Document Type : Research Paper


1 Department of Mathematics, Karaj Branch, Islamic Azad University, karaj, Iran.

2 Faculty of Basic Sciences, Babol Noshirvani University of Technology, Babol, Iran.

3 School of Mathematics, Iran University of Science and Technology, Tehran, Iran.


In the present paper, we compute the conservation laws  of the Vaidya-Bonner geodesic space-time metric in a
Riemannian space and carry out the moving frame  method for this metric. We obtain the connection forms and
curvature 2-forms, using the first and second Cartan's structure equations. Finally, the Ricci scalar tensor and the components of Einstein curvature are calculated.


[1] R. Bakhshandeh-Chamazkoti, Symmetry analysis of the charged squashed Kaluza-Klein black hole metric, Math. Meth. Appl. Sci., 39 (2016), pp. 3163-3172.
[2] R. Bakhshandeh-Chamazkoti, Geometry of the curved traversable wormholes of (3 + 1)-dimensional spacetime metric, Math. Meth. Appl. Sci., 39 (2016), pp. 3163-3172.
[3] H. Bokhari, A.H. Kara, A.R. Kashif and F. Zaman, Noether Symmetries Versus Killing Vectors and Isometries of Spacetimes, Int. J. Theor. Phys., 45 (2006), pp. 1029-1039.
[4] H. Bokhari and A.H. Kara, Noether versus Killing symmetry of conformally flat Friedmann metric, Gen. Relativ. Gravit., 39 (2007), pp. 2053-2059.
[5] I.H. Dwivedit and P.S. Joshi, On the Nature of Naked Singularities in Vaidya Spacetimes, Class. Quant. Grav., 6 (11) (1989), pp. 1599-1606.
[6] D. Farrokhi, R. Bakhshandeh-Chamazkoti and M. Nadjafikhah, On the invariance properties of Vaidya-Bonner geodesics via symmetry operators, Int. J. Nonlinear Anal. Appl., 13(1) (2022), pp. 563-571.
[7] N.H. Ibragimov, Elementary Lie group analysis and ordinary differential equations, NewYork: John Wiley \& Sons, 1999.
[8] M. Jafari, A. Zaeim and A. Tanhaeivash, Symmetry Group Analysis and Conservation Laws of the Potential Modified KdV Equation Using the Scaling Method, Int. J. Geom. Methods Mod. Phys., 19(7) (2022), id. 2250098-40.
[9] M. Jafari, A. Zaeim and S. Mahdion, Scaling Symmetry and a New Conservation Law of the Harry Dym Equation, Mathematics Interdisciplinary Research, 6 (2) (2021), pp. 151-158.
[10] M. Jafari, Y.A. Fakhri and M. Khadivar, Densities and fluxes of the conservation laws for the Kuramoto-Sivashinsky equation, J. Linear Topol. Algebra, 11 (01) (2022), pp. 47-54.
[11] D.N. Khan Marwat, A.H. Kara and F.M. Mahomed, Symmetries, Conservation Laws and Multipliers via Partial Lagrangians and Noether's Theorem for Classically Non-Variational Problems, Int. J. Theor. Phys., 46 (2007), pp. 3022-3029.
[12] R. Narain and A.H. Kara, The Noether Conservation Laws of Some Vaidiya Metrics, Int. J. Theor. Phys., 49 (2010), pp. 260-269.
[13] R. Narain and A.H. Kara, Invariance analysis and conservation laws of the wave equation on Vaidya manifolds, Pramana – J. Phys., 77(3) (2011), pp. 555-570.
[14] E. Noether, Invariante variations probleme, Nachr. Akad. Wiss. G\"ottingen, math.-phys. Kl., 2 (1918), pp. 235-257. 
[15] Z.F. Niu and W. BiaoLiu, Hawking radiation and thermodynamics of a Vaidya-Bonner black hole, Res. Astron. Astrophys., 10(1) (2010), pp. 33-38.
[16] M. Tsamparlis and A. Paliathanasis, Lie and Noether symmetries of geodesic equations and collineations, Gen. Relativ. Gravit., 42 (2010), pp. 2957-2980.
[17] S. Hawking, Black hole explosions?, Nature, 248 (1974), pp. 30-31.
[18] S. Yang and D. Chen, Hawking Radiation as Tunneling from the Vaidya-Bonner Black Hole, Int. J. Theor. Phys., 46 (2007), pp. 2923-2927.