[1] H. Agahi and M. A. Yaghoobi, A Minkowski type inequality for fuzzy integrals, Journal of Uncertain Systems, 4 (3) (2010), pp. 187-194.

[2] H. Agahi, Y. Ouyang, R. Mesiar, E. Pap and M. Strboja, Holder and Minkowski type inequalities for pseudo-integral, Appl. Math. Comput., 217 (2011), pp. 8630-8639.

[3] R.P. Agarwal and S.S. Dragomir, An application of Hayashiâs inequality for differentiable functions, Comput. Math. Appl., 32 (1996), pp. 95-99.

[4] N. Balakrishnan and T. Rychlik, Evaluating expectation sof L-statistics by the Steffensen inequality, Metrika, 63(3) (2006), pp. 371-384.

[5] L. Bougoffa, On Minkowski and Hardy integral inequalities, Journal of Inequalities in Pure and Applied Mathematics, 7(2) (2006), article 60.

[6] P.S. Bullen, A dictionary of inequalities, Addison Wesley Longman Inc, (1998).

[7] J. Caballero and K. Sadarangani, Fritz Carlsonas inequality for fuzzy integrals, Comput. Math. Appl., 59(8) (2010), pp. 2763-2767.

[8] T.Y. Chen, H.L. Chang and G.H. Tzeng, Using fuzzy measures and habitual domains to analyze the public attitude and apply to the gas taxi policy, Eur. J. Oper. Res., 137 (2002), pp. 145-161.

[9] D. Cordero-Erausquin, R.J. Mc-Cann and M. Schmuckenschlaager, Prekopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields and optimal transport, Annals de la Faculte des sciences de Toulouse, XV (4) (2006), pp. 613-635.

[10] B. Daraby, Investigation of a Stolarsky type inequality for integrals in pseudo-analysisFractional, Fract. Calc. Appl. Anal., 13 (5) (2010), pp. 467-473.

[11] B. Daraby, Generalization of the Stolarsky type inequality for pseudo-integrals, Fuzzy Sets Syst., 194 (1) (2012), pp. 90-96.

[12] B. Daraby, Generalization of the Stolarsky type inequality for pseudo-integrals, Fuzzy Sets Syst., 194 (2012), pp. 90-96.

[13] B. Daraby, Markov type integral inequality for Pseudo-integrals, Casp. J. Appl. Math. Ecol. Econ., 1 (1) 2013, pp. 13-23.

[14] B. Daraby and L. Arabi, Related Fritz Carlson type inequality for Sugeno integrals, Soft Comput., 17 (2013), pp. 1745-1750.

[15] B. Daraby and F. Ghadimi, General Minkowsky type and related inequalities for seminormed fuzzy integrals, Sahand Commun. Math. Anal., 1(1) (2014), pp. 9-20.

[16] B Daraby, A. Shafiloo and A. Rahimi, Geberalizations of the Feng Qi type inequality for Pseudo-integral, Gazi University Journal of Science, 28(4) (2015), pp. 695-702.

[17] B. Daraby, F. Rostampour and A. Rahimi, Hardy's Type Inequality For Pseudo-Integrals, Acta Univ. Apulensis, Math. Inform., 42 (2015), pp. 53-65

[18] B. Daraby, H. Ghazanfary Asll and I. Sadeqi, Favard’s inequality for seminormed fuzzy integral and semiconormed fuzzy integral, Mathematica, 58 (81) (2016), pp. 39–50.

[19] B. Daraby, A Convolution Type Inequality For pseudo-Integrals, Acta Univ. Apulensis, Math. Inform., 48 (2016), pp. 27-35.

[20] B. Daraby, Results Of The Chebyshev Type Inequality For Pseudo-Integral, Sahand Commun. Math. Anal., 4 (1) (2016), [pp.] 91-100.

[21] B. Daraby and A. Rahimi, Jensen type inequality for seminormed fuzzy integrals, Acta Univ. Apulensis, Math. Inform., 46 (2016), pp. 1-8.

