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On a General Conditional Cauchy Functional Equation

Elham Mohammadi1, Abbas Najati2∗ and Yavar Khedmati Yengejeh3

Abstract. Let (G,+) be an abelian group and Y a linear space
over the field F ∈ {R,C}. In this paper, we investigate the condi-
tional Cauchy functional equation
f(x+y) ̸= af(x)+ bf(y) ⇒ f(x+y) = f(x)+f(y), x, y ∈ G,

for functions f : G → Y , where a, b ∈ F are fixed constants. The
general solution and stability of this functional equation are de-
scribed.

1. Introduction

Understanding functional equations is essential for solving problems in
a wide range of disciplines, including mathematics, physics, engineering,
economics, and biology [1]. The field of functional equations constitutes
a modern mathematical discipline that has undergone significant and
swift development over the past fifty years. Functional equations are in-
vestigated and solved without making any assumptions about regularity
conditions. Let (G,+) be an abelian group and (R,+, .) be a com-
mutative integral domain with identity and characteristic of zero. Pl.
Kannappan and M. Kuczma [15] investigated and solved the functional
equation
(1.1) [f(x+ y)− af(x)− bf(y)][f(x+ y)− f(x)− f(y)] = 0,

for functions f : G → R, where a, b ∈ R are constants.
In this paper, we treat the conditional Cauchy functional equation

(1.2) f(x+ y) ̸= af(x) + bf(y) ⇒ f(x+ y) = f(x) + f(y),
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for functions f : G → Y , where (G,+) is an abelian group, Y is a linear
space over the field F ∈ {R,C} and a, b ∈ F are constants. Obviously,
(1.1) and (1.2) are not equivalent. Particular cases of (1.2) are, among
others, the following conditional Cauchy functional equations:

f(x+ y) ̸= f(x) ⇒ f(x+ y) = f(x) + f(y),

f(x+ y) + f(x) + f(y) ̸= 0 ⇒ f(x+ y) = f(x) + f(y),(1.3)
f(x+ y) ̸= 0 ⇒ f(x+ y) = f(x) + f(y).(1.4)

Indeed, (1.3) comes from[
f(x+ y)

]2
=

[
f(x) + f(y)

]2
,

for real functions f , and then studied in the form |f(x + y)| = |f(x) +
f(y)| which admits other generalizations from the real case to further
general structures. A natural generalization is ∥f(x + y)∥ = ∥f(x) +
f(y)∥ for normed spaces (see [7, 12–14]). Moreover, there are various
interesting results which deal with the stability of functional equations
in restricted domains [8–10, 16].

The conditional Cauchy functional equation (1.4) is called Mikusiński’s
functional equation.

2. General Solution of (1.2)

In this section, Y denotes a linear space over the field F ∈ {R,C}
and (G,+) is an abelian group. We deal with the conditional Cauchy
functional equation (1.2), where f : G → Y and a, b ∈ F. First we notice
that f ≡ 0 is a trivial solution of (1.2). We also note that if f is a nonzero
and constant solution of (1.2), say f(x) = c, then a + b = 1. Thus in
the sequel we will consider only non-constant solution of (1.2). Under
some conditions, we show (1.2) has solutions which are not additive.

The general solution of Mikusiński’s functional equation is exactly
expressed in [11]. We recall that the index of a subgroup K in a group
G, is equal to the number of left (right) cosets of K in G.

Theorem 2.1 ([11]). Let (G,+) and (H,+) be groups. If f : G → H
is a non-additive solution of the conditional Cauchy functional equation

f(x+ y) ̸= 0 ⇒ f(x+ y) = f(x) + f(y),

then K := f−1(0) is a subgroup of index two, and f is given by

f(x) =

{
0, x ∈ K,
c, x /∈ K,

where c ̸= 0 is an arbitrary element of H.

To reach the main result, we start with some lemmas.



ON A GENERAL CONDITIONAL CAUCHY FUNCTIONAL EQUATION 317

Lemma 2.2. Suppose that f : G → Y is a non-constant function satis-
fies (1.2). Then K := f−1(0) is a subgroup of G.

