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Applications

Faiza Rubab'*, Asif R. Khan?, Anum Z. Naqvi® and Ani Haider?

ABSTRACT. Motivated by the results of Niezgoda, corresponding to the
generalization of Mercer’s inequality for positive weights, in this paper,
we consider real weights, for which we establish related results. To be
more specific, Niezgoda’s results are derived under Jensen Steffensen
conditions. In addition, we construct some functionals enabling us to
refine Niezgoda’s results. Lastly, we discuss some applications.

1. INTRODUCTION

The well-known Jensen’s inequality for convex functions is among the
most important inequalities in mathematics and statistics. Jensen’s inequal-
ity asserts a remarkable relation between the mean and the mean of function
values. Any generalization or refinements of Jensen’s inequality is a source
of enrichment of the monotone property of mixed means. Applications of
Jensen’s inequality in statistics and probability related to the expectation of
a convex function of a random variable are of great significance. Moreover,
many other essential inequalities may be obtained from it, such as Holder’s
and Minkowski’s inequalities.

In 2003, A. McD. Mercer [3] has proven a variant of Jensen inequality.
This variant furnished a new field for scholars. Notably, in 2009, M. Niez-
goda in [21] provided a generalization of Mercer’s results and pointed out
the relationship between majorization ordering and Mercer’s result. Fur-
thermore, in the same article, Niezgoda extended Mercer’s result to a pair
of similarly separable vectors for convex functions. In 2012, Khan et al.
beautified Niezgoda’s result [21] by proposing refinement of Jensen—Mercer
inequality in [16] (see also [20, 27, L7, 4, B, 6, 19, 24, 15]). In the present
article, we would like to give a generalization of Niezgoda’s inequality and
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its refinements with applications. Specifically, we would give some relation-
ships between generalized arithmetic, geometric and harmonic means. We
would_also get Ky Fan type [8, pp. 25-28|, Popoviciu type [28] and Rado
type [25] inequalities in our application section.

In all over the article we assume that (u3,v1) C R and pq < v4. Con-

sidering positive m—tuple p = (p1,..., pm), we define inner product on R™
by

m
(1.1) (0,8) = pijoiB;

j=1

for o0 = (01,...,0m) and B = (B1,...,Pm). Also for the positive weights
Ply-- -, Pm, we define the notations

J m
P;=> pi,Vje{l,...,m} and of course, P, = > pj.
i=1 j=1
Furthermore, for the real n—tuple w = (w1, ...,w,), we define the nota-
tions

J n
W;=> w;,Vje{l,...,n} and of course, W,, = > w;.
i=1 =1
Jensen’s inequality [11, p. 43]) (see also [13] and [14]) is one of the well-
known result.

Theorem 1.1. Let ¢ = (<1,...,5,) be n—tuple in (u1,v1)", and p =

(p1,--.,pn) be a positive n—tuple. If Y is convexr function on (ui,v1),
then
1 & 1 &
(1.2) T (PZMQ) < ?ZPLT(§£)
=1 =1
holds.

The supposition “p is positive n—tuple” in Theorem [l can be compen-
sated by “p is a non—negative n—tuple” with P, > 0. That is acceptable
to question whether the supposition “p is a non—negative n—tuple” can be
reduced at the surcharge of tightening ¢ more strictly. Steffensen (see [12])
was the pioneer to address this issue in Theorem (see also [11, p. 57]).

Theorem 1.2. Let ¢ = (<1,...,5,) be a monotonic n—tuple in (pu1,v1)" and
p=(p1,---,pn) s a real n—tuple such that i Yory pisi € (p1,v1) and

(1.3) 0<P, <P, P, >0, forie{l,...,n}.

If T is convex function on (u1,v1), then (IA) still holds.
(2) under conditions of (I23) is called Jensen Steffensen inequality.

Mercer [3] furnished a variant of (I”2) which is named as “Jensen—Mercer
inequality”.
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Theorem 1.3. Following the supposition of Theorem [, the inequality
(=) holds.

