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ABSTRACT. The objective of this paper is to examine integral in-
equalities related to multiplicatively differentiable functions. Ini-
tially, we establish a novel identity using the two-point Newton-
Cotes formula for multiplicatively differentiable functions. Using
this identity, we derive Companion of Ostrowski’s inequalities for
multiplicatively differentiable convex mappings. The work also pro-
vides the results’ applications.

1. INTRODUCTION

The concept of convexity plays a pivotal role in various fields, includ-
ing mathematics, economics, optimization and game theory [32]. Con-
vexity provides a fundamental framework for analyzing and modeling
relationships between variables and it has wide-ranging applications in
decision-making, resource allocation and risk management. The notion
of convexity allows for the formulation of precise mathematical proper-
ties, such as monotonicity, concavity, and convex combinations, which
facilitate rigorous analysis and enable the development of powerful opti-
mization techniques. Moreover, convexity serves as a fundamental build-
ing block in the theory of inequalities, providing a basis for establishing
important results and inequalities that have applications in various areas
of science and engineering.
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It is worth noting that a function F is considered convex if it meets
the criterion that for all z,y € I and all ¢ € [0, 1], the inequality

Flte+(1—-t)y) <tF(z)+ (1—-1t)F(y)

holds, see [32].

The fundamental inequality related to the notion of convexity is the
Hermite-Hadamard inequality, which can be stated as follows: Let F be
a convex function on [c, d], then we have

(1.1) ]:<C+d><dic/cd]:(:r)dx<]:(c)—i_‘7:(d)'

2 2

If the function F is concave, the inequality (ll:l!) is satisfied in the op-
posite direction, as stated in [32].

Concerning some papers dealing with inequality (EII) see [16-19, 21,
23] and references therein.

In [13], Dragomir and Agarwal established the following inequalities
connected with the inequality ([l.1) known as trapezium-type inequali-
ties.

T I o [ e <

In [31], Pearce and Pecari¢ provided another type of inequalities related
to ([L.1) known as midpoint-type inequalities.

‘F(c—i_d)—dic/cd}'(x)dx <

d—c

(|7 ()] +|F (@)]) -

d—c

(|7 ()] +|F (@)) -

Alomari et al. [B] gave the companion of Ostrowski’s inequalities for
differentiable convex functions as follows:

xT C — X d
]-“()+F2( td-z) ic/ f(t)dt'

< M(\f’(c)\ﬂf’(d)\)
~6(d—c)

8(x—c) +3(c+d—2z)
24 (d —¢)

(’.7:/ (ZL‘)’ + }]:/ (c+d—:1c)’)

and

f(x)+f2(c+d—m)_ ic/d]__(t)dt

1 1
< r{@ = (|F @ +|F @|)
syrmvnd GG CAC TR Y
A2 P (et d )]
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+ (@ -0 (|F (c+d—2)|"+ |F (d)]q)%}.

In 1967, Grossman and Katz introduced the first non-Newtonian com-
putational system known as geometric calculus. In the subsequent years,
they developed a vast range of non-Newtonian calculus, which signifi-
cantly altered the classical calculus formulated by Newton and Leibniz in
the 17th century. These modified calculi, collectively referred to as the
non-Newtonian calculus or multiplicative calculus, deviate considerably
from the traditional calculus of Newton and Leibniz. In this alternative
approach, the ordinary product and ratio are respectively utilized as
the equivalent of addition and exponential difference within the realm
of positive real numbers (refer to [15]). This form of calculation proves
valuable when dealing with exponentially varying functions.

The comprehensive mathematical formulation of multiplicative cal-
culus was provided by Bashirov et al. in their work [5]. Additionally,
in the literature, there is evidence of a similar calculation proposed by
mathematical biologists Volterra and Hostinsky [34] in 1938, known as
the Volterra calculus, which can be identified as a specific instance of
multiplicative calculus.

