[1] G.A. Anastassiou, Fuzzy approximation by fuzzy convolution type operators, Comput. Math. Appl., 48(9) (2004), pp. 1369-1386.

[2] A. Asama, H. Dutta and P.N. Natarajan, An introductory course in summability thoery, Wiley, Hoboken, 2017.

[3] T. Bag and S.K. Samanta, A comparative study of fuzzy norms on a linear space, Fuzzy Sets Syst., 159(6) (2008), pp. 670-684.

[4] L.C. Barros, R.C. Bassanezi and P.A. Tonelli, Fuzzy modelling in population dynamics, Ecol. Model., 128(1) (2000), pp. 27-33.

[5] P. Debnath and M. Sen, Some completeness results in terms of infinite series and quotient spaces in intuinionistic fuzzy $n$-normed linear spaces, J. Intell. Fuzzy Syst., 26(2) (2014), pp. 975-982.

[6] P. Debnath and M. Sen, Some results of calculus for functions having values in an intuinionistic fuzzy $n$-normed linear space, J. Intell. Fuzzy Syst., 26(6) (2014), pp. 2983-2991.

[7] H. Dutta and B.E. Rhoades, Current topics in summability thoery and applications, Springer, Berlin, 2016.

[8] M.A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl., 69(1) (1979), pp. 205-230.

[9] C. Felbin, Finite dimensional fuzzy normed linear spaces, Fuzzy Sets Syst., 48(2) (1992), pp. 239-248.

[10] A. George and P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets Syst., 64(3) (1994), pp. 395-399.

[11] V. Gregori, S. Romaguera and P. Veeramani, A note on intuitionistic fuzzy metric spaces, Chaos Solit. Fractals, 28(4) (2006), pp. 902-905.

[12] R. Giles, A computer program for fuzzy reasoning, Fuzzy Sets Syst., 4(3) (1980), pp. 221-234.

[13] L. Hong and J.Q. Sun, Bifurcations of fuzzy nonlinear dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 11(1) (2006), pp. 1-12.

[14] G. Jager, Fuzzy uniform convergence and equicontinuity, Fuzzy Sets Syst., 109(2) (2000), pp. 187-198.

[15] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst., 12(3) (1984), pp. 215-229.

[16] A.K. Katsaras, Fuzzy topological vector spaces, Fuzzy Sets Syst., 12(2) (1984), pp. 143-154.

[17] F. Lael and K. Nourouzi, Some results on the {IF-normed spaces, Chaos Solit. Fractals, 37(3) (2008), pp. 931-939.

[18] J. Madore, Fuzzy physics, Ann. Phys., 219 (1992), pp. 187-198.

[19] A. Narayanan, S. Vijayabalaji and N. Thillaigovindan, Intuitionistic fuzzy bounded linear operators, Iranian J. Fuzzy Syst., 4(1) (2007), pp. 89-101.

[20] R. Saadati and J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solit. Fractals, 27(2) (2006), pp. 331-344.

[21] M. Sen and P. Debnath, Lacunary statistical convergence in intuitionistic fuzzy $n$-normed linear spaces, Math. Comput. Model., 54(11-12) (2011), pp. 2978-2985.

[22] M. Sen and P. Debnath, Statistical convergence in intuinionistic fuzzy $n$-normed linear spaces, Fuzzy Inf. Eng., 3(3) (2011), pp. 259-273.

[23] O. Talo and F. Basar, Necessary and sufficient {Tauberian conditions for the *A*^{r} method of summability, Math. J. Okayama Univ., 60 (2018), pp. 209-219.

[24] O. Talo and E. Yavuz, Cesaro summability of sequences in intuitionistic fuzzy normed spaces and related {Tauberian theorems, Soft Comput. (2020), doi:10.1007/s00500-020-05301-z.

[25] S. Vijayabalaji, N. Thillaigovindan and Y.B. Jun, Intuitionistic fuzzy $n$-normed linear space, Bull. Korean. Math. Soc., 44(2) (2007), pp. 291-308.

[26] K. Wu, Convergences of fuzzy sets based on decomposition theory and fuzzy polynomial function, Fuzzy Sets Syst., 109(2) (2000), pp. 173-185.

[27] J.Z. Xiao and X.H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets Syst., 133(3) (2003), pp. 389-399.

[28] Y. Yilmaz, On some basic properites of differentiation in intuitionistic fuzzy normed spaces, Math. Comput. Model., 52(3-4) (2010), pp. 448-458.

[29] L.A. Zadeh, Fuzzy sets, Inform. Cont., 8(3) (1965), pp. 338-353.