[22] B. Daraby, H. Ghazanfary Asll and I. Sadeqi, General related inequalities to Carlson-type inequality for the Sugeno integral, Appl. Math. Comput., 305 (2017), pp. 323-329.

[23] B. Daraby, Generalizations of the Well-Known Chebyshev Type Inequalities for Pseudo-Integrals, Gen. Math. Notes, 38 (1) (2017), pp. 32-45.

[24] B. Daraby, H. Ghazanfary Asll and I. Sadeqi, General related inequalities to Carlson-type inequality for the Sugeno integral, Appl. Math. Comput., 305 (15) (2017), pp. 323-329.

[25] B. Daraby, A, Shafiloo and A. rahimi, Carlson Type Inequality For Choquet-Like Expectation, Acta Univ. Apulensis, Math. Inform., 49 (2017), pp. 23-36.

[26] B. Daraby, H. Ghazanfary Asll and I. Sadeqi, Gronwall's Inequality For Pseudo-Integral, An. Univ. Oradea, Fasc. Mat., XXIV (1) (2017), pp. 67-74.

[27] B. Daraby, F. Rostampour and A. Rahimi, Minkowski type inequality for fuzzy and pseudo-integrals, Tbil. Math. J., 10 (2) (2017), pp. 243-258.

[28] B. Daraby, A. Shafiloo and A. Rahimi, General Lyapunov type inequality for Sugeno integral, J. Adv. Math. Stud., 11 (1) (2018), pp. 37-46.

[29] B. Daraby, F. Rostampour and A. Rahimi, Minkowski type inequality for fuzzy and pseudo-integrals, Tibilis Mathematical Journal., 10 (4) (2017), pp. 159-174.

[30] B. Daraby, H. Ghazanfary Asll and I. Sadeqi, General related inequalities to Carlson-type inequality for the Sugeno integral, Appl. Math. Comput., 305 (15) (2017), pp. 323-329.

[31] B. Daraby, General Related Jensen type Inequalities for fuzzy integrals, TWMS J. Pure Appl. Math., 8 (1) (2018), pp. 1-7.

[32] B. Daraby, H. Ghazanfary Asll and I. Sadeqi, Favard’s inequality for pseudo-integral, Asian-Eur. J. Math., 11 (1) (2018)

[33] B. Daraby, F. Rostampour, A.R. Khodadadi and A. Rahimi, Related Gauss-Winkler Type Inequality for Fuzzy and Pseudo-Integrals, Thai J. Math., 19 (2) (2021), pp. 713-724.

[34] B. Daraby, R. Mesiar, F. Rostampour and A. Rahimi, Related Thunsdorff type and FrankPick type inequalities for Sugeno integral, Appl. Math. Comput., 414 (2022).

[35] B. Daraby, R. Mesiar, F. Rostampour and A. Rahimi, Related Thunsdorff type and Frank-P-ck type inequalities for Sugeno integral, Appl. Math. Comput., 414: 126683 (2022).

[36] B. Daraby, F. Rostampour, A.R. Khodadadi, A. Rahimi and R. Mesiar, Polya-Knopp and Hardy-Knopp type inequalities for Sugeno integral, arXiv:1910.03812v1.

[37] A. Flores-Franulic and H. Roman-Flores, A Chebyshev type inequality for fuzzy integrals, Appl. Math. Comput., 190 (2007), pp. 1178-1184.

[38] A. Flores-Franulic, H. Roman-Flores and Y. Chalco-Cano, A note on fuzzy integral inequality of Stolarsky type, Appl. Math. Comput., 196 (2008), pp. 55-59.

[39] L. Gajek and A. Okolewski, Steffensen type inequalities for order and record statistics, Ann. Univ. Mariae Curie-Skaodowska Lublin-Polonia, 16 (1997), pp. 41-59.