Proof. First we show f(0) = 0. Let f(0) ̸= 0. Put y = 0 in (1.2) to
abtain

(2.1) (1− a)f(x) = bf(0), x ∈ G.

Letting y = x = 0 in (1.2), we infer f(0) = (a+ b)f(0) and consequently
a + b = 1. Hence (2.1) yields bf(x) = bf(0) for all x ∈ G. Since f is
non-constant, we get b = 0, and consequently a = 1. Letting x = 0 in
(1.2), we have f(y) = af(0) = f(0) for all y ∈ G. This implies that f is
constant which is a contradiction. So f(0) = 0.

Obviously, if x, y ∈ K, then (1.2) yields x+ y ∈ K. Take x ∈ K and
put y = −x in (1.2), we get either bf(−x) = 0 or f(−x) = 0 because
of f(0) = 0. If we had f(−x) ̸= 0, then b = 0. Applying (1.2), we get
af(−x) = 0 and consequently a = 0. Therefore (1.2) reduces to (1.4),
i.e.,

f(x+ y) ̸= 0 ⇒ f(x+ y) = f(x) + f(y).

Putting y = −2x in (1.4) and using f(−x) ̸= 0, we have f(−x) = f(x)+
f(−2x) = f(−2x). So f(−2x) ̸= 0. By (1.4), we acquire f(−2x) =
2f(−x). Hence

f(−x) = f(−2x) = 2f(−x).

This yields f(−x) = 0 which is a contradiction. Hence the proof is
complete. □

Lemma 2.3. Let r, s ∈ F with r + s ̸= 0 and f : G → Y satisfies (1.2).
Then f fulfills

(r+s)f(x+y) ̸= (ra+sb)f(x)+(sa+rb)f(y) ⇒ f(x+y) = f(x)+f(y).

Proof. If r = 0 or s = 0, then the result is obvious. So we suppose that
r, s are non zero. Let (r + s)f(x + y) ̸= (ra + sb)f(x) + (sa + rb)f(y).
Then

rf(x+ y) ̸= raf(x) + rbf(y) or sf(x+ y) ̸= saf(y) + sbf(x).

In each of these two cases, (1.2) implies that f(x+y) = f(x)+f(y). □

Corollary 2.4. Let f : G → Y satisfies (1.2). Then f satisfies

2f(x+ y) ̸= (a+ b)f(x) + (a+ b)f(y) ⇒ f(x+ y) = f(x) + f(y).

Especially, if a+ b = 0, then f satisfies (1.4).

Lemma 2.5. Let f : G → Y be a non-constant function that satisfies
(1.2). Then f is odd or a+ b = 0 and f fulfills (1.4).
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Proof. Suppose that f is not odd. Then there exists z ∈ G such that
f(z)+ f(−z) ̸= 0. It is clear that z,−z /∈ K. Putting x = z and y = −z
in (1.2) and using f(0) = 0, we conclude af(z) + bf(−z) = 0. Similarly,
we get af(−z) + bf(z) = 0. Therefore

(a+ b)[f(z) + f(−z)] = 0.

This implies that a+b = 0, and consequently f fulfills (1.4) by Corollary
2.4. □

Lemma 2.6. Suppose that f : G → Y is a solution of (1.2) and a2+b2 >
0. Then f satisfies

(2.2) f(x) ̸= f(y) ⇒ f(x+ y) = f(x) + f(y), x, y ∈ G.

Proof. Let a ̸= b and x, y ∈ G such that f(x + y) ̸= f(x) + f(y). It
follows from (1.2) that

f(x+ y) = af(x) + bf(y) and f(x+ y) = af(y) + bf(x).

Then (a− b)[f(x)− f(y)] = 0. Since a ̸= b, we get f(x) = f(y).
If a = b = 1, then (1.2) implies that f is additive. Thus (2.2) holds

for f . For the case a = b ̸= 0, 1, we may assume that f is non-constant
(every constant function satisfies (2.2)). Then f(0) = 0 by Lemma 2.2.
Now we prove f is odd. On the contrary, suppose z ∈ G such that
f(z) + f(−z) ̸= 0. Letting x = z and y = −z in (1.2) and applying
f(0) = 0, one gets a[f(−z) + f(z)] = 0. Since a ̸= 0, one concludes
f(z) + f(−z) = 0 which is a contradiction. To prove (2.2), let x, y ∈ G
such that f(x+ y) ̸= f(x) + f(y). By (1.2), we have

(2.3) f(x+ y) = a[f(x) + f(y)].

