [15, 16, 18] and
many others for extensive detail about I-convergence we refer [2, 15–
23, 34].

This paper will define some new classes of I-convergent sequences in
gradual normed linear space (V, ‖ · ‖G). In addition, we study some
topological and algebraic properties, and we also present some inclusion
relations for these sequence spaces.

2. Preliminaries

It is necessary to allude to some essential concepts related to main
object of this research. Let ω represents the space of all real-valued
sequences, then every subspace of ω is called a sequence space of real
numbers. Let the space of all bounded, convergent and null sequences of
real numbers be denoted by ℓ∞, c and c0, respectively. Let I = [a1, a2]



ON SOME NEW CLASSES OF I−CONVERGENT SEQUENCES IN GNLS 53

and J = [b1, b2] be intervals of numbers in R, by S; we denote the set
of closed and bounded intervals on R, i.e. S = {I ⊂ R : I = [a1, a2]}.
For I, J ∈ S, we define I ≤ J iff a1 ≤ b1 and a2 ≤ b2 and d(I, J) =
max{|a1 − b1|, |a2 − b2|}. It is evident that d defines a Housdroff metric
on S and (S, d) is a complete metric space. Also, the relation ≤ is a
partial order on S.

Definition 2.1 ([33]). Let X denote a set. Then, a fuzzy set Ã on X
is a set of ordered pairs.

Ã =
{(

x, µÃ(x)
)
: x ∈ X

}
where the membership function µÃ : X → [0, 1] is a map from X into
the set of possible degrees of memberships, [0, 1]. Where µÃ(x) = 1 and
µÃ(x) = 0 expressing full membership and no-membership, respectively,
and values between 0 and 1 showing partial membership.

Definition 2.2 ([22]). A fuzzy number is a function X from R to [0, 1],
which satisfying the following conditions

(i) X is normal, i.e., there exists an c ∈ R such that X (c) = 1;
(ii) X is fuzzy convex, i.e., for any c1, c2 ∈ R and λ ∈ [0, 1], X (λc1+

(1− λ)c2) ≥ min{X (c1),X (c2)};
(iii) X is upper semi continuous;
(iv) The closure of X = {c ∈ R : X (c) ≥ 0}, denoted by X ◦ is

compact.

The above properties shows that for each α ∈ (0, 1] the α−level set,
Xα = {c ∈ R : X (c) ≥ α}

=
[
Xα,Xα]

6= ∅
is compact and convex subset of R. Let S(R) be the set of all real valued
fuzzy numbers. Define d : S(R)× S(R) → R by

d(X ,Y) = sup
α∈[0,1]

d(Xα,Yα)

In [27] Puri and Ralescu proved that (S(R) , d) is a complete metric
space . For X ,Y ∈ S(R) we define X ≤ Y if and only if Xα ≤ Yα and
Xα ≤ Yα for each α ∈ [0, 1]. We say that X < Y if X ≤ Y and there
exist α0 ∈ [0, 1] such that Xα0 < Yα0 or Xα0 < Yα0 . Let X and Y be any
two fuzzy numbers then X and Y are incomparable if neitherX ≤ Y nor
Y ≤ X . For X ,Y ∈ S(R), c ∈ R and for the α−level sets [X ]α = [aα1 , a

α
2 ]

and [Y]α = [bα1 , b
α
2 ] the linear structure of S(R) i.e. addition X + Y and

scalar multiplication cX , are defined as
• [X + Y]α = [aα1 + bα1 , a

α
2 + bα2 ], for α ∈ [0, 1]
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• [cX ]α = c[X ]α, for α ∈ [0, 1].
Let B be a subset of S(R), then B is called bounded above if there is a
fuzzy number β such that X ≤ β, for each X ∈ S and β is called the
upper bound of S. Also, the upper bound β of S is said to be the least
upper bound (Sup) of S if β ≤ β′ for all upper bounds β′ of S. The lower
bound and greatest lower bound (inf) of set S can be defined similarly.
If the set S has both bounds (above and below), S is a bounded set.
Definition 2.3 ([11]). A gradual number, r̃, is defined by a function
called the assignment function, Ar̃ : (0, 1] 7−→ R . It can be understood
as a real value parametrized by α ∈ (0, 1]. Then, for each α, a real value
rα is given by Ar̃ (α).

