[1] F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Wellposedness in optimization and related topics (Gargnano, 1999), Set-Valued Anal., 9 (2001), pp. 3–11.

[2] P.K. Anh, D.V. Thong and V.T. Dung, A strongly convergent Mann‑type inertial algorithm for solving split variational inclusion problems, Optim. Eng., 2020 (2020), 21 pages.

[3] K. Aoyama, Y Kimura, W. Takahashi and M. Toyoda, On a strongly nonexpansive sequence in Hilbert spaces, J. Nonlinear Convex Anal., 8 (2007), pp. 471-489.

[4] O.A. Boikanyo, The viscosity approximation forward-backward splitting method for zeros of the sum of monotone operators, Abstr. Appl. Anal., 2016 (2016), 10 pages.

[5] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., 18 (2002), pp. 441-453.

[6] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004), pp. 103-120.

[7] C. Byrne, Y. Censor, A. Gibali and S. Reich, Weak and strong convergence of algorithms for the split common null point problem, J. Nonlinear Convex Analysis, 13 (2012), pp. 759-775.

[8] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in product space, Numer. Algorithms, 8 (1994), pp. 221-239.

[9] Y. Censor, T. Bortfeld, B. Martin and A. Trofimov, A unified approach for inversion problems in intensity- modulated radiation therapy, Phys. Med. Biol., 51 (2006), pp. 2353-2365.

[10] Y. Censor and A. Segal, The split common fixed point problem for directed operators, J. Convex Anal., 16 (2009), pp. 587-600.

[11] J. Chen, A. Pitea, L.J. Zhu, Split systems of nonconvex variational inequalities and fixed point problems on uniformly prox-regular sets, Symmetry, 11 (2019), 1279, 13 pages.

[12] V. Dadashi, M. Postolache, Hybrid proximal point algorithm and applications to equilibrium problems and convex programming, J. Optim. Theory Appl., 174 (2017), pp. 518-529.

[13] V. Dadashi, M. Postolache, Forward-backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators, Arab. J. Math., 9 (2020), pp. 89-99.

[14] J. Eckstein and D.P. Bertsckas, On the Douglas Rachford splitting method and the proximal point algorithm for maximal monotone operators, Appl. Math. Mech.-Engl. Math. Programming, 55 (1992), pp. 293-318.

[15] L.S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappins in Banach spaces, J. Math. Anal. Appl., 194 (1995), pp. 114-125.

[16] G. Lopez, V. Martin-Marquez, F. Wang and H.K. Xu, Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Probl., 28 (2012), 18 pages.

[17] D. Lorenz and T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vis., 51 (2015), pp. 311-325.

[18] P.E. Mainge, Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 325 (2007), pp. 69-479.

[19] W.R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc., 4 (1953), pp. 506–510.

[20] G. Marino and H.K. Xu, Convergence of generalized proximal point algorithm, Comm. Pure Appl. Anal., 3 (2004), pp. 791-808.

[21] B. Martinet, Regularisation d'inequations variationnelles par approximations successives, Revue Francaise d'Informatique et de Recherche Operationnelle, 3 (1970), pp. 154-158.

[22] A. Moudafi and M. Thera, Finding a zero of the sum of two maximal monotone operators, J. Optimiz. Theory App., 94 (1997), pp. 425-448.

[23] A. Moudafi, Viscosity approximating methods for fixed point problems, J. Math. Anal. Appl., 241 (2000), pp. 46-55.

[24] A. Moudafi, Split monotone variational inclusions, J. Optimiz. Theory App., 150 (2011), pp. 275-283.

[25] M.O. Osilike and D.I. Igbokwe, Weak and strong convergence theorems for fixed points of pseudocontractions and solutions of monotone type operater equations, Comput. Math. Appl., 40 (2000), pp. 559-567.

[26] N. Petrot and M. Suwannaprapa, Inertial viscosity-type algorithms for a class of split feasibility problems and fixed point problems in Hilbert spaces, Linear Nonlinear Anal., 6 (2020), pp. 385-403.

[27] B. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), pp. 1-17.

[28] X. Qin, S.Y. Cho and L. Wang, A regularization method for treating zero points of the sum of two monotone operators, Fixed Point Theory A., 2014 (2014), 10 pages.

[29] S. Suantai, N. Pholasa and P. Cholamjiak, The modified inertial relaxed CQ algorithm for solving the split feasibility problems, J. Ind. Manag. Optim., 14 (2018), pp. 1595-1615.

[30] W. Takahashi, Nonlinear functional analysis: Fixed point theory and its applications, Yokohama Publishers, Yokohama Japan, 2000.

[31] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optimiz. Theory App., 118 (2003), pp. 417-428.

[32] W. Takahashi, Introduction to nonlinear and convex analysis, Yokohama Publishers, Yokohama Japan, 2009.

[33] W. Takahashi, H.K. Xu and J.C. Yao, Iterative methods for generalized split feasibility problems in Hilbert spaces, Set-Valued Var. Anal., 23 (2015), pp. 205-221.

[34] B. Tan, Z. Zhou, S. Li, Strong Convergence of Modified inertial Mann algorithms for nonexpansive mappings, Mathematics, 8 (2020), 11 pages.

[35] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, Siam J. Control Optim., 38 (2000), pp. 431-446.

[36] Y. Wang, J. Chen, A. Pitea, The split equality fixed point problem of demicontractive operators with numerical example and application, Symmetry, 12 (2020), 902, 14 pages.

[37] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), pp. 240-256.

[38] H.K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Probl., 26 (2010), 17 pages.

[39] H.K. Xu, Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl., 150 (2011), pp. 360-378.

[40] J. Zhu, J. Tang, S. Chang, Strong convergence theorems for a class of split feasibility problems and fixed point problem in Hilbert spaces, J. Inequal. Appl., 2018 (2018), 15 pages.