Since f is odd, we get by (1.2) either

(2.4) f(x) = f(x+ y − y) = a[f(x+ y)− f(y)]

or

(2.5) f(x) = f(x+ y − y) = f(x+ y)− f(y).

It is clear that (2.5) yields f(x + y) = f(x) + f(y), contrary to the
assumption. Hence we must have (2.4). Adding (2.3) and (2.4), we get
f(x+y)+f(x) = a[f(x+y)+f(x)]. Since a ̸= 1, we get f(x+y) = −f(x).
Similarly, one obtains f(x + y) = −f(y). Hence f(x) = f(y), and this
proves (2.2). □

Lemma 2.7. Suppose that x0 /∈ K and f : G → Y is a non-constant
solution of (1.2). Then

x0 +K = {x ∈ G : f(x) = f(x0)}.
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Proof. One of two the following situations occurs:
Case I. In case of a2 + b2 > 0, f fulfills (2.2). If x ∈ K, then

f(x) ̸= f(x0). Hence (2.2) implies f(x0 + x) = f(x0) + f(x) = f(x0).
Thus

x0 +K ⊆ {x ∈ G : f(x) = f(x0)}.
If f is odd and f(x) = f(x0), then f(x) ̸= −f(x0) = f(−x0). By (2.2),
one obtains f(x − x0) = f(x) − f(x0) = 0. This means x ∈ x0 +K. If
f is not odd and f(x) = f(x0), then f satisfies (1.4) by Lemma 2.5. By
Theorem 2.1, we infer that the index of K is two and G = K ∪ (x0+K).
Since f(x) = f(x0), we get x ∈ x0 +K. Therefore

{x ∈ G : f(x) = f(x0)} ⊆ x0 +K.

Case II. a = b = 0. In this case f satisfies (1.4). By Theorem 2.1, we
conclude either f is additive or the index of K is two and

(2.6) f(x) =

{
0, x ∈ K,
f(x0), x ∈ x0 +K.

In both cases, it can be easily seen that x0 + K = {x ∈ G : f(x) =
f(x0)}. □
Theorem 2.8. Let a2 + b2 > 0 and f : G → Y be a non-constant
solution of (1.2). Then we have one of the following assertions:

(i) f is odd, the index of K is 3, a+ b = −1 and f is given by

(2.7) f(x) =

 0, x ∈ K,
c, x ∈ z0 +K,
−c, x ∈ −z0 +K,

where z0 /∈ K and c ̸= 0 is an arbitrary element in Y .
(ii) f is odd, the index of K is infinite and f is additive.
(iii) f is not odd, the index of K is 2, a+ b = 0 and f is given by

(2.8) f(x) =

{
0, x ∈ K,
c, x /∈ K,

where c ̸= 0 is an arbitrary element in Y .

Proof. By Lemma 2.6, f fulfills (2.2). We now consider the following
two cases according to Lemma 2.5.

Case I. Let f be odd. We claim that the index of K is greater
than two. Since f is not constant, the index of K is not one. We
now supposing the contrary, the index of K is two. Let z /∈ K. Then
z,−z ∈ z +K, and Lemma 2.7 yields f(−z) = f(z). Since f is odd, we
get f(z) = 0 which is a contradiction. So the index of K is greater than
two. If the index of K is 3 and z0 /∈ K, then G/K = {K, z0+K,−z0+K}.
Hence f is given by (2.7). So (1.2) with x = y = z0, yields a+ b = −1.
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We now claim that if the index of K is greater than 3, then f is
additive and the index of K should be infinite. Let x, y ∈ G.

(i) If f(x) ̸= f(y), then (2.2) implies f(x+ y) = f(x) + f(y).
(ii) If f(x) = f(y) = 0, then f(x+ y) = 0 by virtue of Lemma 2.2.

