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Generalized Fractional Integral Inequalities for
(h,m, s)-Convex Modified Functions of Second Type

Juan E. Népoles! and Bahtiyar Bayraktar®*

ABSTRACT. New variants of the Hermite - Hadamard inequality
within the framework of generalized fractional integrals for (h, m, s)-
convex modified second type functions have been obtained in this
article. To achieve these results, we used the Holder inequality and
another form of it - power means. Some of the known results de-
scribed in the literature can be considered as particular cases of the
results obtained in our study.

1. INTRODUCTION

It is known that the theory of convexity occupies an essential place
in optimization problems. In the last few decades, scientists in many
countries have begun to pay more attention to evaluating and general-
izing the results of estimating the mean value of the obtained function.
Special classes of convex time functions are well known.

A function ¢ : [01, 02] — R is said to be convex if ¢(ou+ (1 —o)v) <
o¢p(u)+ (1 —0o)¢(v) holds for all u,v € o1, 02] and o € [0,1]. A function
¢ is said to be concave if —¢ is convex.

Convex functions have been generalized widely, highlighting the
r—convex, m—convex, s—convex, (s, m)—convex, h—convex, (h, m)-convex
functions and many others. Readers interested in exploring many of
these generalizations and extensions of the basic concept of convexity
may refer to [23].

For convex functions, the Hermite-Hadamard inequality is known,
undoubtedly one of the most famous in mathematics, for its multiple
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connections and applications:

In this work, we will use the following notion of convexity:

Definition 1.1 ([B, 4]). Let h : [0,1] — (0,1] and ¢ : [ = [0, 4+00) —
[0, 4+00). If inequality

(1.2)  ¢(a&+ (1 —0)ms) < h*(0)(§) + (1 = h(0)) me(s)
is fulfilled for all {,¢ € I and o € [0, 1], where m € [0, 1], s € (0,1]. Then

is said function ¢ is a (m, h, s)-convex modified of the second type on
1.

Remark 1.2. From Definition El!, we can define N;jfn[gl, 02], where
01,02 € [0, +00), as the set of (h, m, s)-convex modified functions of the
second type, for ¢(p1) > 0. In [B, 4] you can see the convex classes
obtained from the special cases of this triple.

We use the functions I' and I'y ([L1, 27]) in study:
O = [ ol 0O >0
0
[eS) ok
I'x(0) :/ o te Tk do, k> 0.
0

Note that Tx(¢) = (k)% ~'T (g)  TR(CHR) = 2Tk(C) and mTx(C) =
I'(Q).

As an extension of classical analysis, Fractional Calculus has become
the focus of attention of many researchers both with its theory and ap-
plications in applied sciences. For example, in mathematical biology,
physics, and mathematical modelling of various processes and phenom-
ena ([19, 29]).

To make the subject easy to understand, we provide several definitions
of fractional integrals (with 0 < p; < 0 < g2 < 0), some of which are
new.

The first of these are the classical Riemann-Liouville(RL) fractional
integrals.

Definition 1.3. Let ¢ € Li[p1,02] and let a € C with R(a) > 0.
The RL fractional integrals of order « are defined by (right and left
respectively):

1

“ gl+¢(u) = m

/U (u— U)aflgﬁ(a) do, u> 01

01
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1 -1
Uy~ (u) = F(a)/u (0 —u)* "¢(o)do, u <o
Definition 1.4 ([18]). Let ¢ € Li[p1, 02] and let a € C with R(«) > 0.
The RL k—fractional integrals of order o for k > 0 are given by the
expressions (right and left respectively):

Lo = gy [ o) o, us
02 o
I ol) = e | - wE o) dn <o

In 2011 Katugampola defined a new integral operator, as a general-
ization of the n-integral, as follows.

Definition 1.5. Let ¢ : [01,02] — R be an integrable function. The
general Katugampola fractional integrals of a function ¢ of order a € R
and s # —1 is expressed by:

1 1—a U
513 (u) = (B_I“_@z))/g (WPt — Pt 158 ¢ (o) do.
Definition 1.6 ([16]). Let ¢ : [01, 02] — R and ¢ € L1[o1, 02], fractional
integrals of a function ¢ with respect to function 1 on [g1, g2] of order
a € C, R(a) > 0 are expressed by (right and left sided respectively):

glo+d(u) = F(la) /:(lb(u) — 1/}(0))a_11/1'(0)¢>(0) do, u> o1,
1 02

oy t(u) = —— [ (P(0) — ()" W (0)p(0) do, u < o2.

I'(a)
Here g(o) positive and be an increasing function on [o1, 02], and ¢’ €
C' (o1, 02).

