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Graphical Cyclic K-Quasi-Contractive Mappings and the
Existence of their Best Proximity Points

Kamal Fallahi

Abstract. The underlying aim of this paper is first to state the
Cyclic version of K-quasi-contractive mappings introduced by Fal-
lahi and Aghanians [On quasi-contractions in metric spaces with a
graph, Hacet. J. Math. Stat. 45 (4) (2016), 1033-1047]. Secondly,
it seeks to show to show the existence of fixed point and best prox-
imity points for such contractive mappings in a metric space with
a graph, which can entail a large number of former fixed point and
best proximity point results. One fundamental issue that can be
distinguished between this work and previous studies is that it can
also involve all of results stated by taking comparable and η-close
elements.

1. Introduction

Since 1922, metric fixed point (fp) theory and contractions have evolved
into essential tools in nonlinear analysis. Numerous researchers have ap-
plied these concepts to address a wide range of problems in nonlinear
functions and engineering, as evidenced by the works of [3, 4, 13, 16] and
the references therein. For instance, in 2004, Ran and Reurings [15] con-
sidered a partial order set (POS) on a metric space (MS) discussing the
existence and uniqueness of fps for contractive mappings, particularly
for comparable elements.

Theorem 1.1 ([15]). Consider a POS (Y,≲), a complete MS (Y,D)
and a nondecreasing mapping G : Y → Y so that D(Ga,Gb) ≤ θD(a, b)
for any a, b ∈ Y with a ≲ b, where θ ∈ [0, 1). Also, assume

• either G is continuous;
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• or if a nondecreasing sequence an converges to a a ∈ Y, then
an ≲ a.

If there is a0 ∈ Y satisfying a0 ≲ Ga0, then G has a fp. Furthermore, if
each two fp(s) are comparable, then the fp is unique.

Note that we say G in Theorem 1.1 is nondecreasing when a ≲ b
implies Ga ≲ Gb for all a, b ∈ Y. Also, we say a and b are comparable
whenever a ≲ b or b ≲ a. In 2005, Nieto and Rodrıguez-López [12]
used this definition and fp result to solve some differential equations.
Moreover, in 2011, Abkar and Gabeleh [1] integrated Theorems 1.1 with
the definition of cyclic mappings introduced by Kirk et al. [11] and
established an fp result.

Theorem 1.2 ([1]). Take a POS (Y,≲), two closed subsets I,J ̸= ∅
of a complete MS (Y,D) and a cyclic mapping G : I ∪ J → I ∪ J so
that D(Ga,G2b) ≤ θD(a,Gb) for each (a, b) ∈ I × I with b ≲ a, where
θ ∈ (0, 1) and G2 is nondecreasing on I. Also, presume that

• either G is continuous;
• or if a nondecreasing sequence an converges to a a ∈ Y, then
an ≲ a.

If there is a0 ∈ Y satisfying a0 ≲ G2a0, then I ∩ J ̸= ∅ and G has a fp
in I ∩ J . Further, if an+1 = G(an), then a2n → p.

It should be noted that a mapping G : I ∪J → I ∪J is named cyclic
if G(I) ⊆ J and G(J ) ⊆ I.

Although the theory of fp is an important tool for obtaining such
point for mapping G on I ⊆ Y, a non-self mapping G : I → J does not
essentially have an fp. Therefore, one may find a point a that is closest
to Ga. Hence, the best proximity point (bpp) results have became well-
known in applied mathematics. Let I,J ̸= ∅ be subsets of an MS,
dist(I,J ) = inf{D(a, b) : a ∈ I, b ∈ J } and G : I → J is a non-self
mapping. The bpp(s) of G is all a ∈ I with D(a,Ga) = dist(I,J ). In
the sequel, Eldred and Veeremani [6] and Suzuki et al. [19] presented
the existence of bpp(s) of cyclic contractive mappings on various metric
spaces regarding some properties such as the unconditionally Cauchy
(UC) property.