So f(x+ y) = f(x) + f(y) is concluded.
(iii) If f(x) = f(y) ̸= 0, then there exists a z ∈ G such that z /∈ K ∪

(x+K)∪(−x+K). So f(z) ̸= 0, f(z) ̸= f(x) and f(z) ̸= f(−x).
Hence f(−z) ̸= f(y). By (2.2), we get
f(x+ z) = f(x) + f(z), f(y − z) = f(y)− f(z).

Therefore f(x+ z) ̸= f(y − z), and again (2.2) yields
f(x+ y) = f(x+ z) + f(y − z) = f(x) + f(y).

Thus f is additive. Since f is not constant, there exists an x0 /∈ K.
Then {nx0 + K}∞n=1 is a sequence of disjoint cosets. This means that
the index of K is infinite.

Case II. Suppose that f is not odd. By Lemma 2.5, a + b = 0 and
f fulfills (1.4). Since f is not odd, f is a non-additive solution of (1.4).
By Theorem 2.1, the index of K is 2 and f is given by (2.8). □

Remark 2.9. It is clear that if a+ b = 1, then every constant function
f : G → Y is a solution of (1.2). For a + b ̸= 1, f ≡ 0 is the only
constant solution of (1.2).

3. Stability

The main goal in this section is to study the stability and hypersta-
bility of the conditional Cauchy functional equation

f(x+ y) ̸= af(x) + bf(y) ⇒ f(x+ y) = f(x) + f(y).

Stability of a special case of this conditional Cauchy functional equation
(a = b = −1) has been studied and investigated in [4](see also [5]).

In this section, (G,+) denotes an abelian group.
The following lemma is used to prove the main theorem of this section.

Lemma 3.1. Let X be a linear normed space, δ, ε ≥ 0 and a /∈
{−1

2 , 0, 1}. Suppose that f : G → X is a function fulfilling
(3.1)
∥f(x+ y)− af(x)− af(y)∥ ≤ δ or ∥f(x+ y)− f(x)− f(y)∥ ≤ ε

for all x, y ∈ G. If ∥f(2z)− 2af(z)∥ ≤ δ for some z ∈ G, then ∥f(z)∥ ≤
M , where M depends only on a, δ, ε.

Proof. Take β := ∥f(0)∥. Letting y = −z and x = z in (3.1), one obtains
(3.2) ∥f(0)− a(f(z) + f(−z))∥ ≤ δ or ∥f(0)− f(z)− f(−z)∥ ≤ ε.
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Then

∥f(z) + f(−z)∥ ≤ δ + β

|a|
or ∥f(z) + f(−z)∥ ≤ ε+ β.

Thus

(3.3) ∥f(z) + f(−z)∥ ≤ γ := max

{
δ + β

|a|
, ε+ β

}
.

Letting y = −z and x = 2z in (3.1), we acquire
(3.4) ∥f(z)− af(2z)− af(−z)∥ ≤ δ or ∥f(z)−f(2z)−f(−z)∥ ≤ ε.

Since ∥f(2z)− 2af(z)∥ ≤ δ, (3.4) yields∥∥(1− 2a2)f(z)− af(−z)
∥∥ ≤ δ(1+|a|) or ∥(1−2a)f(z)−f(−z)∥ ≤ δ+ε.

By (3.3) and the above inequalities, we have

∥f(z)∥ ≤ δ(1 + |a|) + γ|a|
|2a2 − a− 1|

or ∥f(z)∥ ≤ δ + ε+ γ

|2a− 2|
.

Then

□(3.5) ∥f(z)∥ ≤ max

{
δ(1 + |a|) + γ|a|
|2a2 − a− 1|

,
δ + ε+ γ

|2a− 2|

}
.

Throughout the remainder of this section, X represents a Banach
space.

Theorem 3.2. Let δ, ε ≥ 0, a ̸= −1
2 and f : G → X be a function

fulfilling (3.1) for all x, y ∈ G. Then there exists an additive function
A : G → X such that f −A is bounded on G.

Proof. For the case a = 0, the result follows from [3, Theorem 1].
If a = 1, then ∥f(2x) − 2f(x)∥ ≤ max {δ, ε} for all x ∈ G. We now

assume a /∈ {−1
2 , 0, 1}. For each x ∈ G, we have the following two cases:

Case 1. ∥f(2x)− 2af(x)∥ ≤ δ. By Lemma 3.1, we get ∥f(x)∥ ≤ M ,
where M depends only on a, δ, ε. Therefore

∥f(2x)− 2f(x)∥ ≤ ∥f(2x)− 2af(x)∥+ ∥2af(x)− 2f(x)∥
≤ δ + |2a− 2|M.

