Document Type : Research Paper


Department of Mathematics, Faculty of Science, University of Maragheh, Maragheh, Iran.


In this manuscript, we study the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. By defining  a new Hilbert space and  using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at some interior point and  parts of two  sets of eigenvalues.


[1] Z. Akdogan, M. Demirci, and O. Sh. Mukhtarov, Green function of discontinuous boundary value problem with transmission conditions, Math. Meth. Appl. Sci., 30 (2007) 1719-1738.
[2] S. Albeverio, F. Gesztesy, R. Hegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, 2nd ed., AMS Chelsea Publishing, Providence, RI, 2005.
[3] V.A. Ambartsumyan,  Uber eine frage der eigenwerttheorie, Z. Phys. 53 (1929) 690-695.
[4] R.Kh. Amirov, On Sturm-Liouville operators with discontinuity conditions inside an interval, J. Math. Anal. Appl. 317 (2006) 163-176.
[5] P.A. Binding, P.J. Browne, and B.A. Watson, Inverse spectral problems for left de nite Sturm-Liouville equations with inde nite weight, J. Math. Anal. Appl. 271 (2002) 383-408.
[6] G. Borg, Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe, Acta Math. 78 (1945) 1-96.
[7] J. Eckhardt and G. Teschl, Uniqueness results for Schrodinger operators on the line with purely discrete spectra, arXiv:1110.2453.
 [8] G. Freiling and V.A. Yurko, Inverse Sturm-Liouville problems and their applications, NOVA Science Publishers, New York, 2001.
[9] I.M. Gelfand and B.M. Levitan, On the determination of a di erential equation from its spectral function, Amer. Math. Soc. Transl. Ser. 2 1 (1955) 253-304.
[10] O. Hald, Discontinuous inverse eigenvalue problem, Commun. Pure. Appl. Math. 37 (1984) 539-577.
[11] H. Hochstadt and B. Lieberman, An inverse Sturm-Liouville problem with mixed given data, SIAM J. Appl. Math., 34(4) (1978), 676-680.
[12] H. Hochstadt, On inverse problems associated with Sturm-Liouville operators, J. Di erential Equations, 17 (1975) 220-235.
[13] H. Hochstadt, The inverse Sturm{Liouville problem, Comm. pure. Math, 26 (1973) 715-729.
[14] M. Kobayashi, A uniqueness proof for discontinuous inverse Sturm-Liouville problems with symmetric potentials, Inverse Problems 5 (1989) 767-781.
[15] H. Koyunbakan, A new inverse problem for the di usion operator, Applied Mathematics Letters, 19 (2006) 995-999.
[16] H. Koyunbakan and E.S. Panakhov, Inverse problem for a singular di erential operator, Mathematical and Computer Modeling, 47 (2008) 178-185.
[17] N. Levinson, The inverse Sturm-Liouville problem, Mat. Tiddskr. 3 (1949) 25-30.
[18] B.M. Levitan, Inverse Sturm-Liouville Problems, VNU Science Press, 1987.
[19] V.A. Marchenko, Sturm-Liouville operators and applications, American Mathematical Society, 2011.
[20] J.R. McLaughlin, Analytical methods for recovering coecients in di erential equations from spectral data, SIAM Rev. 28 (1986) 53-72.
[21] K. Mochizuki and I. Trooshin, Inverse problem for interior spectral data of the dirac operator, Comm. Korean Math. Soc. 16, No. 3 (2001) 437-442.
[22] K. Mochizuki and I. Trooshin, Inverse problem for interior spectral data of the Dirac operator on a nite interval, Publ. RIMS, Kyoto Univ. 38 (2002), 387-395.
[23] O.Sh. Mukhtarov, Mahir Kadakal, and F.S. Muhtarov, On discontinuous Sturm-Liouville problems with transmission conditions, J. Math. Kyoto Univ. (JMKYAZ), 44-4 (2004) 779-798.
[24] Y. Pingwang, An interior inverse problem for Sturm-Liouville operator with eigenparameter dependent boundary conditions, TAMKANG J. Math., Volume 42, Number 3, 395-403, Autumn 2011.
[25] M. Shahriari and A. Jodayree Akbarfam, Inverse Sturm-Liouville problem with discontinuity conditions, Sahand Communications in Mathematical Analysis (SCMA) Vol. 1 No. 1(2014), 29-40.
[26] M. Shahriari and A. Jodayree Akbarfam, Inverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions, Caspian journal of Mathematical Sciences, preprint.
[27] M. Shahriari, A. Jodayree Akbarfama, and G. Teschl, Uniqueness for Inverse Sturm-Liouville Problems with a Finite Number of Transmission Conditions, J. Math. Anal. Appl., 395 (2012) 19-29.
[28] C.T. Shieh and V.A. Yurko, Inverse nodal and inverse spectral problems for discontinuous boundary value problems, J. Math. Anal. Appl. 347 (2008) 266-272.
[29] G. Teschl, Mathematical Methods in Quantum Mechanics; With Applications to Schrodinger Operators, Graduate Studies in Mathematics 99, Amer. Math. Soc., Providence, RI, 2009.
[30] C.F. Yang, Hochstadt-Lieberman theorem for Dirac operator with eigenparameter dependent boundary conditions, Nonlinear Analysis, 74(2011)2475-2484.
[31] C.F. Yang, Inverse spectral problems for the Sturm-Liouville operator on a d-star graph, J. Math. Anal. Appl. 365 (2010) 742-749.
[32] C.F. Yang and X.P. Yang, An interior inverse problem for the Sturm-Liouville operator with discontinuous conditions, Applied Mathematics Letters, 22 (2009) 1315-1319.
[33] V. Yurko, Integral transforms connected with discontinuous boundary value problems, Int. Trans. Spec. Functions, 10 (2000) 141-164.
[34] C. Willis, Inverse Sturm-Liouville problems with two discontinuities, Inverse Problems I (1985) 263-289.