The comprehensive mathematical explanation of multiplicative calcu-
lus provided by Bashirov in [B] has sparked significant interest in this
type of calculation among researchers, owing to its potential for theoret-
ical and practical applications. Several subsequent works have further
explored various aspects of multiplicative calculus. Aniszewska [4] pre-
sented the multiplicative version of the Runge-Kutta method, employ-
ing it to solve differential equations in the multiplicative domain. Misirli
and Gurefe [24] introduced the multiplicative Adams Bashforth-Moulton
methods. Bhat et al. defined the multiplicative Fourier transform [J]
and the multiplicative Sumudu transform [L0]. Riza et al. devised nu-
merical solutions for multiplicative differential equations using the mul-
tiplicative finite difference methods [33]. Bashirov [] explored double
integrals within the framework of multiplicative calculus, while Bashirov
and Norozpour [[7] extended multiplicative integration to complex-valued
functions. This notion of multiplicative calculus has applications in var-
ious other areas, as evident in [20, 25, 27, 28§].

Definition 1.1 ([32]). We say that a positive function F : [ — R is
logarithmically convex or multiplicatively convex, if

Fltz+(1—=t)y) <[F@) [Fy)]"
holds for all z,y € I and all ¢ € [0, 1].

In a recent study, Ali et al. [l] introduced the Hermite-Hadamard
inequality in relation to multiplicatively convex functions.
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Theorem 1.2. For a positive multiplicatively convex function F on
[e,d], the following inequalities hold

(1.2) F(C;d> < (/Cdf(x)df“>dlc < /F () F(d).

In the same paper, the authors proved the inequalities for the prod-
uct and quotient of two multiplicatively convex functions. Ozcan es-
tablished the Hermite-Hadamard type inequalities for multiplicatively
s-convex functions in [29] and for multiplicatively h-convex functions in
[B0]. Ali et al. investigated Ostrowski as well as Simpson type inequali-
ties for multiplicatively convex functions in [2], while the Dual Simpson
inequalities were established by Meftah et al. in [22]. In [11], Budak et
al. extended the Hermite-Hadamard inequality for multiplicative con-
vex functions to the fractional framework and the fractional analogues of
Simpson and Bullen-type inequalities for multiplicatively convex func-
tions were established in [26] and [12], respectively.

In [8], Berehail et al. established the Midpoint- and Trapezoid-type
inequalities involving multiplicative differentiable convex functions as
follows:

() ([ 7)< (0 (= (59)) 7o)

and

VF (c).F (d) ( / d f(u)d“> - < (FH (o) F*(d)5 .

Inspired by the aforementioned papers, this study aims to propose a
new identity for multiplicatively differentiable functions. Building upon
this identity, we establish a Companion of Ostrowski inequality specif-
ically tailored for multiplicatively convex functions. Additionally, we
provide practical applications showcasing the implications of our ob-
tained results.

2. PRELIMINARIES

In this section, we will start by revisiting and summarizing key defi-
nitions, properties and concepts related to derivation and multiplicative
integration. This foundation will serve as a basis for our subsequent
discussions and analyses.
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Definition 2.1 ([5]). Let F : R — R" be a positive function. The
definition of multiplicative derivative of F noted F* is as follows

1
d*F " . F(t+h)\"
= t = _—
i~ 7w hli%< F () )
Remark 2.2. If F is a positive-valued function that is differentiable

at t, then the multiplicative derivative F* also exists and we have the
following relation between F* and the ordinary derivative F’.

F*(t) = @) = e%.

Now we give some properties of the multiplicative derivatives.

Theorem 2.3 ([p]). Let F and G be multiplicatively differentiable func-
tions and « be an arbitrary constant. Then the functions aF, FG,
F+G, F/G and FY9 are also *-differentiable and their *-derivatives can
be determined as follows:

°@f)() Fr(t),
¢ () (0 =F 00" (1), .
o (F+G) (t)=F* (t)f<t)+g<t) G* (t)TO+9® |
F\* Fr(t
« (5) () =51,
o« (F) W =F 07 F0T.

In their paper [5], Bashirov et al. introduced the multiplicative in-

N —

tegral, denoted by | cd (F ()™, which offers an alternative approach to
integration compared to the traditional Riemann integral. The relation
between these two types of integrals can be described as follows:

Proposition 2.4 ([5]). Every Riemann integrable function on [c,d] is
multiplicative integrable on [c,d] and we have:

/cd (F ()% = exp (/d In (F (1)) dt) .