Case 2. ∥f(2x)− 2af(x)∥ > δ. By (3.1), we get ∥f(2x)−2f(x)∥ ≤ ε.
So according to the above cases, we have

∥f(2x)− 2f(x)∥ ≤ θ := max {δ + |2a− 2|M, ε} , x ∈ G.

Therefore

(3.6)
∥∥∥∥f(2nx)2n

− f(2mx)

2m

∥∥∥∥ ≤
n−1∑
k=m

θ

2k+1
, x ∈ G, n ≥ m ≥ 0.
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This yields that
{

f(2nx)
2n

}
n

is a Cauchy sequence for all x ∈ G. Then the

sequence
{

f(2nx)
2n

}
n

converges, since X is a Banach space. Let us define

A : G → X, A(x) := lim
n→∞

f(2nx)

2n
.

Letting m = 0 in (3.6) and allowing n → ∞, one concludes

∥A(x)− f(x)∥ ≤ θ, x ∈ G.

We claim that

A(x+ y) = aA(x) + aA(y) or A(x+ y) = A(x) +A(y), x, y ∈ G.

Let x, y ∈ G such that A(x + y) ̸= aA(x) + aA(y). Then the sequence
{f(2n(x+y))−af(2nx)−af(2ny)}n is not bounded. So ∥f(2n(x+y))−
af(2nx)− af(2ny)∥ > δ for a sufficiently large n ∈ N. Thus

∥f(2n(x+ y))− f(2nx)− f(2ny)∥ ≤ ε,

on account of (3.1). Divide the inequality above by 2n and allow n → ∞
to obtain A(x+ y) = A(x) +A(y).

We now show that A is additive. Let A be nonzero. By the definition
of A, one gets A(2x) = 2A(x) for all x ∈ G. This implies that A is a
non-constant solution of (1.2). Since a ̸= −1

2 , 0 and A(2x) = 2A(x), we
infer that A satisfies only (2) in Theorem 2.8. So, A is additive. □

Corollary 3.3. Let δ, ε ≥ 0 and a + b ̸= −1. Assume that f : G → X
is a function satisfying
(3.7)
∥f(x+ y)− af(x)− bf(y)∥ ≤ δ or ∥f(x+ y)− f(x)− f(y)∥ ≤ ε,

for all x, y ∈ G. Then there exists an additive function A : G → X such
that f −A is bounded on G.

Proof. We claim that

(3.8)
∥∥∥∥f(x+ y)− a+ b

2
f(x)− a+ b

2
f(y)

∥∥∥∥ ≤ δ,

or
∥f(x+ y)− f(x)− f(y)∥ ≤ ε,

for all x, y ∈ G. To prove (3.8), let
∥∥f(x+ y)− a+b

2 f(x)− a+b
2 f(y)

∥∥ > δ
for some x, y ∈ G. Then

∥f(x+ y)− af(x)− bf(y)∥ > δ or ∥f(x+ y)− af(y)− bf(x)∥ > δ.

In both cases, (3.7) implies ∥f(x + y) − f(x) − f(y)∥ ≤ ε. This proves
(3.8). Hence the result follows from Theorem 3.2. □
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Corollary 3.4. Let ε ≥ 0 and a + b ̸= −1. If a function f : G → C
fulfills

(3.9)
∣∣∣[f(x+y)−af(x)−bf(y)][f(x+y)−f(x)−f(y)]

∣∣∣ ≤ ε, x, y ∈ G,

then there exists an additive function A : G → C such that f − A is
bounded on G.

Corollary 3.5. Let ε ≥ 0 and (a, b) ̸= (1, 1). Suppose that a function
f : G → C fulfills (3.9). Let {xn}n be a sequence in G with

lim
n

∣∣f(xn + x+ y)− af(xn + x)
∣∣ = +∞,

or
lim
n

∣∣f(xn + x+ y)− bf(xn + x)
∣∣ = +∞,

for all x, y ∈ G. Then f is additive.