(1.4) T (9+n— ;qu) <Y(0) +Y(n) - Pinfr(q),
ni=1 "i=1

where
0 = min S and = max Gl.
V<L€(H17V1){ 2 7 V€L€(#1,V1){ 2
The following generalization of (Q) is given in [26].

Theorem 1.4. Following the supposition of Theorem 2, inequality ()
holds.

In paper [18], Bakula et al. proposed a paramount result which enables
us to obtain (I2) under conditions of (I=3). In this place and in all over
the article, we take into consideration a convex function Y : (u1,v1) — R,
where —oco <y < 11 < +o0, for Y'(¢), where ¢ € (u1,v1), we may take an
element of [T’ (), Y’ (<)]; however, without any generality loss we can set
T'(¢) = Y'(s) (indeed, if Y is differentiable then Y'(s) = Y’ (¢) = T7_()).

Theorem 1.5. Following the supposition of Theorem 2, we have
1< 1<
/ — !
YT(c)+ Y (c)(S—c) < P, ;MT(Q) <7T(d)+ o Z}pﬂ“ (si)(si —d)

hold ¥ c,d € (u1,v1), where

1 n
C:i= P, z; PiSi-
L=

Now we state the definition of majorization from [21] as follows. Let two
m-tuples & = (01,...,0n) and B8 = (B1,...,Bn) be such that oy > - >
O(m]s Bl1) = -+ = By be their ordered components.

Definition 1.6. For o, 3 € R™

Z%‘}S Zﬂm, ke{l,...,m—1}
B

When o < 3, we say “8 majorizes o” or "o majorized by 3.

The majorization approach was first brought in by Hardy et al. In their
book “Inequalities”, [10], we can identify the famous majorization theorem.
Using the definition of majorization stated above, we are ready to state an
extension of inequality () presented by Niezgoda in [21]. We would call
it “Niezgoda’s inequality”.
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Theorem 1.7. Assume Y is continuous convex function on (pu1,v1). Sup-
pose & = (01,...,0m) € (u1,v1)™ and X = (g;;) is an n X m matriz such
that ;5 € (u1,v1) Vie{l,...,n} and j € {1,...,m}. If ¢ majorizes each
row of X, i.e.,

Si. = (Sity -+ Sim) < (01,...,0m) =0 for each i € {1,...,n},

then the following inequality holds:

m m—1 n m m—1 n
(1.5) T Zoj Zwm]‘ < ZT(O’]‘) - Z ZWLT Sij)
j=1 j=1 i=1 j=1 j=1 i=1

where Y 1 w; =1 withw; > 0Vie {1,...,n}.

The present article is divided into the following sections: The 1st section
contains preliminaries and an introduction. In 2nd section, we generalize
Niezgoda’s result [21] by considering real weights satisfying the Jensen—
Steffensen condition. In 3rd section, we construct functionals to establish
refinements of our results proved in 2nd section. The 4th section contains
applications of our main results and the last section concludes the article.

2. GENERALIZATION OF NIEZGODA’S INEQUALITY

In this section for a given n x m matrix X = (g;;) such that ¢;; € (1,11)
Vi, j, we define a matrix Y (X)=Y(g;;). The ith row and jth column of X are
described by ¢;. and ¢, respectively. e.g., T(si.) = (Y(s1),. .. Y (i)
Now we give the generalization of Theorem I1.

Theorem 2.1. Let T : (u1,v1) — R be a continuous convex function. Let
o= (01,...,0m) € (1,11)" and X = (g;;) is a real n x m matriz with
Gij € (p1,v1) Vie{l,...,n} and j € {1,...,m} such that

172625 = " 2 6nj  or 615 <G5 <o <Gy

Let w = (w1,...,wy) be a real n—tuple such that Win Yo wisij € (p1,v1)
for each j € {1,...,m} and the conditions on weights given in (I=3) hold. If
for each i € {1,...,n} we have

(2.1) Zgij = Zaj
(2.2) ZQJ (Sij) ZUJ (Sij),

then we have the following inequality

n k—1

(2.3) ZO'] —ZZW&J —Z Z WiSi;

Ll]l L1JK+1
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n 1
SZT( V; Z WLT ng Z Z wb gL]

j=1 =1 j=1 " i=1 j=r+1

K—

where k € {1,...,m}.