The properties of the multiplicative integral are as follows:

Theorem 2.5 ([5]). Let F be a positive and Riemann integrable function
on [c,d], then F is multiplicative integrable on [c,d] and

o [H(F®P" = (ff <f<t>>dt)p,
o [T = [LFE)™ [1 (G )™,
. ( ) _ [lFap”
gt d (t))dt7
o [L(F(t) f ﬁh o< k<d,

o [C(F () —1andf :<fdc(]-"(t))dt>_l

ISH

ﬁm&n
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Theorem 2.6 (Multiplicative Integration by Parts [b]). Let F : [c,d] —
R be multiplicatively differentiable and let G : [c,d] — R be differentiable.
Then, the function F9 is multiplicative integrable on [c,d] and satisfies
the following relationship:

T e\ _ F (@) 1
/c <]: (t)g()> T F 70 I (f(t)g'(t))dt'

C

Lemma 2.7 ([3]). Let F : [c,d] — R be multiplicative differentiable, let
h:le,d — R and let G: J C R — R be two differentiable functions.
Then we have

e e 000" _ F ()7 !
Fr(h(t))NO90) " = X .
| (7t o) PO 3 ()

c

The multiplicative derivative and integral are highly useful in various
scientific fields. In biology, they can be used to model population growth
and interaction, incorporating multiplicative factors such as reproduc-
tion and mortality rates. In physics, multiplicative integrals can be
applied to describe complex systems where interactions between compo-
nents occur in a multiplicative manner, such as in neural networks or self-
organizing phenomena. In economics, they can be employed to analyze
economic processes where multiplicative effects, such as externalities,
are significant. Thus, multiplicative integrals provide a mathematical
framework that enhances our understanding and modeling capabilities
across diverse scientific disciplines.

The following example illustrates the utility of the multiplicative de-
rivative and integral concepts.

Example 2.8. Let’s consider the following example of a radioactive
decay phenomenon that can be modeled by a differential equation:

(2.1) F(t)=K(t) F(t),

where F(t) represents the amount of the radioactive substance at time ¢
and /() is a time-variable decay coefficient. It is important to note that
the time variable, ¢, is always positive and the radioactive decay pro-
cess cannot be negative. A radioactive substance’s quantity decreases
over time, but it cannot attain negative values. Equation (R.1)) states
that the rate of change of a substance’s quantity is proportional to the
quantity itself, with the decay factor providing the proportionality coeffi-
cient. Using multiplicative calculus, equation (R.1f) can be reformulated
as eMF@O))" = KO or F*(t) = £ whose solution is given in the
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form of a multiplicative integral, as follows:

Ft) =« /t (e’c(t)>dt, with a = F (1) .

to
Thus, we were able to evaluate the utility and relationship between the

concepts of multiplicative differentiation and integration and differential
equations through this example.

3. MAIN RESULTS

To demonstrate our findings, it is necessary to utilize the following
lemma.

Lemma 3.1. Suppose F : [c,d] — R is a multiplicative differentiable
function on the interval [c,d]. If F* is multiplicative integrable on [c,d],
then the following identity holds:

G(F(2),Fletd—u). (/cdf(u)d“>cld

(z—c)?
2

- (/01 (‘F*((l_t)c+tx)t)dt> =
X </01 (}'*((1—t)x+t(c+d_x))(t_§)>dt>(c+3_3w>

2

(z—=c)

X (/01 (]—"*((l—t) (C+d—x)+td)(t_1)>dt)(;l—c7

where x € [c, #] and G (M,N) = VMN is the geometric mean.
Proof. Let

I = ( /0 1 (F*(1=t)c+ tx)t)dt> - :
I </01 (}_* (=t tletd— x))<t_§)>dt> (C+Zifz)2 |

>2

I; = (/01 (Fa-t(c+d-z)+ td)(tl))dt> -

Using multiplicative integration by parts, from I; we have

(z—c)?