A gradual real number r̃ is said to be non-negative if for every α ∈
(0, 1], we have Ar̃ (α) ≥ 0. Also by G(R) and G∗(R) we represents the
set of all gradual real numbers and non-negative gradual real numbers
respectively.

Let ◦ be any operation in R and let r̃1, r̃2 ∈ G(R) be gradual numbers
with assignment functions Ar̃1 and Ar̃2 respectively. Then r̃1◦r̃2 ∈ G(R)
with assignment function Ar̃1◦r̃2 defined as

Ar̃1◦r̃2(α) = Ar̃1(α) ◦ Ar̃2(α), α ∈ (0, 1] .

Then for any r̃1, r̃2 ∈ G(R) and every scalar c ∈ R the gradual addition,
subtraction, multiplication and division can be present as follow

Ar̃1+r̃2(α) = Ar̃1(α) +Ar̃2(α), α ∈ (0, 1]

Ar̃1−r̃2(α) = Ar̃1(α) +A−r̃2(α) = Ar̃1(α)−Ar̃2(α), α ∈ (0, 1]

Ac·r̃(α) = c · Ar̃(α), α ∈ (0, 1]

Ar̃1·r̃2(α) = Ar̃1(α) · Ar̃2(α), α ∈ (0, 1]

A r̃1
r̃2

(α) =
Ar̃1(α)

Ar̃2(α)
, if Ar̃2(α) 6= 0 for all α ∈ (0, 1] .

Let r̃1, r̃2 ∈ G(R) be gradual numbers with assignment functions
Ar̃1(α) and Ar̃2(α) respectively and α ∈ (0, 1], then;

(i) r̃1 = r̃2 ⇔ Ar̃1(α) = Ar̃2(α).
(ii) r̃1 ≥ r̃2 ⇔ Ar̃1(α) ≥ Ar̃2(α).
(ii) r̃1 ≤ r̃2 ⇔ Ar̃1(α) ≤ Ar̃2(α).

Definition 2.4 ([38]). Let r̃ ∈ G(R) be a number with assignment
functions Ar̃(α), and α ∈ (0, 1], then the absolute value of r̃ is given by
the mapping |r̃| : (0, 1] → G∗(R) defined by A|r̃|(α) = |Ar̃(α)|.

Definition 2.5 ([28]). Let V be a vector space of real numbers and
‖ · ‖G : V → G∗(R) be a mapping. Then (V, ‖ · ‖G) is called gradual
normed linear space (GNLS) with gradual norm ‖ · ‖G iff
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(G1) ‖u‖G = 0 ⇔ u = 0, ∀u ∈ V;
(G2) ‖cu‖G = |c|‖u‖G, ∀c ∈ R;
(G3) ‖u+ v‖G ≤ ‖u‖G + ‖v‖G, ∀u, v ∈ V.

The above definition can be written in the form assignment of function
as follow:
For any u, v ∈ V, c ∈ R and α ∈ (0, 1], the pair (V, ‖ · ‖G) is called
gradual normed linear space (GNLS) with gradual norm ‖ · ‖G iff

(G1) A∥u∥G(α) = A0̃(α) ⇔ u = 0, ∀u ∈ V;
(G2) A∥cu∥G(α) = |c|A∥u∥G(α), ∀c ∈ R;
(G3) A∥u+v∥G(α) ≤ A∥u∥G(α) +A∥v∥G(α), ∀u, v ∈ V.

Example 2.6. Let V = Rn be a real vector space and v = (v1, v2, . . . , vn)
∈ V, α ∈ (0, 1], then the norm ‖ · ‖G defined by A∥v∥G(α) = eα

∑n
i=1 |vi|

is a gradual norm on V = Rn and the pair (V, ‖ · ‖G) is GNLS.
For more examples about GNLS we refer the readers to [28].

Definition 2.7 ([21]). A family of sets I ⊆ N is said to be ideal if and
only if

(i) ∅ ∈ I
(ii) A,B ∈ I ⇒ A ∪ B ∈ I,
(iii) A ∈ I and B ⊆ A ⇒ B ∈ I.