Definition 1.3 ([19]). Taking I,J ̸= ∅ two subsets of an MS (Y,D), we
say the pair (I,J ) has UC property whenever for two sequences {an} and
{a′n} in I and a sequence {bn} in J , lim

n→∞
D(an, bn) = lim

n→∞
D(a′n, bn) =

dist(I,J ) implies lim
n→∞

D(a, a′n) = 0.

Lemma 1.4 ([19]). Let I,J ̸= ∅ be subsets of a MS (Y,D) and the
pair (I,J ) has the UC property. Additionally, assume that {an} and
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{bn} are sequences in I and J , respectively, provided that either

lim
m→∞

sup
n≥m

D(am, bn) = dist(I,J ),

or
lim
n→∞

sup
m≥n

D(am, bn) = dist(I,J ).

Then {an} is a Cauchy sequence.

The theory of bpp for various mappings in different type of MS(s)
has been continued by many researchers (see also [8, 9, 14, 17, 18] and
the references therein). On the other hand, if I ∩J = ∅ in Theorem 1.2,
then Ga = a has no solution. Hence, we may think about an approximate
solution a ∈ I ∪ J so that the error dist(a,Ga) is minimum. As G is
cyclic on I ∪ J , we obtain D(a,Ga) ≥ dist(I,J ). Hence, Abkar and
Gabele introduced some useful tools for finding bpp of cyclic contractive
and cyclic φ-contractive mapping, respectively.

Theorem 1.5 ([1]). Let (Y,≲) be a PO set, I,J ̸= ∅ be two closed
subsets of a complete MS (Y,D) and G : I ∪ J → I ∪ J be a cyclic
mapping fulfilling

D(Ga,G2b) ≤ θD(a,Gb)− (1− θ)dist(I,J )

for each (a, b) ∈ I × I with b ≲ a, where θ ∈ (0, 1) and G2 is nonde-
creasing on I. Also, presume that the following condition is held:

• If a nondecreasing sequence an converges to a a in Y, then
an ≲ a.

If there is a0 ∈ Y satisfying a0 ≲ G2a0, an+1 = Gan for n ≥ 0 and {a2n}
possesses a convergent subsequence in I, then G has a bpp in I.

Theorem 1.6 ([2]). Let (Y,≲) be a PO set, I,J ̸= ∅ be two closed
subsets of a complete MS (Y,D) and G : I ∪ J → I ∪ J be a cyclic
mapping fulfilling

D(Ga,G2b) ≤ D(a,Gb)− φ (D(a,Gb)) + φ (dist(I,J ))

for each (a, b) ∈ I × I with b ≲ a, where φ : R≥0 → R≥0 is a strictly
increasing function and G2 is nondecreasing on I. Also, presume that
the following condition is held:

• If a nondecreasing sequence an converges to a a in Y, then
an ≲ a.

If there is a0 ∈ Y satisfying a0 ≲ G2a0, an+1 = Gan for n ≥ 0 and {a2n}
possesses a convergent subsequence in I, then G has a bpp in I.
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To follow POS and fp subjects, in 2008, Jachymski [10] stated a graph-
ical MS and introduced several concepts along with fp theorems. Af-
terward, many researchers working on both fP theory and bpp theo-
rems extended Jachymski’s idea in different directions regarding differ-
ent spaces and various contraction (also, see [7]). Note that the results
from these references can significantly expand the results regarding a
PO relationship. Let K be a graph. A link is an edge of K in which
its ends is different. Also, a loop is an edge of K, where its ends is
identical. Parallel edges of K are two or more links of K with same
pairs of ends. Suppose (Y,D) is a MS and K is a directed graph, where
V(K) is the vertex set coinciding with Y and E(K) is the edge set con-
taining all loops and K has no parallel edges. Then, (Y,D) is named
an MS with the graph K (or GMS). Additionally, suppose K−1 is a
directed graph obtained from K by reversing the directions of its edges
of K and K̃ is the undirected graph gotten from K by removing the di-
rections of its edges K. It is clear that V(K−1) = V(K̃) = V(K) = Y,
E(K−1) = {(a, b) ∈ Y × Y : (b, a) ∈ E(K)} and E(K̃) = E(K) ∪ E(K−1).

