[1] Y.I. Alber, C.E. Chidume and H. Zegeye, Regularization of nonlinear ill-posed equations with accretive operators, Fixed Point Theory and Appl., 1 (2005), pp. 11-33.

[2] R.P. Agarwal, Y.J. Cho, J. Li and N.J. Huang, Stability of iterative procedures with errors approximating common fixed points for a couple of quasi-contractive mappings in q-uniformly smooth Banach spaces, J. Math. Anal. Appl., 272 (2002), pp. 435-447.

[3] A. Bnouhachem, M.A. Noor and T.M. Rassias, Three-steps iterative algorithms for mixed variational inequalities, Appl. Math. Comput., 183 (2006), pp. 436-446.

[4] S.S. Chang, Some results for asymptotically pseudocontractive mappings and asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 129 (2001), pp. 845-853.

[5] C.E. Chidume, A.U. Bello, M.E. Okpala and P. Ndambomve, Strong convergence theorem for fixed points of nearly nniformly L-Lipschitzian Asymptotically Generalized $Phi$-hemicontractive mappings, Int. J. Math. Anal., 9 (2015), pp. 2555-2569.

[6] C.E. Chidume and C.O. Chidume, Convergence theorems for fixed points of uniformly continuous generalized $Phi$-hemi-contractive mappings, J. Math. Anal. Appl., 303 (2005), pp. 545-554.

[7] C.E. Chidume and C.O. Chidume, Convergence theorem for zeros of generalized Lipschitz generalized phi-quasi-accretive operators, Proc. Amer. Math. Soc., 134 (2006), pp. 243-251.

[8] R.C. Chen, Y.S. Song and H. Zhou, Convergence theorems for implicit iteration process for a finite family continuous pseudocontractive mappings, J. Math. Anal. Appl., 314 (2006), pp. 701-706.

[9] Y.J. Cho, H.Y. Zhou and G. Guo, Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings, Comput. Math. Appl., 47 (2004), pp. 707-717.

[10] P. Chuadchawna, A. Farajzadeh and A. Kaewcharoen, On convergence theorems for two generalized nonexpansive multivalued mappings in hyperbolic spaces, Thai J. Math., 17 (2019), pp. 445-461.

[11] P. Chuadchawna, A. Farajzadeh and A. Kaewcharoen, Fixed-point approximations of generalized nonexpansive mappings via generalized M-iteration process in hyperbolic spaces, Int. J. Math. Math. Sci., (2020), pp. 1-8, article ID 6435043.

[12] P. Chuadchawna, A. Farajzadeh and A. Kaewcharoen, Convergence theorems for total asymptotically nonexpansive single-valued and quasi nonexpansive multi-valued mappings in hyperbolic spaces, J. Appl. Anal., 27 (2021), pp. 129-142.

[13] G. Das and J.P. Debata, Fixed points of Quasi-nonexpansive mappings, Indian J. Pure. Appl. Math., 17 (1986), pp. 1263-1269.

[14] L.C. Deng, P. Cubiotti and J.C. Yao, Approximation of common fixed points of families of nonexpansive mappings, Tai. J. Math., 12 (2008), pp. 487-500.

[15] L.C. Deng, P. Cubiotti and J.C. Yao, An implicit iteration scheme for monotone variational inequalities and fixed point problems, Nonlinear Anal., 69 (2008), pp. 2445-2457.

[16] L.C. Deng, S. Schaible and J.C. Yao, Implicit iteration scheme with perturbed mapping for equilibrium problems and fixed point problems of finitely many nonexpansive mappings, J. Optim. Theory Appl., 139 (2008), pp. 403-418.

[17] R. Glowinski and P. Le-Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM, Philadelphia, 1989.

[18] S. Haubruge, V.H. Nguyen and J.J. Strodiot, Convergence analysis and applications of the Glowinski-Le-Tallec splitting method for finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl., 97 (1998), pp. 645-673.

[19] F.Gu, Convergence theorems for $phi$-pseudocontractive type mappings in normed linear spaces, Northeast Math. J., 17 (2001), pp. 340-346.

[20] F. Gu, Strong convergence of an implicit iteration process for a finite family of uniformly $L$-Lipschitzian mapping in Banach spaces, J. Ineq. and Appl., doi:10.1155/2010/801961.

[21] S. Ishikawa, Fixed points by a new iteration method, Proceeding of the America Mathematical society, 4 (1974), pp. 157-150.

[22] S.H. Khan and W. Takahashi, Approximating common fixed points of two asymptotically nonexpansive mappings, Sci. Math. Jpn., 53 (2001), pp. 143-148.