Proof. Fix k € {1,...,m}, using first (21) and then using Jensen—Steffensen
inequality we get,

m n k—1
(2.4) T Zaj ZZW&J Z Z WiSi;
j=1 =1 j=1 =1 j=k+1
1 n m Kk—1 m
= W—Zwi Zdj—ZQ]— Z Sij
i=1 j=1 j=1 j=r+1
1 < 1
= (VVn ;WL'Q;{) < W 2 Wi Y (Six)-

Now from Theorem A, we have

WLZWLT(CL)ST +7Zwb (i) (si —d).
"i=1

Replace first d by o; and ¢; by ¢;; V i € {1,...,n} and j € {1,...,m}, we
have

ZWL (sij) < Y(0y) +7Zm (sij)(sij —oj) Vied{l,...,m}.

By taklng sum from 1 to m over j we have

(2.5) Wi 3N w ()

=1 j=1

<ZT ) +—ZZwL (si3) (55 — 77),

lel

m

= T(oy) + Wi > wi | > Y (si)sis— D (siz)o
j=1 =1 j=1 j=1

By using (22) in (233) the second term in right hand side vanishes, we have

and finally

(2.6) Wi ZUJ[T(g[:K,)
™i=1
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m n k—1
<Y T - - 2o ST - Z > T
j=1 i=1 j=1 =1 j=r+1
Using transitive property on (24) and (2Z8) we get (223). O

Remark 2.2. It is essential to highlight that at the expense of (E70) and
(22) in Theorem P, we relax the condition of Theorem [C4 that o majorizes
each row of X.

Remark 2.3. If in inequality (E23) we set k = m = 2, 01 = 0, 09 = n with
o1 < o9,61 =g and g9 = o1+09—¢; for i € {1,...,n}, then inequality (23)
reduces to inequality (I4). Hence, Theorem P71 is the generalized extension
of Jensen—Mercer’s inequality.

Remark 2.4. Note that the result [5, Theorem 1] still valid if we replace
inequality (2) of [5] by equation (22) of this article.

Theorem 2.5. Let Y : (u1,v1) — R be a continuous convex function.

Suppose that o = (01,...,0m) € (p1,v1)" and X = (g;5) is a real n X m

matriz with ¢;; € (p1,v1)Vi e {l,...,n} and j € {1,...,m} such that
C1j = G252 " = Snj O 615 <625 < -0 <Gy

Let w = (w1, ...,wy) be a real n—tuple such that ﬁ Yo wisij € (pa, 1) for
each j € {1,...,m} and the conditions on weights given in (I=3) holds, and
the vector v € R™ with v, # 0, Ve € {1,...,m}. If for each i € {1,...,n}
we have

(i) (¢ —si.,v) =0 and

(i) (o — <., Y'(s.)) =0,

then we have the following inequality

m k—1 n m n
(2.7) oY Z TEPU; — Z €P;jV; Zwiqj — Z €PjV; ngqj
j=1 j=1 i=1 j=k+1 i=1
m Kk—1 n m n
<> Yo =D oy wil(sy) = D pi ) wil(s),
j=1 =1 =1 j=r+l =1
where k € {1,...,m} and € = with p, > 0.
PrUk
Proof. Fix k € {1....,m}. Under the assumption of the theorem, it follows
from Proposition that

WLZMT(Q)ST +—Zm (si)(si — d).
"i=1

Replace d by o; and ¢; by ¢;;, we have

ZwL ng <TOJ +7ZWL gL_] ng—O'j), V]E{l,,m}
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By multiplying p; and taking sum from 1 to m over j, we get

n m m
“lfn D wi Y piY(s) <Y pY(oy) + ZWLZPJ (si5)(sij — a3),
i=1  j=1 j=1

or we can write

(2.8)
>0 ~ g e > Pt = - Do DT (sl )
j=1 Ti=1 =1 =1 j=1
1 n
= — > wi{o—¢.,T'(s.))
W &
=0.