To show main results, some symbols and definitions, which is intro-
duced in the following, are also required in next section.

• Assume that I,J ̸= ∅ are two subset of a GMS (Y,D), and
define

dist(I,J ) = inf {D(a, b) : a ∈ I, b ∈ J } .

• Assume that G : Y → Y is a mapping. We mean CG by the set
of all points a ∈ Y provided that (Gma,Gna) is an edge of K̃ for
each m,n ∈ N ∪ {0}; that is,

CG =
{
a ∈ Y : (Gma,Gna) ∈ E(K̃), m, n = 0, 1, . . .

}
.

Notice that CG may become an empty set. For example, take R
along with the usual Euclidean metric and a graph G given by
V(K) = R and E(K) = {(a, a) : a ∈ R}. If G : R → R is defined
by Ga = a+ 1 for any a ∈ R, clearly CG = ∅.

Definition 1.7 ([10]). Presume that (Y,D) is a GMS. A mapping G :
Y → Y is known as an orbitally K-continuous mapping on Y whenever
Gbna → b implies G(Gbna) → Gb for all a, b ∈ Y and sequences {bn} of
natural numbers so that (Gbna,Gbn+1a) ∈ E(K) for every n ∈ N.

Definition 1.8 ([10]). Taking (Y,D) is a GMS, we say K is a C-graph
on Y if a ∈ Y and {an} is a sequence in Y so that an → a and (an+1, an) ∈
E(K) for each n ∈ N, then there is a subsequence {a2ni} of {an} such
that (a2ni , a) ∈ E(K) for every i ∈ N.
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2. Best Proximity Points

In the sequel, note that (I,J ) will be a pair of nonempty closed
subsets of Y. Now, we are ready to give the definition of K-quasi-
contractions in metric spaces with a graph which is motivated by [5,
Definition 1] and [10, Definition 2.1].

Definition 2.1. Assume (Y,D) is aGMS. A mapping G : I∪J → I∪J
is known as cyclic K-quasi-contractions on I if G is cyclic and
(2.1) D(Ga,G2b) ≤ ξN ∗

GD(a,Gb)
for all (a, b) ∈ I × I with (a, b) ∈ E(K) where

N ∗
GD(a,Gb)
= max

{
D(a,Gb),D(a,Ga)−D(I,J ),D(Gb,G2b)−D(I,J )

}
.

Now, we are ready to state and prove the first fundamental theorem
of this section.

Theorem 2.2. Assume (Y,D) is a GMS, I is complete and G : I∪J →
I ∪ J is a cyclic K-quasi-contractions, where G2 preserves the edges of
K on I, CG |I ̸= ∅ and an+1 = Gan. If K is C-graph on I and {a2n} has
a convergent subsequence in I, then G has a bpp a∗ ∈ I.

Proof. As CG |I ̸= ∅, assume a0 ∈ CG with a0 ∈ I. We have (a0,G2a0) ∈
E(K) and since G2 preserves the edges of K on I, (a2n, a2n+2) ∈ E(K)
for n = 0, 1, . . .. Since (a2n, a2n+2) ∈ E(K) for every n ∈ N ∪ {0} and by
(2.1) on I, we get

D(a2n, a2n+1) = D(Ga2n,G2a2n−2)(2.2)
≤ ξN ∗

GD(a2n, a2n−1)

= ξmax
{
D(a2n, a2n−1),D(a2n, a2n+1)−D(I,J ),

D(a2n−1, a2n)−D(I,J )
}

≤ ξD(a2n, a2n−1).

So {D(a2n−2, a2n−1} is a decreasing sequence. Consider D(a2n−2, a2n−1) →
u. Since for all n = 1, 2, . . . ,D(I,J ) ≤ D(a2n−2, a2n−1), we have
D(a2n−2, a2n−1) → D(I,J ).

Now, suppose {a2nj} is a subsequence of {a2n} converging to a∗ ∈ A.
Then

D(I,J ) ≤ D(a∗, a2nj−1) ≤ D(a∗, a2nj ) +D(a2nj , a2nj−1).