[23] S.H. Khan, I. Yildirim and M. Ozdemir, Some results for finite families of fniformly $L$-Lipschitzian mappings in Banach paces, Thai J. Math., 9 (2011), pp. 319-331.

[24] J.K. Kim, D.R. Sahu and Y.M. Nam, Convergence theorems for fixed points of nearly uniformly $L$-Lipschitzian asymptotically generalized $Phi$-hemicontractive mappings, Nonlinear Anal., 71 (2009), pp. 2833-2838.

[25] G. Lv, A. Rafiq and Z. Xue, Implicit iteration scheme for two phi-hemicontractive operators in arbitrary Banach spaces, Journal of Ineq. and Appl., 2013, 2013:521.

[26] E.U. Ofoedu, Strong convergence theorem for uniformly L-Lipschitzian asymptotically pseudocontractive mapping in a real Banach space, J. Math. Anal. Appl., 321 (2006), pp. 722-728.

[27] M.A. Noor, T.M. Kassias and Z. Huang, Three-step iterations for nonlinear accretive operator equations, J. Math. Anal. Appl., 274 (2001), pp. 59-68.

[28] M.O. Osilike, Iterative solution of nonlinear equations of the $phi$-strongly accretive type, J. Math. Anal. Appl., 200 (1996), pp. 259-271.

[29] M.O. Osilike and B.G. Akuchu, Common fixed points of finite family of asymptotically pseudocontractive mappings, Fixed Point Theory and Appl., 2004 (2004), pp. 81-88.

[30] M.O. Osilike, S.C. Aniagbosor and B.G. Akuchu, Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces, Panam. Math. J., 12 (2002), pp. 77-88.

[31] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Sci., 4 (2003), pp. 506-510.

[32] A. Rafiq, On convergence of implicit iteration scheme for two hemicontractive mappins, Sci. Int. (Lahore), 24 (2012), pp. 431-434.

[33] A. Rafiq and M. Imdad, Implicit Mann Iteration Scheme for hemicontractive mapping, J. Indian Math. Soc., 81 (2014), pp. 147-153.

[34] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austr. Math. Soc., 43 (1991), pp. 153-159.

[35] J. Schu, Iterative construction of fixed point of asymptotically nonexpansive mappings, J. Math. Anal. Appl., 158 (1991), pp. 407-413.

[36] H.F. Senter and W.G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44 (1974), pp. 375-380.

[37] N. Shahzad and A. Udomene, Approximating common fixed points of two asymptotically quasinonexpansive mappings in Banach spaces, Fixed Point Theory Appl., (2006), pp. 1-10, article ID 18909.

[38] Z.H. Sun, Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl., 286 (2003), pp. 351-358.

[39] S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 311 (2005), pp. 506-517.

[40] W. Takahashi, Iterative methods for approximation of fixed points and their applications, J. Oper. Res. Soc. Jpn., 43 (2000), pp. 87-108.

[41] W. Takahashi and T. Tamura, Limit theorems of operators by convex combinations of nonexpansive retractions in Banach spaces, J. Approx. Theory, 91 (1997), pp. 386-397.

[42] B.S. Thakur, Weak and strong convergence of composite implicit iteration process, Appl. Math. Comput., 190 (2007), pp. 965-973.

[43] B.S. Thakur, Strong Convergence for Asymptotically generalized $Phi$-hemicontractive mappings, ROMAI J., 8 (2012), pp. 165-171.

[44] H.K. Xu and R.G. Ori, An implicit iteration process for nonexpansive mapping, Num. Fun. Anal. Optim., 22 (2001), pp. 767-773.

[45] Y. Yao, Convergence of three-step iterations for asymptotically nonexpansive mappings, Appl. Math. Comput., 187 (2007), pp. 883-892.

[46] L. P. Yang, Convergence theorem of an implicit iteration process for asymptotically pseudocontractive mappings, Bull. of the Iran. Math. Soc., 38 (2012), pp. 699-713.

[47] L.P. Yang and G. Hu, Convergence of implicit iteration process with random errors, Acta Math. Sinica (Chin. Ser.), 51 (2008), pp. 11-22.

[48] L.C. Zeng, On the approximation of fixed points for asymptotically nonexpansive mappings in Banach spaces, Acta Math. Sci., 23 (2003), pp. 31-37.

[49] L.C. Zeng, On the iterative approximation for asymptotically pseudocontractive mappings in uniformly smooth Banach spaces, Chinese Math. Ann., 26 (2005), pp. 283-290.