The last inequality is due to assumptions (ii). Given that, (o —¢;.,v) =0
for each i € {1,...,n}, by () we have

m k—1 m
(2.9) D TPy = Y epjuisij = Y PO = Sins
j=1 j=1 j=r+1

where € =

, Ve € {1,...,m}. Consider L.H.S of (277), using first (Z79)
PrVUk

and then applying Jensen Steffensen inequality we get,
(2.10)

Zajepjuj W Zepjuijng W Z epjvjzw&g

j=Kr+1
1 n m r—1 m
Wi E wj E O€P;V; — E €EPUWiSi5 — E €P;V;iSi;
=1 j=1 =1 1

1 n
= pnT e WiSik
()
< Pni ZWL'T(QH)
"i=1
from (@)

(2.11)

1 n
W Z WLPKT(QK)
=1

m k—1 n
SZPJ'T(UJ')_WLZP]‘ZMT(%) — Z p]ZwL (Sij)-
j=1 "i=1 =1

] k+1 =1
Using transitive property on (Z10) and (Z11) we get (272). O
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Corollary 2.6. Let all the assumptions of Theorem B be valid and let
v=(1,...,1). Then we have the following inequality

m Kk—1 n m n
(2.12) T ZO’jﬁj — ZﬁijLQj — Z ﬁijigij
j=1 j=1 i=1

=K+l i=1

m rk—1 n m n
<Y B0 =Y B Y wi¥(si) = Y 53y wil(sim),
=1 =1 =1

j=k+1 i=1

where k € {1,...,m} and p; = % with p, > 0.
For instance, if p; =1, (p1 = -+ = pm), then (Z12) reduces to
m n Kk—1
219 1 S e 3 Y e
j=1 =1 j=1 =1 j=k+1
m n k—1
S RIS S o opr
j=1 i=1 j=1 i=1 j=r+1

and, in particular, for k = m, (Z13) reduces to

m m—1 n m m—1 n
(2.14) T Zaj - Z ZwéQj < Z Y (o) — Z ZWLT<§£j)-
=1 =1 i=1 7=1 =1 i=1

Furthermore, to be more specific, for m = 2, (E14) reduces to (IA).

Remark 2.7. It is important to highlighted that in our Theorem 3 we
relax the condition of similarly separable vectors as stated in Theorem 3.1
of [21].

Corollary 2.8. Let all the assumptions of Theorem B be valid and let
= (1,2...,m). Then we have the following inequality

m k—1 m n
(2.15) T Zajﬁjvj ZpJU]ZngL] Z ﬁijmj
=1 =R+l =1
m m n
< Z ZPJZWL gl,] Z ﬁjZWLT(Q'j),
=1 j=ktl =1

— P

where k € {1,...,m}, p; = o with p, >0 and v; = J

K
For instance, if pj =1, (p1 = -+ = pm), then (Z13) reduces to
m ] rk—1 j n m ] n
(2.16) T ; 5= Z - Zwiggj — Z - ZOJL'Q‘]'
=1 =1 i=1 j=r+1 =1

k—1 n

<SS T0) - Y S wira) - Y Y wir(a),

=1 =1 i=1 j=kr+1i=1
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and, in particular, for k = m, (Z18) reduces to

m m n

. m—1
(217) Y —aj Z Zwbcu <Y (o) = DD wil(siy),
=1

j=1 j=1 i=1

Furthermore, to be more specific, for m = 2, (EI40) reduces to

1
(2.18) T (201 +o2— 5 ZwLm) < Y(o1) + Y(o2) ZwL Si1)-

=1

3. REFINEMENTS

3.1. Refinements of Niezgoda’s Inequality for Index Set Functions.
Let I be a finite non—empty set of positive integers. Let w = (w;),i €
{1,...,n} be a real sequence and let X = (g;;) be an n x m matrix such that
the entries ¢;; € (p1,v1) Vi, j.