Now, taking limit, we get lim
j→∞

D(a∗, a2nj−1) = D(I,J ). As G2 preserves
the edges of K and K is a C-graph, (a2nj , a

∗) ∈ E(K) for all j ∈ N. Using
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(2.1), we obtain
D(a2nj+1,Ga∗) = D(Ga∗,G2a2nj−1)

≤ ξN ∗
G (a

∗, a2nj )

≤ ξmax
{
D(a∗, a2nj ),D(a∗,Ga∗)−D(I,J ),

D(a2nj , a2nj+1)−D(I,J )
}
.

Now, we face three cases:
i) Getting max = D(a∗, a2nj ), we have D(a2nj+1,Ga∗) ≤ ξD(a∗, a2nj ).
ii) Getting max = D(a∗,Ga∗)−D(I,J ), we have

D(a2nj+1,Ga∗) ≤ ξ
(
D(a∗, a2nk

) +D(a2nj
, a2nj+1)−D(I,J ) +D(a2nj+1,Ga∗)

)
.

Therefore,

D(a2nj+1,Ga∗) ≤
ξ

1− ξ

(
D(a∗, a2nj ) +D(a2nj , a2nj+1)−D(I,J )

)
.

iii) Getting max = D(a2nj , a2nj+1)−D(I,J ), we have

D(a2nj+1,Ga∗) ≤ ξ
(
D(a2nj , a2nj+1)−D(I,J )

)
.

As one case happens, {a2nj+1} possesses a subsequence converging to
Ga∗, which concludes

D(a∗,Ga∗) = lim
j→∞

D(a2nj , a2nj+1)

= D(I,J ). □

Theorem 2.3. Assume (Y,D) is a GMS, I is complete and (J , I)
satisfies the property UC. In addition, assume G : I ∪ J → I ∪ J is a
cyclic K-quasi-contractions on I (and J ) in which G and G2 preserve the
edges of K on I. If G is orbitally K-continuous on I or K is a C-graph
on I, G has a bpp a∗ ∈ I whenever there is a0 ∈ I with a0 ∈ CG.

Proof. Assume a0 ∈ CG with a0 ∈ A. Since G and G2 preserve the edges
of K on I and (a0,G2a0) ∈ E(K) on A, we have (a2n, a2n+2) ∈ E(K) and
(a2n+1, a2n+3) ∈ E(K) for n = 0, 1, . . . .

As similar proof is done in Theorem 2.2, we have D(a2n, a2n+1) →
D(I,J ) and D(a2n+2, a2n+1) → D(I,J ). From the property UC for
(I,J ), we obtain D(a2n, a2n+2) → 0. Also, as (J , I) has the property
UC we conclude that D(a2n+1, a2n+3) → 0. We show that for all η > 0,
there is a n ∈ N so that
(2.3) D∗(a2m, a2n+1) < η,

for every m > n ≥ N , where D∗(a, b) = D(a, b) − D(I,J ) for all
(a, b) ∈ I × J . To contrary, assume there is η0 > 0 such that for
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each j ≥ 1, there is mj > nj ≥ j satisfying D∗(a2mj , a2nj+1) ≥ η0 and
D∗(a2mj−2, a2nj+1) < η0. Then

η0 ≤ D∗(a2mj , a2nj+1) ≤ D(a2mj−2, a2mj ) +D∗(a2mj−2, a2nj+1)

≤ D(a2mj−2, a2mj ) + η0,

so lim
k→∞

D∗(a2mj , a2nj+1) = η0. Since G and G2 preserve the edges of K
on I,

lim
j→∞

D(a2mj+2, a2nj+3)

(2.4)

= lim
j→∞

D
(
G(a2mj+1),G2(a2nj+1)

)
≤ ξ lim

j→∞
N ∗

GD(a2mj+1, a2nj+2)