An ideal I 6= ∅ is called proper (non-trivial) if I 6= 2N.
Let I be a non-trivial ideal then I is called admissible if I ⊇ {{n} : n ∈
N}.
A non-trivial ideal I is called maximal if there cannot exists any non-
trivial ideal B 6= I containing I as a subset.
Definition 2.8 ([20]). A family of sets F ⊆ 2N is called filter on N if
and only if;

(i) ∅ /∈ F ,
(ii) for each A,B ∈ F we have A ∩ B ∈ F ,
(iii) for every A ∈ F and B ⊇ A, we have B ∈ F .

If I is a non-trivial ideal of N, then the family of sets F(I) = {C ⊂ N :
∃ A ∈ I : C = N\A} is a filter of N and known as filter associated with
I.
Definition 2.9 ([20]). Let I be a proper ideal of N, then a sequence
u = (ui) ∈ ω is said to be I−convergent to a real number u0 if for every
ε > 0 we have A(ε) = {i ∈ N : |ui − u0| ≥ ε} ∈ I. Here u0 is called
I−limit of the sequence (ui) ∈ ω and denoted as I − lim

i→∞
ui = u0.

Definition 2.10 ([19]). A sequence u = (ui) ∈ ω is said to be I−null
if for every ε > 0 we have {i ∈ N : |ui − 0| ≥ ε} ∈ I, denoted by I −
lim
i→∞

ui = 0.
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Definition 2.11 ([18]). Let I be a admissible ideal of N, then a sequence
(ui) ∈ ω is said to be I–Cauchy if for each ε > 0 there exists a number
µ = µ(ε) ∈ N such that {i ∈ N : |ui − uµ| ≥ ε} ∈ I.

Definition 2.12 ([31]). A sequence u = (ui) ∈ ω is called I–bounded if
there exists a real number µ > 0, such that the set {i ∈ N : |ui| > µ} ∈ I.

Definition 2.13 ([31]). Let V be the sequence spaces of real numbers,
then V is said to be solid (or normal) if for (ui) ∈ V, (λi) ∈ G(R) with
|λi| ≤ 1 we have (λi ui) ∈ V for all i ∈ N.

Definition 2.14 ([28]). Let (V, ‖ · ‖G) be a GNLS. Then the sequence
(ui) ∈ V is said to be gradually convergent to u ∈ V, iff for all α ∈
(0, 1], we have lim

i→∞
A∥ui−u∥G(α) = A0̃(α). Also (ui) ∈ V is said to be

gradually Cauchy iff for all α ∈ (0, 1] and N = Nε(α) ∈ N, we have
lim
j→∞

A∥ui−uN ∥G(α) = A0̃(α).
The GNLS (V, ‖ · ‖G) is called complete if every Cauchy sequence in

(V, ‖ · ‖G) is convergent.

Theorem 2.15 ([28]). Let (V, ‖ · ‖G) be a GNLS, then every convergent
sequence in V is a Cauchy sequence.

Definition 2.16 ([5]). Let (ui) ∈ (V, ‖ · ‖G), be a sequence and α ∈
(0, 1]. Then (ui) is said to be gradually I−convergent to u ∈ V, if for
every ε > 0; we have

{
i ∈ N : A∥ui−u∥G(α) ≥ ε

}
∈ I; and denoted by

ui
I−∥·∥G−−−−−→ u.

Definition 2.17 ([5]). Let (ui) ∈ (V, ‖·‖G) be a sequence and α ∈ (0, 1].
Then (ui) is said to be gradually I−Cauchy if for every ε > 0, there
exists a number N = Nε(α) ∈ N, such that

{
i ∈ N : A∥ui−uN ∥G(α) ≥ ε

}
∈ I.

Definition 2.18 ([31]). Let V be a sequence space and K = {ki ∈ N :
k1 < k2 < · · · } ⊆ N. A K− step space of V is a sequence space

λV
K = {(uki) ∈ ω : (uk) ∈ V}.

A canonical pre–image of a sequence (uki) ∈ λV
K is a sequence (vk) ∈ ω

defined as follows:

vk =

{
uk, if k ∈ K
0, otherwise.