L= </01 (F* (1 - t)c+tx)t)"“> o
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' dt
:/0 (f (1= t)c+ ta) @O ))

r—c

_(F@) 1
Yo (=@ —t)c+m))(ﬁ%i))dt

_ (F (2)) =
I ((7((1—t )e+ tr) T %lc)

e )
Similarly, we have

"2_(/01 <f*<<1—t>w+t<c+d—x>><t‘5)>dt>
:/01 <f*((1—t)x+t(c+d_m))‘ci‘ifz)2(t;))dt
:/01 <f* (1= )2+t (c 4 d — 2)) 20 (=050 2;))‘”

_(}"*(C—G—d—x))% .

dt

(F @) 5T f(F (-t (er d - a)
(F* (c+d - 2) T (F* () T

- 1 ctd—2z\ dt
Jo <(]:((1—t)$+t(c+d—x))) d—c )

1
ctd—2z +d o

=(F* (c+d—x)) 2o (F*(z))20 ‘</:+d z}_(u)du>c_d

and

(z=)?

</01 (]:* (1=t)(c+d—2x) _|_td)(t_1))dt) .

/01 (f*((l—t)(c+d—x)+td) 2 (1 1)>

/1 (JF* ((1 — 75) (C +d— x) +t )(ac—c)(zT —gt h))dt
0 d
! 1

I3

Frletd—z) [l (F(a-(et+d-2) +td))%)dt
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8
o

(Flc+d—x))d—e

1 z—c\ dt
J((F(=t)(c+d-a)+ 1))
0
1
r—c d c—d
=(F(c+d—2z))ce. (/ ]-"(u)d“> :
ct+d—zx
Multiplying above equalities we get
Il X IQ X Ig

<‘

0= ([ 7w ) (F* (e d =) 507 (F* (a)) 50

x (/:+d xf(u)d“>c_d (Fle+d—a)E 1

(Lro)”

= (F* (C+d_x))§iﬁ+crf(giff (F* ())& =)

y ( C;c - (u)du /mc-l-d—z . (u)du /C;i—d_m . (u)du> c—d

n

0

This completes the proof.

g
Theorem 3.2. Consider F : [c,d] — R as a multiplicative differen-
tiable function on the interval [c,d]. If F* is multiplicative convex on

[c,d], then for any x € [ C+d], we have the following inequality:

G(F(2),Fletd—2). (/cdf(u)d“)cld

(z—c)* c2 (c+d— 21)2

(z—c)? +
< (F* (o)) 9 (F* (a)) S0~ 5

(z—c +d22 —(32

X (F*(c+d —x))3@a L+ s (F* (d)) 5@ .

Proof. Based on Lemma @, the properties of multiplicative integration
and the multiplicative convexity of F*, we have

G(F(2),Fletd—2). (/Cd}"(u)d“>c_1d

< <exp / In (F*((1 —t) ¢+ tx) )\dt)




298 B. MEFTAH, A. LAKHDARI, W. SALEH, D.C. BENCHETTAH
x(expW/ ’ln(]—"*((l—t)az—kt(c—i-d—x) t)‘dt)
x(exp(z_cc)/ )ln(F*((l—t)(c+d—x)+td) )‘dt)

- <exp %‘_‘;2/0 t]ln(f*((l—t)c+ta:))\dt>

5 1
x(exp(c+g:§z) /0 \t—;}|1n(f*<(1—t)x+t(c+d—x)))|dt>

5 rl
X(exp (z o) /0 (1—1) yln(f*((l—t)(c+d—a;)+td))|dt>

< (exp("”d‘_cc)2 <ln (F* (c))/olt(l—t) + In (F* (:c))/othdt>>

x (exp(CJrg_f‘r)Q (m(f* (g;))/ol (-0t —1at
+1n(f*(c+d—x))/01t\t—;\dt>>
« (exp(d o? <1n]—'*(c—|—d—x)/01(1—t)2dt

+1InF* (d) 1t(1—t)dt>>

0
2 (bn + 3 (F* (2)))
2x

= (exp 22
(expw(;1n(f*(x))+gln(f*(wd—x))))
X (exp @9 (L F*(c+d—gz)+ LInF (d)))
= (e 52 (I (F* ()7 (F (@))7))
x (exp 2 (In (F (@)% (F* (e +d—2))7))
x (exp 2 <ln (F*(c+d )3 (F* ()7))

(z— (z— (ctd—22)?
= (P (@)D (F () $5 (7 () H
(c+d—2a)2 (z—c) (z—c)2
C(F (et d ) TES (P (o d ) $E (7 (a) W
(z—c)® o @=0)? | (c+d=22)?
= (F* (¢) T (F* (a)) T+ S
(z— (’)2+((‘+d 21)2 (z— (‘)2

X (F* (c+d — @) o™ S0 (F* (d)) 5o .
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This completes the proof. O
<

Corollary 3.3. In Theorem @, if we make the assumption that F*
M, we obtain the following result:

(zfc)2+(%fz)2

G(F(x),F(c+d—zx)). (/cdf(u)dU>cld <M

Remark 3.4. Theorem @ will be reduced to:

e Theorem 3.3 from [§], for x = <5,

e Theorem 3.6 from [§], for z = c.