If we define the index set function F 1 as

(3.1)
m r—1 m
0 = Wi | D0 () — o 3 D Tle) — o >0 S wt(sy)
=1 53 a L Ny pe
(S g E T $ e
=1 153 e L ———

where o = (01,...,0m) € (pu1,v1)"™ and Wi = 3,y w;, then the following
result is true.

Theorem 3.1. Let I and I be two finite non—empty sets of positive integers
such that INT =0 and TUL = {1,...,n}. Let X = (5;;) be an n x m matriz
such that the entries ¢;; € (1, v)Viel,je {1,...,m} and let w = (w;),i €
TUT be a real sequence such that Wis Sieswisij € (u1,11)(S =LLIUI).

For o = (01,...,0m) € (pu1,11)™ and for a convex function Y on an
interval (p1,v1), if 0 < Wg < Wy g, then we get the following inequality
under the assumptions of Theorem P

(3.2) F1IUl) > (D) + (D)
Proof. Fix k € {1,...,m}.

(3.3)

F1(TUI)

> Y et

J=k+1 icTUl

= W ZT %) WIuI Z Z Wit (sig) = WIUI

Jj=1 jelul
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=T ZO']' WIUI Z Z wiSij — WIUI Z Z WiSij )

Jj=1 jelul j=r+1 ielul

while convexity of T and Jensen—Steffensen inequality yields

(3.4)

T Z g — WIUI Z Z WiSij — WI : Z Z WiSij

j=1 ielul Jj=k+1ielul

1 m
=7 7@ WIUIZU] Z Z WiSij — Z Z WiSij

| I J=1ie1ul j=r+1ic1ul

-1
—T Wl Swi+ Y w ZUJ Z D wisiy+ ) wisi;
Ul

L el iel 7=1 el icl
m
- E § wmj-i-g WiSij
j=k+1 \ i€l i€l
m
Wi
SW _T g g5 — E 5 WiSij — WI E 5 WiSij
IuI =1 ] 1 iel j=k+1 i€l
m m
Wi 1
+W 7T E oj— g E WiSij — A E E WiSij
UL =1 I — L e

J
Finally combining (823) and inequality (B4) we get

F1(IUT)
m
> W ZT ZZWL ng i Z ZWL gL]
j=1 _] 1 i€l ] k41 i€l
m
=T ZO&**ZZWLQJ Z ZWLQJ
j=1 j=1 i€l _7 k+1 i€l

+ W [ D Y(oy) - WZZ“’L (sij) — W ZZM (si3)
j=1

=1 iel j=r+1 iel

J 1 jel ] r+1 el

T\~ ZZ% W > sy
j=1

= 1(I) + F1(D).
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The following corollaries give certain refinements in connection with the
index set function.

Corollary 3.2. Let I} = {1,...,1}where 1 € {1,...,n}. Suppose that
X = (sij) be an n x m matriz such that the entries ;; € (u1,v1)Viel,, je
{1,...,m} and let 0 = (01,...,0m) € (p1,1)™

For a convex function T on an interval (pui,v1), if 0 < Wg < W7, and S €

{Ii,..., I}, (where equality holds for S =1,), then under the assumptions
of Theorem -1 we have

(3.5) Fi(li-1) < F1(In),

Proof. Set k € {1,...,m}. Since T is convex function hence by a property
of convex function we have

T(Qn) < T(d) + T/(§n)(§n - d)
Replace ¢, = ¢y; and d = 03, Vj € {1,...,m}, then we have

(3.6) Z T §n] < Z U]) + Z T/(an)(an - Uj)'

j=1
By using (IZZZ) we have 2nd term in R.H.S of (BM) vanishes and then by
using (Z0)we have

(3.7)
m rk—1 Kk—1
Zgj_zgnj Z Snj <ZTUJ ZT gn] Z Tgnj
j=1 j=1 j=r+1 j=1 j=r+1

From given condition we have 0 < W1n71 < Wi, which implies 0 < w,, =
Wi, — Wi, ,. So by applying (BZ) we have

m k—1
(3.8) Fi({n}) =wn | D T(o5) = > Ylsny) Z T (5nj)
J=1 J=1 j=r+1
m k—1 m
=T ZU]'_Zan Z Snj >0
7=1 j=r+1

As
Fi1(Ip) =F1(IT—1U{n}).