≤ ξ lim
j→∞

max

{
D(a2mj+1, a2nj+2),D(a2mj+1, a2mj+2)−D(I,J )︸ ︷︷ ︸

=0

,

D(a2nj+2, a2nj+3)−D(I,J )︸ ︷︷ ︸
=0

}
≤ ξ lim

j→∞
D(a2mj+1, a2nj+2)

≤ lim
j→∞

D(a2mj+1, a2nj+2)

= lim
j→∞

D
(
G(a2mj ),G2(a2nj )

)
≤ ξ lim

j→∞
·N ∗

GD(a2mj , a2nj+1)

= ξ lim
j→∞

max

{
D(a2mj , a2nj+1),D(a2mj , a2mj+1)−D(I,J )︸ ︷︷ ︸

=0

,

D(a2nj+1, a2nj+2)−D(I,J )︸ ︷︷ ︸
=0

}
= ξ lim

j→∞
D(a2mj , a2nj+1)

≤ lim
j→∞

D(a2mj , a2nj+1).
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We get lim
j→∞

D(a2mj+2, a2nj+3) ≤ lim
j→∞

D(a2mj , a2nj+1), and so by (2.4),
we obtain
lim
j→∞

D∗(a2mj , a2nj+1)︸ ︷︷ ︸
=η0

≤ lim
j→∞

D(a2mj , a2mj+2)︸ ︷︷ ︸
=0

+ lim
j→∞

D∗(a2mj+2, a2nj+3)

+ lim
j→∞

D(a2nj+1, a2nj+3)︸ ︷︷ ︸
=0

≤ lim
j→∞

D(a2mj , a2mj+2)︸ ︷︷ ︸
=0

+ lim
j→∞

D∗(a2mj , a2nj+1)︸ ︷︷ ︸
η0

+ lim
j→∞

D(a2nj+1, a2nj+3)︸ ︷︷ ︸
=0

.

This implies lim
j→∞

D∗(a2mj+2, a2nj+3) = η0 and lim
j→∞

D(a2mj+2, a2nj+3) =

η0 +D(I,J ). Now,
η0 +D(I,J ) = lim

j→∞
D(a2mj+2, a2nj+3)

= lim
j→∞

D
(
G(a2mj+1),G2(a2nj+1)

)
≤ ξ lim

j→∞
N ∗

GD(a2mj+1, a2nj+2)

≤ ξ lim
j→∞

max

{
D(a2mj+1, a2nj+2),D(a2mj+1, a2mj+2)−D(I,J )︸ ︷︷ ︸

=0

,

D(a2nj+2, a2nj+3)−D(I,J )︸ ︷︷ ︸
=0

}
ξ ≤ ξ lim

j→∞
D(a2mj+1, a2nj+2)

ξ ≤ lim
j→∞

D(a2mj+1, a2nj+2)

= ξ lim
j→∞

D
(
G(a2mj ),G2(a2nj )

)
≤ ξ2 lim

j→∞
N ∗

GD(a2mj , a2nj+1)

= ξ2

(
lim
j→∞

max

{
D(a2mj , a2nj+1),D(a2mj , a2mj+1)−D(I,J )︸ ︷︷ ︸

=0

,

D(a2nj+1, a2nj+2)−D(I,J )︸ ︷︷ ︸
=0

})
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= ξ2 lim
j→∞

D(a2mj , a2nj+1)

≤ ξ2 lim
j→∞

D(a2mj , a2nj+1)

= ξ2 (η0 +D(I,J )) ,

concluding η0 + D(I,J ) ≤ ξ2 (η0 +D(I,J )), which is impossible as
ξ ∈ [0, 1), so (2.3) holds and

lim
m→∞

sup
n≥m

D∗(a2m, a2n+1) = 0.

Since (I,J ) has the property UC and by Lemma 1.4, {a2n} is a Cauchy
sequence in I. Because I is complete, {a2n} converges to some point
a∗ ∈ I.

