Document Type : Research Paper

**Author**

Department of Mathematics, Faculty of Science, Azarbaijan Shahid Madani University, P.O.Box 53751-71379, Tabriz, Iran.

**Abstract**

In this article, the notion of $n-$derivation is introduced for all integers $n\geq 2$. Although all derivations are $n-$derivations, in general these notions are not equivalent. Some properties of ordinary derivations are investigated for $n-$derivations. Also, we show that under certain mild condition $n-$derivations are derivations.

**Keywords**

**Main Subjects**

*Complete normed algebras*, Springpr-Verlag, New York, 1973.

*Banach Algebra and Automatic Continuity*, London Mathematical Society Monographs, Volume 24, Clarendon Press, Oxford, 2000.

*Derivations into iterated duals of Banach algebras*, Studia Math., 128 (1998), 19-54.

*Linear operators*, Part I, New York, Interscience, 1958.

*Homomorphisms and derivations on weighted convolution algebras*, J. London Math. Soc., 21 (1980), 149-161.

*n-Homomorphism*, Bull. Iranian Math. Soc., 31(1) (2005), 13-23.

*Local derivations on C*, Trans. Amer. Math. Soc., 353 (2000), 313-325.

^{*}algebras are derivations*Derivations of Banach algebras*, In Seminars on analytic functions, Vol. 2, Princeton Univ. Press, Princeton, 1958.

*Approximately local derivations*, J. London Math. Soc., 71(2) (2005), 759-778.

*Continuous derivations on Banach algebras*, Proc. Amer. Math. Soc., 20 (1969), 166-170.

*Derivations on commutative normed algebras*, Math. Ann., 129 (1955) 260-264.

*A Banach algebra which is an ideal in the second dual space*, Sci. Rep. Niigata Univ. Ser., A 11 (1974), 95-101.