Below is a k—fractional analog of Definition @:

Definition 1.7 ([2, 28]). Let ¢ : [01,02] — R and ¢ € Li[o1, 02]. k-
fractional integrals of a function ¢ with respect to function ) on [o1, 02]
of order v € C, R(ar) > 0 and k > 0 are expressed by(the right and left
sided respectively):

g b(u) = kpkl(a) /g ?(w(u) — (o) Y (0)p(o) do,  u> o,
Iy, (u) = M,klm) " (0(0) — () F P (0) (o) do, u < g2

Here (o) positive and be an increasing function on [g1, 2], and ¢’ €
01(017 QZ)
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Next, we will define the operators that we will use in our work.

Definition 1.8. Let ¢ : [0, +00) — [0,+00) and ¢ € L;[0,+00). Gen-
eralized fractional RL integral of order o with o € R, and 8 # —1 are
given as follows:

a ! u ¢(o)do
(1.3) ﬁﬁwwm_kumm/[(% 'k F(0,8)

)
with F(o,8) > 0, F(0,0) = 1 and F(u,0) = [ ‘wﬁ). Obviously
F(u,0) = —=F(o,u)

In the following remark, we will establish some relationships between
our generalized operator and some of the operators presented in the
previous definitions.

Remark 1.9. Let us consider the kernel F(o, ) = 0~ #, then we will
have successively:
uBtl — gB8+L

p+1 7

B+l _ gB+171%
o u o

Flu, o) % = |2——7 |
o) E = [T

what is the (k,3)-RL fractional integral in Definition 2.1 of [B1], and
from here we have the integral of the Definition with k£ = 1.
Analogously, if 5 =0 and k = 1, we obtain the classic RL operator.

F(u,o) =

In many studies (for example, see [1, B, [, 10, 21, 22, B0-32] and
references therein), the upper bound estimate of the Hermite-Hadamard
type inequality and other integral inequalities has been obtained using
the fractional integration operators tool. For example, In [1], Abdel-
jawad proposes and discusses some rules (integration by parts, Taylor
power series expansions) of classical analysis in the version of conformal
fractional calculus. In [2], Akkurt et al. obtained Hadamard-type in-
equalities for fractional integrals using synchronous and monotone func-
tions. Bayraktar and Ozdemir [5] showed that the upper limit of the
absolute error of the Hadamard-type inequality decreases by about n?
times, where n is the number of intermediate points of the integration in-
terval at which the convex second derivative of the function takes value.
In [6] Budak et al. established some trapezoidal and midpoint-type
inequalities for generalized fractional integrals using functions whose
second derivatives are bounded. Butt et al., in [[7]presented new and
general integral inequalities for the convex functions using Atangana-
Baleanu integral operators. In [§] Butt et al. presented an article in
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which they obtained new Hermite-Hadamard inequalities of the Jensen-
Mercer type for a harmonically convex function through fractional in-
tegrals. In [L0], Chen and Katugampola obtained the Hadamard—Fejér
type and Hadamard type inequalities for fractional integrals, which gen-
eralize the Hadamard and the Riemann-Liouville fractional integrals
into a single form. In [22], Napoles et al. obtained variants of Hadamard-
type inequalities for convex and quasi-convex functions using weighted
integral operators. Du et al., in [13] use generalized fractional integrals;
some Bullen-type inequalities are obtained where the first derivative
of functions is Lipschitzian, bounded or generalized (s,m)-preinvex and
also give the applications. Du et al., in [14] are defined and developed
the conceptions of the interval-valued fractional double integrals having
exponential kernels. Zhou et al, in [34] established specific fractional
integral inclusions having exponential kernels, which are related to the
Hermite-Hadamard, Hermite-Hadamard—Fejér, and Pachpatte type in-
equalities and give the graphical representations for the results.

In this work, we obtain new variants of the classical Hermite-Hadamard
Inequality for functions (h,m, s)-convex modified of the second type via
the generalized fractional integral operators of Definition [1.§.

2. MAIN RESULTS

As a first result, we get the generalized fractional integral inequality
of Hermite-Hadamard type for functions (h,m, s)-convex of the second

type.

Theorem 2.1. Let ¢ : [0,00) — [0,+00) and ¢ € N}f’fn[gl,,gg] with
0< o1 <02, me(0,1]. If ¢' € Li[o1, 02] and & € [01, 02], then we will
have

(2.1)
1 g
i (Ql ; Q2> /0 [F(o, o>]1d% F(a,B)

o (Rt (s ()
[m<;>““”+<l‘h(i>Y¢@”JAIWwéﬁgygww>
el (3)e () + (1-0(3)) # ()]

L (1= h(o))*do
XA[mmmrﬁFwﬁf

IN
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Proof. As ¢ € Ni’fn[gl, 02| for u,v € [p1, 02] with o = % and m = 1 in
(@), we get

i’ (u;v> < b (;) d(u) + (1 —h <;>>S¢>(v)