A canonical pre–image of step space λV
K is a set of canonical pre–images

of all elements in λV
K. i.e. v is in canonical pre–image of λV

K if and only
if v is canonical pre–image of some element u ∈ λV

K.



ON SOME NEW CLASSES OF I−CONVERGENT SEQUENCES IN GNLS 57

Definition 2.19 ([31]). A sequence space V is said to be monotone, if
it have the canonical pre-images of its step spaces. i.e. for all K ⊆ N
and (uk) ∈ V, we have (λkuk) ∈ V, where

λk =

{
1 , if k ∈ K
0 , otherwise.

Definition 2.20 ([18]). A sequence space V is said to be convergence
free, if (ui) ∈ V, whenever (ui) ∈ V and (vi) = 0 ⇒ (ui) = 0, ∀ i ∈ N.

Definition 2.21 ([31]). Let u = (uk) and v = (vk) be two sequences,
then we say that uk = vk for almost all k relative to I (in short a.a.k.r.I)
if the set {k ∈ N : uk 6= vk} ∈ I.

Lemma 2.22 ([31]). Every solid space is monotone.

Lemma 2.23 ([30]). Let I ∈ 2N be a maximal ideal and C ∈ F(I) then
for each M ⊂ N if M /∈ I, then M∩ C /∈ I.

3. Main Results

Throughout in this paper we assume that I is an admissible ideal of
subsets of N and V be a GNLS also u = (ui), v = (vi), be sequences
in V. Now let ε > 0 and α ∈ (0, 1], then we define some new sequence
spaces as

cI∥·∥G :=
{
u = (ui) ∈ V :(3.1) {

i ∈ N : A∥ui−r∥G(α) ≥ ε
}
∈ I for some r ∈ V(I)

}
.

cI0 ∥·∥G :=
{
u = (ui) ∈ V :(3.2) {
i ∈ N : A∥ui−0∥G(α) ≥ ε

}
∈ I for some 0 ∈ V(I)

}
.

ℓI∞ ∥·∥G :=
{
u = (ui) ∈ V :(3.3)

∃ µ > 0 s.t
{
i ∈ N : A∥ui−0∥G(α) ≥ µ

}
∈ I

}
.

(3.4) ℓ∞ ∥·∥G := {u = (ui) ∈ V : sup
n

A∥ui−0∥G(α) < ∞}.

For convenience of our work we represent
mI

0 ∥·∥G := cI0 ∥·∥G ∩ ℓ∞ ∥·∥G , mI
∥·∥G := cI∥·∥G ∩ ℓ∞ ∥·∥G .

The inclusions cI0 ∥·∥G ⊂ ℓI∞ ∥·∥G ⊂ ℓ∞ ∥·∥G is apparent from the defini-
tions of cI0 ∥·∥G , ℓI∞ ∥·∥G and ℓ∞ ∥·∥G .
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Definition 3.1. A sequence (ui) ∈ V is said to be gradually I−null if
there exists a real number u0, such that for every ε > 0, and α ∈ (0, 1],
we have

{
i ∈ N : A∥ui−0∥(α) ≥ ε

}
∈ I.

Definition 3.2. A sequence u = (ui) ∈ V is said to be gradually I–
bounded if there exists a real number r > 0, such that, the set {i ∈ N :
A∥ui−0∥G(α) > r} ∈ I.

Remark 3.3. If I is proper ideal and I ⊇ {{i} : i ∈ N}, then the se-
quence spaces cI∥·∥G , cI0 ∥·∥G , ℓI∞ ∥·∥G are coincide with c ∥·∥G , c0 ∥·∥G ,
ℓ∞ ∥·∥G , respectively.

Theorem 3.4. The classes cI∥·∥G, cI0 ∥·∥G, ℓI∞ ∥·∥G, mI
∥·∥G and mI

0 ∥·∥G
are linear over R.

Proof. (i) Let u = (ui) and v = (vi) be two arbitrary sequences in
cI∥·∥G and c1, c2 be scalars, then for every ε > 0 and α (0, 1],
there exists r1, r2 ∈ V such that{

i ∈ N : A∥ui−r1∥G(α) ≥
ε

2

}
∈ I{

i ∈ N : A∥vi−r2∥G(α) ≥
ε

2

}
∈ I.