To continue, note first that from a ∈ CG , we get (a2n, a2n+1) ∈ E(K)
for every n ∈ N. When G is orbitally K-continuous on I, a2n → a∗

implies G(a2n) → Ga∗. Thus,
D(a∗,Ga∗) = lim

n→∞
D(a2n, a2n+1)

= D(I,J ),

i.e. a∗ is a bpp. Second, let K be a C-graph. Since a2n → a∗, there is a
strictly increasing sequence {nj} of positive integers such that (a2nj , a

∗) ∈
E(K) for all k ∈ N. As G satisfies (2.1) for the graph K, we get

lim
j→∞

D(a2nj+1,Ga∗) ≤ lim
j→∞

D(Ga∗,G2a2nj−1)

≤ ξ lim
j→∞

N ∗
G (a

∗, a2nj )

= ξ lim
j→∞

max
{
D(a∗, a2nj ),D(a∗,Ga∗)−D(I,J ),

D(a2nj , a2nj+1)−D(I,J )
}
.

Again, we face three cases.
i) When maximum equals to D(a∗, a2nj ), we have

lim
j→∞

D(a2nj+1,Ga∗) ≤ ξ lim
j→∞

D(a∗, a2nj ).

ii) When maximum equals to D(a∗,Ga∗)−D(I,J ), have
lim
j→∞

D(a2nj+1,Ga∗) ≤ ξ lim
j→∞

D(a∗, a2nj ) +D(a2nj , a2nj+1)

−D(I,J ) +D
(
a2nj+1,Ga∗

)
.

Therefore,

lim
j→∞

D(a2nj+1,Ga∗) ≤
ξ

1− ξ

(
lim
j→∞

D(a∗, a2nj
) +D(a2nj

, a2nj+1)−D(I,J )

)
.
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iii) When maximum equals to the third term, we have

lim
j→∞

D(a2nj+1,Ga∗) ≤ ξ

(
lim
j→∞

D(a2nj , a2nj+1)−D(I,J )

)
.

Evidently, at least one of three cases mentioned above will happen for
infinitely many indices j. Thus, the sequence {a2nj+1} has a subsequence
converging to Ga∗. This implies that

D(a∗,Ga∗) = lim
n→∞

D(a2nj , a2nj+1)

= D(I,J ). □

Example 2.4. Take Y = R2 and usual metric

D ((a1, b1), (a2, b2)) =
√
(a1 − a2)2 + (b1 − b2)2

for (a1, b1), (a2, b2) ∈ R2 and set

I = {(a, 1) : a ∈ [0, 1]} , J = {(b, 0) : b ∈ [0, 1]} .

Also, define G : I ∪ J → I ∪ J by

G(a, 1) =


(0, 0), 0 ≤ a < 1(
2

3
, 0

)
, a = 1

for (a, 1) ∈ I and

G(b, 0) =


(0, 1), 0 ≤ b < 1(
2

3
, 1

)
, b = 1

for (b, 0) ∈ J . Note that for (1, 1), (12 , 1) ∈ R2, we have

N ∗
G

(
(1, 1),

(
1

2
, 1

))
=

1

2

and again, by (2.1), we have

D
(
G(1, 1),G

(
1

2
, 1

))
> ξ · N ∗

G

(
(1, 1),

(
1

2
, 1

))
.

Consequently, (2.1) is not true for the mapping G when we take a usual
metric (non a GMS) on I.

Now, take a graph K by V(K) = R2 and

E(K) =
{
((a1, a2), (a1, a2)) : (a1, a2) ∈ R2

}
∪
{
((0, 1), (1, 1)) ,

((1, 1), (0, 1)) , ((0, 0), (1, 0)) , ((1, 0), (0, 0))
}
.
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Then (R2,D) is a complete GMS endowed by K. Evidently, G is or-
bitally K-continuous. Also, it is clear for a, b ∈ [0, 1] that

D (G(a, 1),G(a, 1)) = 0 ≤ ξ · N ∗
G ((b, 0), (b, 0))

and
D (G(b, 0),G(b, 0)) = 0 ≤ ξ · N ∗

G ((b, 0), (b, 0)) .