By setting u = (1 — o)1 + 02 and v = 0p1 + (1 — 0)p2 we obtain
from the above equation

¢ <91;Q2> <h? <;> ¢((1 = 0)o1 + 002)

Y6 Er—

By integrating this inequality, over [0, 1] after multiplying by

1

[F(0,0)]' % F(0,8)’
we have

(2.2) o <Ql —; Q2> /1 [F(o, 0)]1dak F(o,B)
( )/ ¢((1—°' 91“’92)(10
[F(o,0 F(o,5)
() [ T

1 wda and I, = fOl Wﬁ—w
0 [F(0,0)]' % F(0,8) [F(0,0)]' " % F(0,8)

Denoting I; = do, we

obtain

7 1 /92 o(2)dz
1= 1—<
02 — 01 Z—p k z—p
“ [F<92—911’0>} F (92—911”8>
1 o

= 09 — z 1+¢(92)

F
o o(2)dz
2 “’1/@ F(22.0)] " F(g20)

1
= 7Jk .
So, we have

(2.3)

<Ql+92>/ [F(a,0)]' % F(o, )
15 b (0t () ]
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In other words, the first part of the inequality sought.
To obtain the right hand side of (@) we use the (h, m, s)-convexity

of ¢:
¢((1 —0)o1+002) = ¢p(oo2 + (1 —0)01)
< W(0)6(e2) +m(1 = h(o))'¢ (L),
and

Bloor+ (1= a)os) < B*(0)o(er) + m(1 = h(o))’ (2)

Multiplying the first of the above inequalities by h® (%) and the sec-

1

ond by (1 —h (5))5 we obtain, after multiplying by and

[F(.0)]'~ ¥ F(o,8)
integrating between 0 and 1:

B <;> /01 $(a0s + (1 — 0)o1)do
1 (o
<1 @ [925(@2) /0 o 0)?1_(2)F(U,6)d0

L (1= o)
#mo () /o F(o, 0] % F(o, >d"]

<1 _h <;>> /01 s(oor + (1 — 0)02)do
s 1 o
= <1 o @)) [¢><@1>/0 F(o, o>?1—(i’)F<a, 5"

1 1—h s
+mao <@> / ( 1_g0)) do| .
m/ Jo [F(o,0)] " * F(o,p)
Changing variables in the integrals on the left-hand side of the above

inequalities leads us easily to the second part of (R.1), which is the
required inequality. This completes the proof. O

and

Remark 2.2. Next we will present several results reported in the liter-
ature, which can be obtained from the Theorem previously proven.

1) With F =1, a=k=1, m=s =1 and h(z) = z, that is,
working with the Riemann Integral and with convex functions,
we obtain the Classical Hermite-Hadamard Inequality ([L.1).

2) For the case of RL Integrals, F = 1, k = 1 and in the frame-
work of convex functions, Theorem 2 of [32] is derived from the
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previous result. For the case of s-convex functions, with F' =1,
Theorem 2.1 of [33] is easily obtained.

3) For k-fractional integrals, F' = 1, and convex functions, Theo-
rem 2.1 of [15] follows easily from the above.

4) For the case of Katugampola fractional integrals, k& = 1, and
convex functions, we have the Theorem 2.1 of [10]. With the
Katugampola Fractional Integral, and working with s-convex
functions, that is, m =_1 and h(z) = z, it is not difficult to
derive Theorem 2.1 of [17]. Also see Theorem 2.1 of [4].

5) With a« = k = 1, the above result generalizes Theorem 2.1 of
[20].

6) Under the condition o = k = 1 and F(t, ) = t°, the operator
(IL.3) becomes the non-conformable integral operator used in
[24]. In this way, our result completes the results obtained in
said paper, so we have:

Corollary 2.3. Let ¢ : [0,00) — R and ¢ € Lio1, 02] with 0 < 01 < 02,
If ¢ be a conver function, then we have

o("3%) = mar U, San L e

< 9lar) + ¢(e2)

- 2
This inequality was obtained by Ozdemir et al. in [26] (see Theorem
2.6).

The following result is basic in the subsequence.
Lemma 2.4. Let ¢ : [0,00) — [0,400) be a differentiable and ¢ €
N;:Eﬂ[gl,gg] with 0 < o1 < 02 and m € (0,1]. If ¢' € Li[o1,09] and
% ¢ [o1, 02], then we will have
1 a
[F(1,0)]* (¢(01) + &(02))
02 — 01

I'(1 a o
P (52 )+ )]

1
= /0 [F(r,0)]% [¢/(ror + (1 —)02) — ¢'((1 — r)o1 +702)] dr-
Proof. Denoting

n=[ w0

(2.4)

e

¢'((1 —r)or +roz)ldr

and

=R

1
I = /0 Fr, 001 ¢'(roy + (1 — r)e2)dr,
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we have
_ 1 % I (1 +Oé)
=~ L0 o) + AT oo
1 a I'i(l+«
h= 2 F,0)F 6(e) - (2D TE, (o),

The previous results were obtained after integrating parts and making
a simple change of variables.