Let us define

Au =

{
n ∈ N : A∥ui−r1∥G(α) <

ε

2|c1|

}
∈ F(I)

Av =

{
i ∈ N : A∥vi−r2∥G(α) <

ε

2|c2|

}
∈ F(I),

such that Ac
u,Ac

v ∈ I then
Auv =

{
i ∈ N : A∥(c1ui+c2vi)−(c1r1+c2r2∥G(α) < ε

}
(3.5)

⊇
{{

i ∈ N : A∥ui−r1∥G(α) <
ε

2|c1|

}
∩
{
i ∈ N : A∥vi−r2∥G(α) <

ε

2|c2|

}}
∈ F(I)

Since the sets Au and Av on the RHS of (3.5) belong to F(I),
by definition of F(I), the complement of LHS of (3.5) belongs
to I. That is Ac

uv ⊆ I, this gives that (c1ui + c2vi) ∈ cI∥·∥G .
Hence cI∥·∥G is linear over R.

(ii) Suppose u = (ui), v = (vi) be two arbitrary sequences in cI0 ∥·∥G
and c1, c2 be scalars, then for every ε > 0 and any α ∈ (0, 1]

Bu =
{
i ∈ N : A∥ui−0∥G(α) ≥

ε

2

}
∈ I
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Bv =
{
i ∈ N : A∥vi−0∥G(α) ≥

ε

2

}
∈ I

A∥(c1ui+c2vi)−0∥G(α) ≤ |c1|A∥ui−0∥G(α) + |c2|A∥vi−0∥G(α)

Now

Buv =
{
i ∈ N : A∥(c1ui + c2vi)− 0‖G(α) ≥ ε

}
(3.6)

⊆
{
i ∈ N : |c1|A∥ui − 0‖G(α) ≥

ε

2

}
∪
{
i ∈ N : |c2|A∥vi − 0‖G(α) ≥

ε

2

}
=

{
i ∈ N : A∥ui − 0‖G(α) ≥

ε

2|c1|

}
∪
{
i ∈ N : A∥vi − 0‖G(α) ≥

ε

2|c2|

}
⊆ Bu ∪ Bv ∈ I

Hence cI0 ∥·∥G is linear over R.
The proof of remaining parts have same procedure. □

Theorem 3.5. Let cI∥·∥G, cI0 ∥·∥G and ℓI∞ ∥·∥G be classes of all gradually
I−convergent, gradually I−null and gradually I−bounded sequences in
V, then the following inclusions are proper.

cI0 ∥·∥G ⊂ cI∥·∥G ⊂ ℓI∞ ∥·∥G

Proof. The inclusion cI0 ∥·∥G ⊂ cI∥·∥G is evident.

Let us take u = (ui) ∈ cI∥·∥G then there exists r ∈ V such that ui
I−∥·∥G−−−−−→

r. That is {
i ∈ N : A∥ui−r∥G(α) ≥ ε

}
∈ I.

We can write

A∥ui−0∥G(α) = A∥ui−(r−r)∥G(α)

≤ A∥ui−r∥G(α) +A∥ui−(−r)∥G(α).

In view of the definition of ℓI∞∥·∥G it follows that (ui) ∈ ℓI∞∥·∥G .
Hence cI∥·∥G ⊂ ℓI∞∥·∥G . Finally

cI0∥·∥G ⊂ cI∥·∥G ⊂ ℓI∞∥·∥G . □

Theorem 3.6. Let Z =
{
cI0 ∥·∥G , ℓ

I
∞ ∥·∥G ,m

I
0 ∥·∥G

}
. Then the class of

spaces Z is solid and monotone.
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Proof. We shall prove the theorem for Z = cI0∥·∥G , the proof for remain-
ing classes have same procedure. Let u = (ui) ∈ Z and α ∈ (0, 1], then
for every ε > 0

(3.7) Bu =
{
i ∈ N : A∥ui−0∥G(α) ≥

ε

2

}
∈ I.

