[1] D. Averna and G. Bonanno, A three critical points theorem and its applications to ordinary Dirichlet problems, Topol. Methods Nonlinear Anal, 22 (2003), pp. 93-103.
[2] G. Bonanno and G.M. Bisci, Three weak solutions for elliptic Dirichlet problems, J. Math. Anal. Appl, 382 (2011), pp. 1-8.
[3] G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal. 75 (2012), pp. 2992-3007.
[4] M.M. Boureanu, A. Matei and M. Sofonea, Nonlinear problems with $ p(.) $-growth conditions and applications to antiplane contact models, Advanced Nonlinear Studies, 14 (2014), pp. 295-313.
[5] M.M. Boureanu, C. Udrea and D.N. Udrea, Anisotropic problems with variable exponents and constant Dirichlet conditions, Electronic Journal of Differential Equations. (2013), pp. 1-13.
[6] M.M. Boureanu and V.D. R\uadulescu, Anisotropic Neumann problems in Sobolev spaces with variable exponent , Nonlinear Analysis. 75 (2012), pp. 4471-4482.
[7] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer, New York, (2011).
[8] Y. Chen, S. Levine and R. Rao, Variable exponent linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), pp. 1383-1406.
[9] G. Dai, Infinitely many solutions for a Neumann-type differential inclusion problem involving the $p(x)$-Laplacian, Nonlinear Anal.\ 70 (2009), pp. 2297-2305.
[10] F. Della Pietra, N. Gavitone and G. Piscitelli, On the second Dirichlet eigenvalue of some nonlinear anisotropic elliptic operators, Bull. Sci. Math. 155 (2019), pp. 10–32.
[11] L. Diening, P. Harjulehto, P. Hasto and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents,
SPIN Springer's internal project, 2010.
[12] Dusan D. Repovs, Infinitely many symmetric solutions for anisotropic problems driven by nonhomogeneous operators discrete and cotinuous dynamical systems series, (2019), pp. 401-411.
[13] X. Fan, Anisotropic variable exponent Sobolev spaces and $\overrightarrowp(x)$-Laplacian equations, Complex Var. Elliptic Equ. 56 (2011), pp. 623-642.
[14] X. Fan and C. Ji, Existence of Infinitely many solutions for a Neumann problem involving the $p(x)$-Laplacian , J. Math. Anal. Appl. 334 (2007), pp. 248-260.
[15] X. Fan and D. Zhao, On the spaces $ L^p(x)(\Omega) $ and $ W^m,p(x)(\Omega) $, J. Math. Anal. Appl. 263 (2001), pp. 424-446.
[16] X. Fan, Q.H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), pp. 1843-1852.
[17] C. Farkas, J. Fodor and A. Krist\'aly, Anisotropic elliptic problems involving sublinear terms, International Symposium on Applied Computational Intelligence and Informatics, IEEE Press, Piscataway (2015), pp. 141–146.
[18] S. Khademloo, G.A. Afrouzi and T. Norouzi Ghara, Infinitely many solutions for anisotropic variable exponent problems, Comp. Var. Ell. Eqs. 63 (2018), pp. 1353-1369.
[19] A.J. Kuridla and M. Zabarankin, Convex functional analysis, Birkhuuser Verlag, Basel. (2005).
[20] M. El Moumni and D. Sidi Mohamed, Entropy and renormalized solutions for some nonlinear anisotropic elliptic equations with variable exponents and L1-data, Moroccan J. of Pure and Appl. Anal. (2021), pp. 277-298.
[21] A. Ourraoui and M. Alessandra Ragusa, An Existence Result for a Class of p(x)—Anisotropic Type Equations, Symmetry 633 (2021).
[22] N. S. Papageorgiou, V. D. Radulescu and D. D. Repovs, Positive solutions for nonlinear Neumann problems with singular terms and convection, J. Math. Pures Appl. 136 (2020), pp. 1–21.
[23] V. Radulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Analysis, (2015), pp. 336-369.
[24] J. Rakosnik, Some remarks to anisotropic Sobolev spaces, I. Beitrage Anal, (1979), pp. 55-68.
[25] J. Rakosnik, Some remarks to anisotropic Sobolev spaces, II. Beitrage Anal, (1981), pp. 127-140.
[26] M. Ruzicka, Electrorheological fluids: modeling and mathematical theory, volume 1748 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, (2000).
[27] D. Stancu-Dumitru, Two nontrivial solutions for a class of anisotropic variable exponent problems, Taiwanese J. Math. (2012), pp. 1205-1219.
[28] Zeidler, E.: Nonlinear functional analysis and its applications, Vol. II. Springer, Berlin-Heidelberg-New York, (1985).