It only remains to add both equalities and reorder. This completes
the proof of the Lemma. O

Remark 2.5. Consider F' = 1, then the right hand side of (@) becomes

1
/0 5 [¢/(ro1 + (1= r)o2) — ¢/(1 = r)or +roa)] dr

and, by a simple change of variables, we obtain
1
/ re [¢'(ro1 + (1 —r)o2) — ¢'((1 —r)o1 +r02)] dr
0

1
= / [(1 — r)% — r%} d)’(rgl + (1 —17r)o2)dr.
0

Taking into account the above, if &« = k = 1, the Lemma 2.1 of [12] is
derived. In the same way, with k = 1 of the previous result, the Lemma
2 of [32] is obtained (see also Lemma 2.1 of [30]).

Remark 2.6. Putting F' = 1, we obtain the following result for k—RL
Integrals.

Let ¢ : [0,00) — R be a differentiable and ¢ € N,‘:’fn[gl,gg] with
0< 01 <o02,me (0,1]. If ¢ € L1[01,02] and & € [Q],QQ], then we will
have

4(01) + 6(es) _ Tu(l+a)

2 2(02 — 01)

J— 1 o
- 92291/0 i [¢'(ror+ (1 —7)o2) — ¢'(1 —7)o1 +r02)] dr.

Theorem 2.7. Let ¢ : [0,00) — [0,+00) be a differentiable and ¢ €
N,‘jfn[gl,gg] with 0 < 01 < 02, m € (0,1]. If ¢' € Li[o1,02] and
% ¢ [o1, 02], then for ¢ > 1 we have the following inequality

(2.5)

[T 002) + Ty o(0n)]

¢(o1) + ¢(o2)  Ti(l+a)
2 2(02 — 01)

F0. 0 Ty ten) + T 0l
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sgf;”<llm@ﬁn?d0;

X<D¢@9P%fmwmr+m

d(%)fﬂ%1_mmfm}
o fo-sre)

Proof. After multiplying (@) by 252 use Hélder’s inequality and con-
sider the (h,m, s)-convexity of ¢’ on the member right, the desired result
is obtained. O

+ {‘Qy(é)l)r]/ol R (r)dr +m

Remark 2.8. Readers will have no difficulty in verifying that the previ-
ous result follows, under different notions of convexity and appropriate
choice of F', @ and k: Theorem 2.3 of [[12]; Theorems 2.6 and 2.7, Corol-
laries 2.7 and 2.8 of [30]; Theorems 3.2, 3.6 and Corollary 3.3 of [33].

Theorem 2.9. Let ¢ : [0,00) — [0,4+00) be a differentiable and ¢ €
N,‘jfn[gl,gg] with 0 < o1 < g2, m € (0,1]. If ¢' € Lifo1, 00] and & €
[01, 02], then for ¢ > 1 and % + % = 1 we have the following inequality

(2.6)

blo) + 62) (1 +a)
2 2(02 — 01)

<o ' [F(r o) ozr)l_é

1
X ([/ [F(r, 0)]% (}gb’(QQ)’qhs(r) +m
0

d(ﬁ)fu—hw»ﬂdqq>.

Proof. The test follows a similar path to the previous one, although
power mean inequality is used instead of Holder’s inequality. O

Fa.0f [7h o tten) + T, 00

1

o (2) @ =ney)ar|”

+ [ /0 Fr o)t (I¢'(en)]" 1*(r) + m

Remark 2.10. Using different notions of convexity and with a suitable
choice of F', o and k, they are derived from the previous result: Theorem
2.10 and Corollaries 2.11, 2.12 of [30]; Theorem 3.4 and Corollary 3.5 of
[B3].
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3. CONCLUSIONS

In this study, we gave a formulation of the generalized fractional in-
tegral operator. Several operators described in the literature are a par-
ticular case of this definition.

The strength of Definition lies in the fact that if we represent
the kernel in the form F(c,s) = o!~*, then we obtain a variant of the
fractional integral (k,s)—RL from [31]

-2 Ly a
B ra _(2=-p) 2-5 2.8\ k1 1.3
This opens up vast possibilities for obtaining new integral inequalities.
For example, in [9], the following function was considered:

1
T(f.9) = —— / " (s

- (pz i p1 /: f(w)dx) (pz i p1 /,:2 g(w)dx)

The study of this function can be generalized using our integral op-
erator.

The generality of our results can also be checked if we apply our
integral operator to the results of [25], which can be easily generalized,
as readers can check if we consider F(o, ) = (¢ — p1)?~! and F(o, ) =
(p2 — 0)P71, to left and right-sided integral.
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