Moreover, N ∗
G ((0, 1), (1, 1)) = 1, N ∗

G ((0, 0), (1, 0)) = 1 and clearly,
D (G(0, 1),G(1, 1)) ≤ ξ · N ∗

G ((0, 1), (1, 1))

and
D (G(0, 0),G(1, 0)) ≤ ξ · N ∗

G ((0, 0), (1, 0))

where ξ = 3
4 . Thus, (2.1) is valid for the mapping G on I( and J ).

Therefore, all hypotheses of Theorem 2.3 fulfill and G has a bpp, being
ϑ = (0, 1) and γ = (0, 0).

Taking only the condition orbitally K-continuity version of the map-
ping G from Theorem2.3, we can deduce some attractive corollaries.
First, First, take K = K0 in which K0 is a complete graph, i.e. K0 is a
graph with V(K0) = Y and E(K0) = Y × Y.
Corollary 2.5. Let (Y,D) be a GMS, I be complete and (I,J ) and
(J , I) satisfy the property UC. Assume G : I ∪ J → I ∪ J is a cyclic
quasi-contractions on I (and J ). Then whenever G is continuous on I,
G has a bpp a∗ ∈ I.

Second, presume (Y,⪯) is a POS and K1 is a graph on Y in which
V(K1) = Y and E(K1) = {(a, b) ∈ Y×Y : a ⪯ b}. If K = K1 in Theorem
2.3, then we gain the second corollary.
Corollary 2.6. Let (Y,D) be a Poset MS, I be complete and (I,J )
and (J , I) satisfy the property UC. Assume that G : I ∪ J → I ∪ J
is a cyclic K1-quasi-contractions on I (and J ) such that G and G2 are
nondecersing on I.

Then whenever G is orbitally K1-continuous on I or K1 is a C-graph
on I, G has a bpp a∗ ∈ I if there exists a0 ∈ I with a0 ∈ CG.

For our next consequence, presume (Y,⪯) is a POS and K2 is a graph
on Y in which V(K2) = Y and E(K2) = {(a, b) ∈ Y ×Y : a ⪯ b∨ b ⪯ a}.
If we set K = K2 in Theorem 2.3, then the following version of our bpp
theorem in metric spaces endowed with endowed with graph K2.
Corollary 2.7. Presume (Y,⪯) is POS, (Y,D) is an MS such that
I is complete and let (I,J ) and (J , I) satisfy the property UC. Let
G : I ∪J → I ∪J be a cyclic G2-(φ−ψ)-contractions and for a, b ∈ I,
if a and b are comparable we have G2a and G2b are comparable. Then
whenever G is orbitally K2-continuous on I or K2 is a C-graph on I, G
has a bpp a∗ ∈ I if there exists a0 ∈ I with a0 ∈ CG.
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Finally, consider a fixed value η > 0. Recall that a, b ∈ Y are said
to be η-close if D(a, b) ⪯ η. Taking Kη by V(Kη) = Y and E(Kη) =
{(a, b) ∈ Y ×Y : D(a, b) ⪯ η}, we get the latest corollary of this section
regarding K = Kη in Theorem 2.2.

Corollary 2.8. Let (Y,D) be a GMS endowed with graph Kη and I be
complete. Assume G : I ∪J → I∪J is a cyclic Kη-(φ−ψ)-contractions
and if a and b are η-close for a, b ∈ I, we have G2a and G2b are η-close.
Then whenever G is orbitally Kη-continuous on I or Kη is a C-graph on
I, G has a bpp a∗ ∈ I if there exists a0 ∈ I with a0 ∈ CG.

Using Theorem 2.3, we obtain the bpp result for former type of K-
contractions in a GMS.

Corollary 2.9. Let (Y,D) be a GMS, I be complete and (J , I) satisfy
the property UC. Assume G : I∪J → I∪J is a cyclic mapping provided
that

(i) G is orbitally K-continuous on I or K is a C-graph on I;
(ii) G and G2 preserve the edges of K on I and there is a0 ∈ I with

a0 ∈ CG.
If any of the following contractions holds for G, then G has a bpp in I.