Chose β = (βi) with |β| ≤ 1, i ∈ N, then
A∥(βiui)−0∥G(α) ≤ |βi|A∥ui−0∥G(α) ≤ A∥ui−0∥G(α), for all n ∈ N

looking to (3.7), we have{
i ∈ N : A∥βiui−0∥G(α) ≥ ε

}
⊆

{
i ∈ N : A∥ui−0∥G(α) ≥ ε

}
∈ I.

⇒
{
i ∈ N : A∥βiui−0∥G(α) ≥ ε

}
∈ I.

⇒ (βiui) ∈ Z = cI0∥·∥G .

Hence cI0∥·∥G is solid. Finally by lemma (2.22), cI0∥·∥G is monotone. □

Theorem 3.7. The spaces cI∥·∥G, cI0 ∥·∥G and ℓI∞ ∥·∥G are sequence alge-
bra.

Proof. Let (ui) and (vi) be two sequences in cI0∥·∥G and α ∈ (0, 1], then
for every given ε1, ε2 > 0 we have,{

i ∈ N : A∥ui−0∥G(α) ≥ ε1
}
∈ I,

{
i ∈ N : A∥vi−0∥G(α) ≥ ε2

}
∈ I.

In other word
I− lim

i→∞
A∥ui−0∥G(α) = A0(α) = 0̃

I− lim
i→∞

A∥vi−0∥G(α) = A0(α) = 0̃.

Therefore we have
I− lim

i→∞
A∥uivi−0∥G(α) = I− lim

i→∞
A∥viui−0∥G(α) = A0(α)

⇒
{
i ∈ N : A∥uivi−0∥G(α) ≥ ε

}
∈ I.

Thus (ui) · (vi) ∈ cI0∥·∥G and hence cI0∥·∥G is sequence algebra. □

Theorem 3.8. Let u = (ui) ∈ V be a sequence, then u = (ui) is
gradually I−convergent ⇔ for every ε > 0 and each α ∈ (0, 1] there
exists N = Nε(α) ∈ N such that
(3.8)

{
i ∈ N : A∥ui−uN ∥G(α) < ε

}
∈ F(I)

Proof. Assume that ui
I−∥·∥G−−−−−→ r, r ∈ V. Then for every ε > 0 and each

α ∈ (0, 1] we have

Sε =
{
i ∈ N : A∥ui−r∥G(α) <

ε

2

}
∈ F(I)
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chose N = Nε(α) ∈ Sε then

A∥ui−uN ∥G(α) ≤ A∥ui−(−r)∥G(α) +A∥r−uN ∥G(α)

<
ε

2
+

ε

2
= ε.

Hence

(3.9)
{
i ∈ N : A∥ui−uN ∥G(α) < ε

}
∈ F(I).

Conversely let (3.9) holds, then;

S ′
ε =

{
i ∈ N : A∥ui−0∥G(α) ∈ Jε

}
∈ F(I), ∀ ε > 0

Where Jε = [ui − ε, ui + ε]. Then we have S ′
ε ∈ F(I) and S ′

ε/2 ∈ F(I).
Hence S ′

ε ∩ S ′
ε/2 ∈ F(I). This implies that,

J = Jε ∩ Jε/2 6= ∅ .

That is
{
i ∈ N : A∥ui−uN ∥G(α) < ε

}
∈ F(I) diam(J ) ≤ 1

2diam(Jε).
Where diam means length of interval. Take up the same procedure, by
induction we get a sequence of closed intervals.

Jε = J0 ⊇ J1 ⊇ J2 · · · ⊇ Ji · · ·

with property

diam(Jn) ≤
1

2
diam(Ji−1), for i = 2, 3, · · ·

and {
i ∈ N : A∥ui−uN ∥G(α) < ε

}
∈ F(I).

Hence there exists r ∈
∩

i∈N Ji, such that ui
I−∥·∥G−−−−−→ r. Observing that

u = (ui) ∈ V is gradually I−convergent. □

Theorem 3.9. The classes cI∥·∥G, mI
∥·∥G and mI

0∥·∥G are closed sub-spaces
of ℓ∞∥·∥G.
Proof. Suppose

(
u
(j)
i

)
is a Cauchy sequences in cI∥·∥G , then

(
u
(j)
i

)
is

convergent in ℓ∞∥·∥G and lim
j→∞

u
(j)
i = ui.