[40] R.J. Gardner, The Brunn-Minkowski inequality, Bull. Am. Math. Soc., 39 (2002), pp. 355-405.

[41] I. Gentil, From the Prekopa-Leindler inequality to modified logarithmic Sobolev inequality, Ann. Fac. Sci. Toulouse, Math., 17 (2) (2008), pp. 291-308.

[42] D.H. Hong, Gauss-Winikler inequality for Sugeno integrals, Int. J. Pure Appl. Math., 116 (2) (2017), pp. 479-487.

[43] J.Y. Lu , K.S. Wu and J.C. Lin, Fast full search in motion estimation by hierarchical use of Minkowski's inequality, Pattern Recognition, 31 (1998), pp. 945-952.

[44] R. Mesiar and Y. Ouyang, General Chebyshev type inequalities for Sugeno integrals, Fuzzy Sets Syst., 160 (2009), pp. 58-64.

[45] H. Minkowski, Geometrie der Zahlen, Teubner, Leipzig, 1910.

[46] Y. Ouyang, J. Fang and L. Wang, Fuzzy Chebyshev type inequality, Internatinal Journal of Approximate Reasoning, 48 (2008), pp. 829-835.

[47] U.M. Ozkan, M.Z. Sarikaya and H. Yildirim, Extensions of certain integral inequalities on time scales, Appl. Math. Lett., 21 (2008), pp. 993-1000.

[48] E. Pap, Null-additive Set Functions, Kluwer, Dordrecht, 1995.

[49] A. Prekopa, Stochastic Programming, Kluwer, Dordretch, 1995.

[50] D. Ralescu and G. Adams, The fuzzy integral, J. Appl. Math. Anal. Appl., 75 (1980), pp. 562-570.

[51] H. Roman-Flores, A. Flores-Franulic and Y. Chalco-Cano, The fuzzy integral for monotone functions, Appl. Math. Comput., 185 (2007), pp. 492-498.

[52] H. Roman-Flores and Y. Chalco-Cano, Sugeno integral and geometric inequalities, International Journal of Uncertainity, Fuzziness and Knowledge-Based Systtem, 15 (2007), pp. 1-11.

[53] H. Roman-Flores, A. Flores-Franulic and Y. Chalco-Cano, A Jensen type inequality for fuzzy integrals, Inf. Sci., 177 (2007), pp. 3192-3201.

[54] H. Roman-Flores, A. Flores-Franulic and Y. Chalco-Cano, A convolution type inequality for fuzzy integrals, Appl. Math. Comput., 195 (2008), pp. 94-99.

[55] H. Roman-Flores, A. Flores-Franulic and Y. Chalco-Cano, A note on fuzzy integral inequality of Stolarsky type, Appl. Math. Comput., 196 (2008), pp. 55-59.

[56] H. Roman-Flores, A. Flores-Franulic and Y. Chalco-Cano, A Hardy-type inequality for fuzzy integrals, Appl. Math. Comput., 204 (2008), pp. 178-183.

[57] W. Rudin, Principles of Mathematical Analysis, 3rd Edition, McGraw-Hill, New York, 1976.

[58] W. Rudin, Real and Complex Analysis, 3rd Edition, McGraw-Hill, New York, 1987.

[59] H. Roman-Flores, A. Flores-Franulic and Y. Chalco-Cano, A Hardy-type inequality for fuzzy integrals, Appl. Math. Comput., 204 (2008), pp. 178-183.

[60] I. Sadeqi, H. Ghazanfary Asll and B. Daraby, Gauss type inequality for Sugeno integral, J. Adv. Math. Stud., 10 (2) (2017), pp. 167-173.

[61] R. Srivastava, Some families of integral, trigonometric and other related inequalities, Appl. Math. Inf. Sci., 5 (2011), pp. 342-360.

[62] M. Sugeno, Theory of fuzzy integrals and its applications, Ph.D. thesis, Tokyo Institute of Technology, 1974.

[63] Z. Wang and G. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992.