Proof. By the assumption we have

lim
n

∣∣f(xn + y)− af(xn)
∣∣ = +∞,

or
lim
n

∣∣f(xn + y)− bf(xn)
∣∣ = +∞, y ∈ G.

Then it follows from (3.9) that

lim
n
[f(xn + y)− f(xn)] = f(y)

(3.10)

= lim
n
[f(xn + x+ y)− f(xn + x)], x, y ∈ G.

Let x, y ∈ G. Then (3.10) yields

f(x+ y)− f(x) = lim
n
[f(xn + x+ y)− f(xn)]− lim

n
[f(xn + x)− f(xn)]

= lim
n
[f(xn + x+ y)− f(xn + x)] = f(y).

This means f is additive on G. □

In the case where a = b = 0, we will have the following superstability
result. Of course, this result has been proven in [6], but our proof is
slightly different.

Corollary 3.6. Let ε ≥ 0 and f : G → C be a function fulfills

(3.11)
∣∣f(x+ y)[f(x+ y)− f(x)− f(y)]

∣∣ ≤ ε, x, y ∈ G.

Then f is either additive, or bounded on G.
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Proof. Replacing x by x− y in (3.11), one gets
(3.12)

∣∣f(x)[f(x)− f(x− y)− f(y)]
∣∣ ≤ ε, x, y ∈ G.

Let f be unbounded. Then we can find a sequence {xn}n in G with
limn |f(xn)| = +∞. By (3.12), we have∣∣f(xn)[f(xn)− f(xn − y)− f(y)]

∣∣ ≤ ε, x, y ∈ G.

So
(3.13) f(y) = lim

n
[f(xn)− f(xn − y)] , y ∈ G.

Since |f(xn+y)| ≥ |f(xn)|− |f(xn)−f(xn+y)|, we obtain limn |f(xn+
y)| = +∞ by (3.13). Using (3.11), we get

f(y) = lim
n

[f(xn + y)− f(xn)] , y ∈ G.

This equality results that
f(y) = lim

n
[f(xn + z + y)− f(xn + z)] , y, z ∈ G.

Therefore
f(y + z)− f(y) = lim

n
[f(xn + y + z)− f(xn)]

− lim
n

[f(xn + z + y)− f(xn + z)]

= lim
n

[f(xn + z)− f(xn)]

= f(z), y, z ∈ G.

This proves f is additive. □
Remark 3.7. The multiplicative property of the absolute value in com-
plex numbers is essential to prove the above results. Since the norm of
Cayley numbers and quaternions is multiplicative, it can be shown that
the results are also true for functions f with values in Cayley numbers or
quaternions. In general, the results are valid for functions whose values
are in a normed algebra with the multiplicative norm.

Using the idea of [2]’s example, we give an example to show that if
the norm is not multiplicative, the result 3.6 does not hold for functions
with values in norm algebras.
Example 3.8. Let M2(C) be the normed algebra of 2×2 matrices with
complex entries, which is equipped with the usual norm. Let ε > 0 and
f : R → M2(C) be a function given by

f(x) =

(
x 0
0 ε

)
.

Obviously, f is unbounded and
∥∥f(x+ y)[f(x+ y)− f(x)− f(y)]

∥∥ = ε2.
But f is not additive.
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4. Conclusion

Let (G,+) be an abelian group and (R,+, .) a commutative integral
domain with identity and of characteristic zero. Pl. Kannappan and M.
Kuczma [15] investigated the functional equation (1.1) and obtained its
general solution for functions f : G → R, where a, b ∈ R are constants.
We investigated and derived the general solution for the conditional
Cauchy functional equation (1.2) for functions f : G → Y , where Y
is a linear space over the field F ∈ {R,C} and a, b ∈ F are constants.
However, in equation (1.2), the multiplication does not take place, and
a, b are scalars. The final section of this paper is devoted to the stability
of equation (1.2). An open problem pertains to the stability of equation
(1.2) under the condition a+b = −1. In addition, studying the functional
equation (1.2) on a restricted domain will be interesting and such an
investigation has the potential to yield valuable results.
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