Let ui
I−∥·∥G−−−−−→ βj for j ∈ N. Then we have to show that;

(i) (βj) → β, where β ∈ G(R).
(ii) ui

I−∥·∥G−−−−−→ β.
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(i) As
(
u
(j)
i

)
is a Cauchy sequence then for every ε > 0, there is

N = Nε(α) ∈ N such that

(3.10) Bjk =

{
i ∈ N : A∥∥∥u(j)

i −u
(k)
i

∥∥∥
G

(α) <
ε

3
, ∀ j, k ≥ N

}

(3.11) Bj =

{
i ∈ N : A∥∥∥u(j)

i −βj

∥∥∥
G

(α) <
ε

3
, ∀ j, k ≥ N

}

(3.12) Bk =

{
i ∈ N : A∥∥∥u(j)

i −βk

∥∥∥
G

(α) <
ε

3
, ∀ j, k ≥ N

}
Then Bc

jk,Bc
j ,Bc

k ∈ I. Let Bc = Bc
jk ∪ Bc

j ∪ Bc
k ∈ I. Where

B =
{
i ∈ N : A∥βj−βk∥G(α) < ε

}
∈ I.

Let j, k ≥ N and i /∈ Bj∩Bk, then by using,(3.10),(3.11),(3.12)
we have;

A∥βj−βk∥G(α) ≤ A∥∥∥u(j)
i −βj

∥∥∥
G

(α) +A∥∥∥u(j)
i −βk

∥∥∥
G

(α) +A∥∥∥u(j)
i −u

(k)
i

∥∥∥
G

(α)

< ε

Thus (βj) is a Cauchy sequence in G(R) and hence lim
j→∞

βj = β.
(ii) Let us take the numbers δ > 0 and γ as

(3.13) A∥βj−β∥G(α) <
δ

3
, for each j > γ .

Since (u
(j)
i ) −→ ui as j −→ ∞, thus

(3.14) A∥∥∥u(j)
i −u

(k)
i

∥∥∥
G

(α) <
δ

3
, ∀ j > γ .

As (u(j)i )
I−∥·∥G−−−−−→ βk, there exist S ∈ I, such that for each i /∈ S,

we have

(3.15) A∥∥∥u(j)
i −βk

∥∥∥
G

(α) <
δ

3
, ∀ j > γ

by using (3.13),(3.14),(3.15), for k > γ, we have
A∥ui−β∥G(α) ≤ A∥ui−u

(k)
i ∥G

(α) +A∥u(k)
i −βk∥G

(α)

+A∥βk−β∥G(α) < δ, ∀ i /∈ S ∈ I ⇒ (ui)
I−∥·∥G−−−−−→ β.

Thus cI∥·∥G is closed subspace of ℓ∞∥·∥G .
Similarly we can show that mI

0∥·∥G and mI
∥·∥G are closed subspace of

ℓ∞∥·∥G . □
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Theorem 3.10. Suppose u = (uk) ∈ V be a sequence and let I ⊆ N be
an admissible ideal. If v = (vk) ∈ cI∥·∥G is a sequence, such that uk = vk

for a.a.k.r.I, then u = (uk) ∈ cI∥·∥G.

Proof. Let uk = vk for a.a.k.r.I, i.e. S = {k ∈ N : uk 6= vk} ∈ I. Let
(vk) be a sequence such that vk

I−∥·∥G−−−−−→ ℓ, ℓ ∈ G(R), then for any given
ε > 0 and α ∈ (0, 1] we have Sv =

{
k ∈ N : A∥vk−ℓ∥G(α) ≥ ε

}
∈ I.

As I is admissible, then the favorable result can be obtained from the
following inclusions

Su =
{
k ∈ N : A∥uk−ℓ∥G(α) ≥ ε

}
⊆ {k ∈ N : uk 6= vk} ∪

{
k ∈ N : A∥vk−ℓ∥G(α) ≥ ε

}
.

then Su ⊆ S ∪ Sv. Since S ∈ I and Sv ∈ I, then Su ∈ I. Hence
(uk) ∈ cI∥·∥G . □

Theorem 3.11. Let u = (ui) be a sequence in one of the classes
cI0∥·∥G , cI∥·∥G , ℓI∥·∥G. If every sub sequence (vj) of (ui) is gradually I-

convergent to u, then ui
I−∥·∥G−−−−−→ u.

