Document Type: Research Paper

Authors

1 Department of Mathematics, The Bhawanipur Education Society College. 5, Lala Lajpat Rai Sarani, Kolkata 700020, West Bengal, India.

2 Department of Pure Mathematics, University of Calcutta. 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India.

Abstract

In this paper, we establish a sequential characterisation of Lebesgue fuzzy metric and explore the relationship between Lebesgue, weak $G$-complete and compact fuzzy metric spaces. We also discuss the Lebesgue property of several well-known fuzzy metric spaces.

Keywords

[1] S. Adhya and A. Deb Ray, On Lebesgue property for fuzzy metric spaces, TWMS J. Appl. Eng. Math., (appear).

[2] G. Beer, Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance, Proc. Am. Math. Soc., 95 (4) (1985), pp. 653-658.

[3] A. George and P.V. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), pp. 395-399.

[4] A. George and P.V. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets Syst., 90 (1997), pp. 365-368.

[5] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), pp. 385-389.

[6] V. Gregori, A. López-Crevillén, S. Morillas and A. Sapena, On convergence in fuzzy metric spaces, Topology Appl., 156 (2009), pp. 3002-3006.

[7] V. Gregori, J.J. Minana and S. Morillas, Uniform continuity in fuzzy metric spaces, Rend. Ist. Mat. Univ. Trieste, 32 Suppl. 2 (2001), pp. 81-88.

[8] V. Gregori, J.J. Minana and A. Sapena, Completable fuzzy metric spaces, Topology Appl., 225 (2017), pp. 103-111.

[9] V. Gregori, J.J. Minana and A. Sapena, On Banach contraction principles in fuzzy metric spaces, Fixed Point Theory, 19 (2018), pp. 235-248.

[10] V. Gregori and S. Romaguera, Characterizing completable fuzzy metric spaces, Fuzzy Sets Syst., 144 (2004), pp. pp. 411-420.

[11] V. Gregori and S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets Syst., 115 (2000), pp. 485-489.

[12] V. Gregori, S. Romaguera and A. Sapena, Some questions in fuzzy metric spaces, Fuzzy Sets Syst., 204 (2012), pp. 71-85.

[13] O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), pp. 326-334.

[14] A. Sapena, A contribution to the study of fuzzy metric spaces, Appl. Gen. Topol., 2 (1) (2001), pp. 63-75.

[15] B. Schweizer and A. Sklar, Statistical metric spaces, Pac. J. Math., 10 (1960), pp. 314-334.

[16] P. Tirado, On compactness and $G$-completeness in fuzzy metric spaces, Iran. J. Fuzzy Syst., 9 (4) (2012), pp. 151–158.

[17] G. Toader, On a problem of Nagata, Mathematica, Cluj, 20 (43) (1978), pp. 78-79.

[18] S. Willard, General Topology, Reading, MA: Addison-Wesley Publishing (1970).