Since, I,,—1 N {n} = 0, hence by Theorem P and then by using inequality
(BR) we get

Fi1@L)=F1(IT1U{n}) > F1(@L-1) + F1({n}) > F1(T-1). O

Remark 3.3. Theorem B and Corollary B2 are also valid under the as-
sumptions of Theorem A and for the index set functional defined as

ZP] (05) ZPJZUJL (ij) W ijzwb (Si)

= el j=k+1 iel
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—psT (foafﬂjvj fZemewm W Z epjvjzmw)]
j=1

el j rk+1 el

Remark 3.4. Theorem B and Corollary B2 results are the generalized
extension of corresponding results in [2] and [9].

3.2. Refinements of Niezgoda’s Inequality for D Functional. Let a
function Y define on an interval (p1, v1) and suppose that o = (01, ...,0p) €
(p1,v1)™ and X = (g;;) is a real n x m matrix such that ¢; € (u1,11)Vi €
{1,...,n}and j € {1,...,m}. Then for any non—empty subset L of {1,... ,n}
we take I := {1,...,n}\I # ) and w = (w1, ...,wy) be a real n—tuple and
we define W1 = >, ;w; and Wy = W), — >, ;w; such that 0 < Wg < W,
and WLSZLGSWL.Q]' € (u1,v1) where S € {I,L,{1,...,n}}. If we define a D
functional as

D(W,X,T,I) = WLWIT ZO'J ZZWLCL] Z ZngL]
n =1

] 1 iel ] k41 i€l
1 “ 1 &
-+ WnWTT ZO'] Zzwngj 77 Z Zw]ng )
Jj=1 Lj=1 iet Jj=r+1 i€l
then the following theorem is valid.

Theorem 3.5. Under the assumptions of Theorem B, for any non—empty
subset T of {1,...,n} we have

m n k—1
U DIPEIEE o) SFMEEE SD o
7=1 =1 j=1 (=1 j=r+1
< D(w, X, T;1)
n k—1 1 n m
Z O'] —722"‘% gL] _72 Z wiT(gij)‘
=1 Wn i=1 j=1 Wa i=1 j=r+1
Proof. By the property of convex function we have
n k—1
ZUJ 3w LYY sy
=1 j=1 =1 j=k+1
1 n m Kk—1 m
=T anwz Zdj—zgj—.z WiSij
=1 i=1 j=1 j=k+1

m

1
=7 WnWI ZWL ZJJ Zgbj Z Sij

i€l j=k+1
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Z‘*’L Zaj Zgu ZQJ

i€l
1 m 1 k—1 1 m
< WnWIT J:Zl 0; — WI j:zl ; WiSij Wi j:;rl ; WiSij
1 m 1 k—1 1 m
+ W—WIT ZU] — W Z Zwigj W- Z ZngLj
" j=1 Uj=1 et j=r+1 el

Now using generalized Niezgoda inequality (223) in the following functional

D(w, X, T;1)
7I/VIFr ZU] W ZzngLj W Z ZngLj
j=1 i€l j=k+1 i€l
1 m
+WWIT ZUJ' ZZ%% W Z ijgbj )
" j=1 Lj=1 i1 J=r+1 el
m
< WLWI Z Uj - 722“& gL] Z ZWL CL]
" =1 j=1 iel L ——
1 m
+WWT ZTU] *722% (Si3) — o7 Z ZWJ (Sig) | »
" Jj=1 Uj=1 jer Uj=kt1 i1
m 1 k—1 n
:ZT( W ZZL«.}LT (L] - Z ZUJL §Lj
j=1 =1 i=1 " j=k+1 i=1
for any I, which validate the 2nd inequality in (B). O