Proof. We shall prove the result by contradiction.
Let us assume that ui

I−∥·∥G−−−−−→ u is impossible. Then for any given
ε > 0 and every α ∈ (0, 1], we have

Su =
{
i ∈ N : A∥ui−u∥G(α) ≥ ε

}
/∈ I.

This implies that Su is infinite. Now take a set I as I = {i1 < i2 < · · · <
ij < · · · } and let (vi) be a sub sequence of (ui), i.e. (vi) = uij . Then
(vj) is not gradually I−convergent to u, which is a contradiction to the
statement of theorem. Hence ui

I−∥·∥G−−−−−→ u if vj
I−∥·∥G−−−−−→ u □

Theorem 3.12. Let u = (ui) be an arbitrary sequence in Z =
{
cI0∥·∥G ,

cI∥·∥G , ℓI∥·∥G

}
. If ui

I−∥·∥G−−−−−→ u, for u ∈ Z . Then (ui) is gradually I−
Cauchy.

Proof. Let (ui) ∈ Z = cI∥·∥G be gradually I−convergent to some u ∈ Z ,
then for any given ε > 0 and every α ∈ (0, 1], we have

Su =
{
i ∈ N : A∥ui−u∥G(α) ≥ ε

}
∈ I

Fu =
{
i ∈ N : A∥ui−u∥G(α) < ε

}
∈ F(I).

Let N = Nε(α) ∈ F(I) be a number, then A∥ui−uN ∥G(α) < ε. Now
chose

SuN =
{
i ∈ N : A∥ui−uN ∥G(α) ≥ 2ε

}
,
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then we have to show that SuN ⊆ Su.
Let c ∈ SuN , be a number then

2ε ≤ A∥uc−uN ∥G(α)

≤ A∥uc−u∥G(α) +A∥u−uN ∥G(α)

< A∥uc−u∥G(α) + ε.

⇒ A∥uc−u∥G(α) ≥ ε

⇒ c ∈ Su

⇒ SuN ∈ I.

This implies that ui is gradually I− Cauchy sequence.
Similarly we can show the result for Z = cI0∥·∥G and Z = ℓI∞∥·∥G . □

Conclusion

The concept of gradual numbers reckons a previously missing gist
of completeness of fuzzy set theory. Gradual numbers to measure the
length of fuzzy intervals or the size of finite fuzzy set. The term gradual
numbers were first introduced by Fortin, Dubois and Fargier in 2006
to solve the confusion related the algebraic behaviour of fuzzy num-
bers. After that, several authors and researchers extended the concept
of gradual numbers and studied several algebraic and topological proper-
ties of these preceding numbers. Also, many researchers applied gradual
numbers in various areas of mathematics, operations research, physics,
computer science and engineering.

In this paper, we studied the I−convergence of some classes of bounded
sequences ℓ∞, convergence sequences c and null sequences c0 in gradual
normed linear spaces (V, ‖ · ‖G). We defined some classes of I−bounded
sequences ℓI∞, I-convergent sequences cI ,and I−null sequences cI0 in
gradual normed linear spaces, presented by (3.1),(3.2),(3.3), (3.4). Also,
we discovered some algebraic and topological properties for these forgo-
ing spaces, , such as linearity, solidity, monotonicity, closedness and the
relation between gradual I−convergence and gradual I−Cauchy. We
also showed that the inclusions cI0∥·∥G ⊆ cI∥·∥G ⊆ ℓI∞∥·∥G are hold. Finally,
we we would like to indicate that gradual I−convergence is a fresh„ in-
teresting and useful tool in fuzzy mathematics, operations research and
engineering. The results discussed here yield novel tools to sort and
solve some problems of sequence spaces of gradual I−convergence in
several fields of mathematics, science and engineering. These new re-
sults and methodology will help to researchers to boost the study on
I−convergence in GNLS.
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