Document Type : Research Paper


Department of Mathematics, Sirjan University of Technology, Sirjan, Iran.


An object $X$ of a category $\mathbf{C}$ with finite limits is called exponentiable if the functor $-\times X:\mathbf{C}\rightarrow \mathbf{C}$ has a right adjoint. There are many characterizations of the exponentiable  spaces in the category $\mathbf{Top}$ of topological spaces. Here, we study the exponentiable objects in the category $\mathbf{STop}$ of soft topological spaces which is a generalization of the category  $\mathbf{Top}$. We investigate  the exponentiability problem and give a characterization of exponentiable soft spaces. Also we
give the definition of exponential topology on the lattice of soft open sets of a soft space and present some characterizations of it.


Main Subjects

[1] J. Adamek, H. Herrlich, and G.E. Strecker, Abstract and concrete categories, John Wiely and Sons Inc., New York, 1990.
[2] H. Akta¸s and N. Cagman, Soft sets and soft groups, Inform. Sci., 177 (2007) 2726-2735.
[3] A. Aygunoglu and H. Aygun, Some notes on soft topological spaces, Neural. Comput. Appl., 21 (2011) 113-119.
[4] N. Cagman and S. Enginoglu, Soft set theory and uni-int decision making, European J. Oper. Res., 207 (2010) 848-855.
[5] N. Ca¢gman and S. Enginoglu, Soft matrix theory and its decision making, Comput. Math. Appl., {59} (2010) 3308-3314.
[6] N. Ca¢gman, S. Karata¸s and S. Enginoglu, Soft topology, Comput. Math. Appl., 62 (2011) 351-358.
[7] M.H. Escard´o and R. Heckmann, Topologies on spaces of continuous functions, Topology Proc., 26(2) (2001-2002)  545-564.
[8] M.H. Escardo, J. Lawson, and A. Simpson, Comparing Cartesian closed categories of (core) compactly generated spaces, Topology Appl., 143 (2004) 105-145.
[9] F. Feng, Y.B. Jun, and X. Zhao, Soft semirings, Comput. Math. Appl., 56(10) (2008) 2621-2628.
[10] N. Georgiou and A.C. Megaritis, Soft set theory and topology, Appl. Gen. Topol., 15(1) (2014) 93-109.
[11] N. Georgiou, A.C. Megaritis,  and V.I. Petropoulos, On soft topological spaces, Appl. Math. Inf. Sci., 7(5) (2013) 1889-1901.
[12] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott, Continuous Lattices and Domains, Cambridge University Press, 2003.
[13] S. Hussain and B. Ahmad, Some properties of soft topological spaces, Comput. Math. Appl., {62} (2011) 4058-4067.
[14] O. Kazanci, S. Yilmaz, and S. Yamak, Soft Sets and Soft BCH-Algebras, Hacet. J.  Math.  Stat., 39(2) (2010) 205-217.
[15] P.K. Maji, A.R. Roy, and R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002) 1077-1083.
[16] W.K. Min, A note on soft topological spaces, Comput. Math. Appl., 62 (2011) 3524-3528.
[17] D.A. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999) 19-31.
[18] D.A. Molodtsov, The description of a dependence with the help of soft sets, J. Comput. Syst. Sci. Int.,  40(6) (2001) 977-984.
[19] D.A. Molodtsov, The theory of soft sets (in Russian), URSS Publishers, Moscow, 2004.
[20] D.A. Molodtsov, V.Y. Leonov, and D.V. Kovkov, Soft sets technique and its application, Nechetkie Sistemy i Myagkie Vychisleniya,  1(1) (2006) 8-39.
[21] D. Pei and D. Miao, From soft sets to information systems, In: X. Hu, Q. Liu, A. Skowron, T.Y. Lin, R.R. Yager, B. Zhang, eds., Proceedings of Granular Computing, IEEE, 2 (2005) 617-621.
[22] M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011) 1786-1799.
[23] Y. Shao and K. Qin, The lattice structure of the soft groups, Procedia Engineering, 15 (2011) 3621-3625.
[24] I. Zorlutuna, M. Akdag, W.K. Min, and S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. Inform., 3(2) (2012) 171-185.
[25] Y. Zou and Z. Xiao, Data analysis approaches of soft sets under incomplete information, Knowl. Base. Syst., 21 (2008) 941-945.