Remark 3.6. Theorem B is also valid under the assumptions of Theorem
3, for D functional defined as

D(p,w, X, T ;1)

= WinWIpK (Z 0j€P;V; — W ZepJUJZw’QJ W Z ep]U]ZwLCL])

el j=kr+1 el

iel j=k+1 icl

m
WIPn (ZUJEPJU] W Zep]’uj ZngLJ W Z ep]UJZwL§L]>'
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4. APPLICATIONS

(h): For ) #1 C {1,...,n}, the arithmetic, geometric, harmonic and
power means of order r € R are defined as AI, GI, H; and 1\7[?] respectively
with o = (01,...,0m) 6.5 = (S1j, - - -, Snj) such that oj, ;5 € (u1,v1)T CRTY
ie{l,...,n}, je{1,...,m}. Let w;,wherei € 1, are the positive weights
in R*. While for I = {1,...,n}, the generalized arithmetic, generalized
geometric, generalized harmonic and generalized power means are denoted
by A,, G, H, and ML{] respectively.

All over the section we suppose that In and exp have the natural domain.
If we describe
Generalized Arithmetic Mean

AU:in
i=1
IR ) SRR 3 i
I = WI ' iSij WI iSij

=1 iel j=rtl il
Ar=A, — A;

Generalized Geometric Mean

Gy = exp Zln(aj)
j=1

k—1 m
Gr =exp 1/11/1 Z Zwi ln(Qj) + I/Il/l Z ZWL ln(Cij)

j=1 i€l j=k+1 i€l
A G
G=-2
G1
Generalized Harmonic Mean
-1
|
H, = —
2
j=1
k—1 m -1
1 «— 1 1 1
Hi= | D e+ 2 D wic
S Ga i L otiia S
111
I:II Ha HI

Generalized Power Mean

M =3 o
j=1
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r—1 m
g1 L1 .
M{] =9 ZZWL(QJ') + W Z Zwi(Qj)
= U=t ict
~clr T ]y 1
M) = o) — )
Theorem 4.1.
(4.1) (i) A, >G,
An n 1
(4.2) (i) = (<) > AG (s) provided that 0 < ¢;; < — for all i, j.
An(l - §) Gn(l - §) 2
Proof. (i) Applying (Z3) to the convex function Y(¢) = —Ing, we
obtain ().
(ii) Applying (2Z33) to the convex function T(g) = In (%) for 0 <¢ <3
we obtain required inequality (E2). O

Remark 4.2. The inequality (E=2) is a generalized variant of weighted Ky
Fan’s inequality (see, for example, [§, pp. 25-28]).

Theorem 4.3.
A Wn A anl
(4.3) (i) [==) > (222
Gn Gn—l
(4.4) (ii) Wi (An . Gn) > Wit (An_l - (}n_l)
Proof. e Applying (B3E) to the convex function T(s) = —lIng, we
obtain (E23).

e Applying (B3H) to the convex function Y(¢) = exp(s) and replacing
o; with In(o;) and ¢;; with In(g;), for all i € T and j € {1,...,m}
we obtain (E4). O

Remark 4.4. If in Theorem BZ3 we put w; = i Vi € 1 , then we get the
following results, which are of Popoviciu-[28] and Rado- [25] types, respec-
tively, (see also [, p. 194]).

Corollary 4.5.

~ n ~ n—1
. A, A,_
(i) n (An - Gn> > (n—1) (An_l - G,H)

Proof. Follows directly from Theorem B=3 for w; = 1 for all i € {1,...,n}.
Il

Corollary 4.6.
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(i4) Wn(}— ! )ng_l(Al - )
Hn Gn Hn—l Gn—l

Proof. Follows directly from Theorem ETT by the substitutions o; — ai and
J

Qj—>$jforallielandje{l,...,m}. O
Theorem 4.7. (i) Forr <1, we have the following inequalities.
(4.5) W, (An - Mn[r]) > Wiy (An_l _ Mn_l[ﬂ)

(ii) Forr <1, we have the inequalities in (E3) are reversed.

