Document Type : Research Paper


Department of Applied Science and Humanities, Assam University, Silchar, Cachar, Assam - 788011, India.


The concept of summability plays a central role in finding formal solutions of partial differential equations. In this paper, we introduce the concept of Cesàro summability in an intuitionistic fuzzy $n$-normed linear space (IFnNLS). We show that Cesàro summability method is regular in an IFnNLS, but  Cesàro summability does not imply usual convergence in general. Further, we search for additional conditions under which the converse holds.


[1] G.A. Anastassiou, Fuzzy approximation by fuzzy convolution type operators, Comput. Math. Appl., 48(9) (2004), pp. 1369-1386.
[2] A. Asama, H. Dutta and P.N. Natarajan, An introductory course in summability thoery, Wiley, Hoboken, 2017.
[3] T. Bag and S.K. Samanta, A comparative study of fuzzy norms on a linear space, Fuzzy Sets Syst., 159(6) (2008), pp. 670-684.
[4] L.C. Barros, R.C. Bassanezi and P.A. Tonelli, Fuzzy modelling in population dynamics, Ecol. Model., 128(1) (2000), pp. 27-33.
[5] P. Debnath and M. Sen, Some completeness results in terms of infinite series and quotient spaces in intuinionistic fuzzy $n$-normed linear spaces, J. Intell. Fuzzy Syst., 26(2) (2014), pp. 975-982.
[6] P. Debnath and M. Sen, Some results of calculus for functions having values in an intuinionistic fuzzy $n$-normed linear space, J. Intell. Fuzzy Syst., 26(6) (2014), pp. 2983-2991.
[7] H. Dutta and B.E. Rhoades, Current topics in summability thoery and applications, Springer, Berlin, 2016.
[8] M.A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl., 69(1) (1979), pp. 205-230.
[9] C. Felbin, Finite dimensional fuzzy normed linear spaces, Fuzzy Sets Syst., 48(2) (1992), pp. 239-248.
[10] A. George and P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets Syst., 64(3) (1994), pp. 395-399.
[11] V. Gregori, S. Romaguera and P. Veeramani, A note on intuitionistic fuzzy metric spaces, Chaos Solit. Fractals, 28(4) (2006), pp. 902-905.
[12] R. Giles, A computer program for fuzzy reasoning, Fuzzy Sets Syst., 4(3) (1980), pp. 221-234.
[13] L. Hong and J.Q. Sun, Bifurcations of fuzzy nonlinear dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 11(1) (2006), pp. 1-12.
[14] G. Jager, Fuzzy uniform convergence and equicontinuity, Fuzzy Sets Syst., 109(2) (2000), pp. 187-198.
[15] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst., 12(3) (1984), pp. 215-229.
[16] A.K. Katsaras, Fuzzy topological vector spaces, Fuzzy Sets Syst., 12(2) (1984), pp. 143-154.
[17] F. Lael and K. Nourouzi, Some results on the {IF-normed spaces, Chaos Solit. Fractals, 37(3) (2008), pp. 931-939.
[18] J. Madore, Fuzzy physics, Ann. Phys., 219 (1992), pp. 187-198.
[19] A. Narayanan, S. Vijayabalaji and N. Thillaigovindan, Intuitionistic fuzzy bounded linear operators, Iranian J. Fuzzy Syst., 4(1) (2007), pp. 89-101.
[20] R. Saadati and J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solit. Fractals, 27(2) (2006), pp. 331-344.
[21] M. Sen and P. Debnath, Lacunary statistical convergence in intuitionistic fuzzy $n$-normed linear spaces, Math. Comput. Model., 54(11-12) (2011), pp. 2978-2985.
[22] M. Sen and P. Debnath, Statistical convergence in intuinionistic fuzzy $n$-normed linear spaces, Fuzzy Inf. Eng., 3(3) (2011), pp. 259-273.
[23] O. Talo and F. Basar, Necessary and sufficient {Tauberian conditions for the Ar method of summability, Math. J. Okayama Univ., 60 (2018), pp. 209-219.
[24] O. Talo and E. Yavuz, Cesaro summability of sequences in intuitionistic fuzzy normed spaces and related {Tauberian theorems, Soft Comput. (2020), doi:10.1007/s00500-020-05301-z.
[25] S. Vijayabalaji, N. Thillaigovindan and Y.B. Jun, Intuitionistic fuzzy $n$-normed linear space, Bull. Korean. Math. Soc., 44(2) (2007), pp. 291-308.
[26] K. Wu, Convergences of fuzzy sets based on decomposition theory and fuzzy polynomial function, Fuzzy Sets Syst., 109(2) (2000), pp. 173-185.
[27] J.Z. Xiao and X.H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets Syst., 133(3) (2003), pp. 389-399.
[28] Y. Yilmaz, On some basic properites of differentiation in intuitionistic fuzzy normed spaces, Math. Comput. Model., 52(3-4) (2010), pp. 448-458.
[29] L.A. Zadeh, Fuzzy sets, Inform. Cont., 8(3) (1965), pp. 338-353.