4. EXAMPLE AND APPLICATIONS

In this section, we provide a numerical example along with a graphical
representation to confirm the accuracy of the established results, as well
as some applications to special means.

4.1. Illustrative Example.

Let’s go back to Example and consider the case of a decay coef-
ficient represented by the function K(t) = 2t with ¢ =t =0, d =1
and an initial radioactivity a = 1. We want to approximate the solu-
tion of this problem using a two-point Newton-Cotes formula. For this
purpose, we consider the function F given by F(t) = et”. Indeed, the
considered function satisfies the conditions of this work since F* (t) = 2
is multiplicatively convex. By utilizing the aforementioned insights and
Theorem B.2, we can now showcase numerical results and accompanying
graphical representations that serve as evidence_for the validity of the
derived findings presented in Table [ll and Figure [ll which were generated
using Matlab where the color blue represents the Right Hand Side (RHS)
and red represents the Left Hand Side (LHS) of the obtained result.

Left hand side
— Right hand side

0 005 01 015 02 02 03 035 04 045 05
parameter x

FIGURE 1. z € [0, }]
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TABLE 1. Numerical validation of Theorem @

x Values of the Left term Values of the right term
0.00 1.1814 1.2840
0.05 1.1266 1.2275
0.10 1.0797 1.1853
0.15 1.0399 1.1560
0.20 1.0067 1.1388
0.25 0.9794 1.1331
0.30 0.9576 1.1388
0.35 0.9410 1.1560
0.40 0.9293 1.1853
0.45 0.9223 2.2275
0.50 0.9200 2.2840

Based on the information provided in Table [ll and Figure E], it is
evident that the inequality stated in Theorem holds for z € [1,2].
This demonstrates the validity of the inequality across various values of
x.

4.2. Applications to Special Means.

We will now discuss different types of means which provide various
ways of averaging two numbers and have different properties and appli-
cations in mathematical and statistical contexts.

e Arithmetic mean: A (c,d) = <3¢
e Harmonic mean: H (¢, d) = %, ¢, d > 0;
e Logarithmic means: L (c,d) = mﬁll%c ¢,d > 0 and ¢ # d;

Inc?
1
e p-Logarithmic mean: L, (c,d) = (%)p, ¢,d>0,c#d
and p € R\v{—1,0}.

Proposition 4.1. Let c¢,d € R with 0 < ¢ < d, then we have

AP ")~ L5 (c,d) < epdgc (cP*1+dp71)'

Proof. The statement can be derived by applying Theorem @ to the
1

function F (t) = e’ (p > 2), where 7* (t) = ¢’ " and (fcd f(t)dt) =

exp <_L£ (C, d)) |

Proposition 4.2. Let c¢,d € R with 0 < ¢ < d, then we have

A Y ed)-L N ed) < %5 (Tt i tAT2ed)

& €
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Proof. The statement can be derived by applying Theorem @ to the

1

function F(t) = e'/t, where F*(t) = e /* and (fcd}_(t)dt)m —
exp (=L (c,d)). 0

5. CONCLUSION

In conclusion, this study has successfully achieved its objectives by
introducing a new identity for multiplicatively differentiable functions.
The derived identity has enabled us to establish a customized Com-
panion of Ostrowski inequality specifically tailored for multiplicatively
convex functions. These novel results contribute to the existing body
of knowledge in the field and provide a foundation for further research.
Moreover, the practical applications demonstrated in this study high-
light the relevance and significance of multiplicative calculus in various
domains.

Acknowledgment. The work of the second author was supported by
DGRSDT, MESRS of Algeria (PRFU Project A14N01EP230220230001).
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