Proof. For v < 1, r # 0, use (BH) for the convex function Y(¢) = ¢r,
replacing o; with o7 and ¢; with (g;)" for all i € Tand j € {1,...,m} and
for r = 0 use and (B3) for the convex function Y(s) = expg replacing o;
with Ino and ¢;; with Ing;; for all i € Tand j € {1,...,m}, we obtain (E9).

If r > 1, ,then (B35) reversed because Y(¢) = ¢t is concave. O
Corollary 4.8.
Wo (K = Ha) = Wooy (Any = o)
Remark 4.9. Obviously, part (i7) of Theorem B3 directly follows from
Theorem B2

Theorem 4.10. Letr,t € R;r <'t.
(i) If t > 0, then, we have the following inequalities.

o) (019 = () 2 0 (5 (1))

(ii) Forr <1, we have the inequalities in (EB) are reversed.

Proof. Let t > 0. Applying (B3H) to the convex function Y(¢) = ¢t and

replace o; with o} and ¢; with (g;)" for all i € T and j € {1,...,m}, we
obtain (£8).

If t < 0, then (EH) reversed since Y(s) = ¢+ is concave. O
Theorem 4.11.
(4.7) (i) G <A AT <K,
(4.8) (i1) Gp < WG+ WiGp < A,
Proof. (i) Applying Theorem B33 to the convex function Y(s) = — In(s),

we obtain

lnAn > (lnA}/VI —|—lnA¥Vi) > lnén

from which (277) follows.

(ii) Applying Theorem B3 to the convex function Y(s) = exp(s) and
replacing o; with In(o;) and ¢;; with In(g;;), for all i € T and j €
{1,...,m} we obtain (ER). O



GENERALIZED NIEZGODA'’S INEQUALITY 323

Corollary 4.12.

1 1 1
< < =

G, ~ B A T H,

A

(@)

Proof. Directly from Theorem BT by the substitutions o; — U% and ¢;; —

1 . .

;_jfOI‘aHLGIaIldJG{l,...,m}. n
Theorem 4.13. (i) Forr <1, we have

(4.9) M < wing 4+ wpnl < A,

(ii) Forr > 1, (E9) reversed.

Proof. Forr < 1, r # 0, use Theorem B3 for the convex function Y(s) = g%,
replacing o; with o} and ;; with (;;)" forall i € Iand j € {1,...,m} and for
r = 0 use and Theorem B for the convex function Y(¢) = exp¢ replacing
o; with Ino; and ¢;; with Ing; for all i € T'and j € {1,...,m}, we obtain
() 1

If r > 1, ,then (B9) reversed because Y(¢) = ¢r is concave. O

Corollary 4.14. . A R R
H, < WiH; + WiH; < A,

Proof. Directly from Theorem B3 for r = —1. U

Remark 4.15. Obviously, part (i) of Theorem BT directly follows from
Theorem B7T3.

Theorem 4.16. Letr,t € R;r < t.
(i) If t > 0, then

o) o (o) i) ()
(ii) Fort < 0, (ETD) reversed.

Proof. Let t > 0. Applying Theorem B3 to the convex function Y(s) = cr

and replace o; with o} and ¢;; with (g;;)" for all i € L and j € {1,...,m}, we
obtain (E10).
If t <0, then (M) reversed since Y(¢) = ¢+ is concave. O

5. CONCLUSION

In this article, we have generalized the result of Niezgoda [21], which gives
the extension of Jensen—Mercer inequality. We have obtained a generalised
Niezgoda inequality by using the Jensen—Steffensen inequality and its gen-
eralization as defined in [18]. At last, we have presented refinements and
applications of our main results.
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