(C1) (cyclic Banach-type K-contraction): there exists an α ∈
(0, 1) so that

D(Ga,G2b) ≤ αD(a,Gb)

for all a, b ∈ I (and J ) with (a, b) ∈ E(K).
(C2) (cyclic Kannan-type K-contraction): there is an α ∈

(
0, 12
)

provided that
D(Ga,G2b) ≤ α

(
D(a,Ga) +D(Gb,G2b)

)
− 2αD(I,J )

for all a, b ∈ I (and J ) with (a, b) ∈ E(K).
(C3) (cyclic Ćirić-Reich-Rus-type K-contraction) there are

α, β, γ ≥ 0 with α+ β + γ < 1 provided that
D(Ga,G2b) ≤ αD(a,Gb) + βD(a,Ga) + γD(Gb,G2b)− (β + γ)D(I,J )

for all a, b ∈ I (and J ) with (a, b) ∈ E(K).
(C4) (cyclic λ-generalized K-contraction in sense of Ćirić):

there are functions Q,R,G : Y × Y → [0,+∞) with
sup{Q(a, b) +R(a, b) + U(a, b) : a, b ∈ Y × Y} = λ < 1

such that
D(Ga,Gbb) ≤ Q(a, b)D(a,Gb) +R(a, b)D(a,Ga) + U(a, b)D(Gb,G2b)

− (Q(a, b) +R(a, b) + U(a, b))D(I,J ).
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In addition, if (u, v) ∈ E(K) for any two bpp(s) u, v ∈ I, then G has a
unique bpp in I.

Proof. If G satisfies (C1), then there is an α ∈ (0, 1) provided that
D(Ga,G2b) ≤ αD(a,Gb)

for all a, b ∈ I (and J ) with (a, b) ∈ E(K). Consequently,
D(Ga,G2b) ≤ αD(a,Gb)

≤ αmax
{
D(a,Gb),D(a,Ga)−D(I,J ),D(Gb,G2b)−D(I,J )

}
,

which induces that G satisfies (2.1) and so G is a cyclic K-quasi-contractions.
In conclusion, every cyclic Banach-type K-contraction is a K-quasi-
contractions.

If G satisfies (C2), then there is an α ∈
(
0, 12
)

provided that
D(Ga,G2b) ≤ α

(
D(a,Ga) +D(Gb,G2b)

)
− 2αD(I,J )

for all a, b ∈ I (and J ) with (a, b) ∈ E(K). Consequently,
D(Ga,G2b) ≤ α(D(a,Ga) +D

(
Gb,G2b)

)
− 2αD(I,J )

≤ 2αmax
{
D(a,Ga)−D(I,J ),D(Gb,G2b)−D(I,J )

}
≤ 2αmax

{
D(a,Gb),D(a,Ga)−D(I,J ),D(Gb,G2b)−D(I,J )

}
,

which induces that G satisfies (2.1) and so G is a cyclic K-quasi-contractions.
In conclusion, every cyclic Kannan-type K-contraction is a cyclic K-
quasi-contractions.

Assume (C3) holds for G and (a, b) ∈ E(K), similar to what appeared
in condition (C2), one can establish that

D(Ga,G2b) ≤ (α+ β + γ)max
{
D(a,Gb),D(a,Ga)−D(I,J ),

D(Gb,G2b)−D(I,J )
}
,

which implies that G satisfies (2.1) and thus, G is a K-quasi-contractions.
In conclusion, every Cirić-Reich-Rus-type K-contraction is a K-quasi-
contractions.

Assume (C4) holds for G and (a, b) ∈ E(K), similar to what appeared
in condition (C2), one can establish that

D(Ga,G2b) ≤ (Q(a, b) +R(a, b) + U(a, b))max
{
D(a,Gb),

D(a,Ga)−D(I,J ),D(Gb,G2b)−D(I,J )
}
,

which implies that G satisfies (2.1) and G is a cyclic K-quasi-contractions.
In conclusion, any cyclic λ-generalized K-contraction is a cyclic K-quasi-
contractions. Thus, G is a cyclic K-quasi-contractions in case C1, . . . , C4

and it has a bpp in I. □
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Similarly, all the corollaries stated above hold for Theorem 2.2.
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