Document Type : Research Paper


1 Laboratory of Mathematics, University of Sidi Bel-Abb\`{e}s, PO Box 89, 22000, Sidi Bel-Abb\`es, Algeria.

2 Faculty of Technology, Hassiba Benbouali University, P.O. Box 151 Chlef 02000, Algeria.

3 University of Bechar, PO Box 417, 08000, Bechar, Algeria.

4 Division of Applied Mathematics, Thu Dau Mot University, Thu Dau Mot City 820000, Binh Duong Province, Vietnam.

5 Department of Mathematics, \c{C}ankaya University, 06790, Etimesgut, Ankara, Turkey.


This paper deals with the existence and uniqueness of the mild solution of the fractional integro-differential equations with non-instantaneous impulses and state-dependent delay. Our arguments are based on the fixed point theory. Finally, an example to confirm of the results  is provided.


[1] S. Abbas, M. Benchohra and G.M. N'Guerekata, Topics in Fractional Differential Equations, Springer, New York, 2012.
[2] S. Abbas, M. Benchohra and G.M. N'Guerekata, Advanced Fractional Differential and Integral Equations, Nava Science Publishers, New York, 2015.
[3] R.S. Adiguzel, U. Aksoy, E. Karapinar and I.M. Erhan, On the solution of a boundary value problem associated with a fractional differential equation, Math. Meth. Appl. Sci., (2020), pp. 1-12.
[4] R.S. Adiguzel, U. Aksoy, E. Karapinar and I.M. Erhan, Uniqueness of solution for higherorder nonlinear fractional differential equations with multi-point and integral boundary conditions, RACSAM, (2021), pp. 115-155.
[5] H. Afshari and E. Karapınar, A discussion on the existence of positive solutions of the boundary value problems via $\psi$-Hilfer fractional derivative on $b$-metric spaces, Adv. Difference Equ., 616 (2020), pp. 1-11.
[6] H. Afshari, S. Kalantari and E. Karapinar, Solution of fractional differential equations via coupled fixed point, Electron. J. Differ. Equ., 2015 (2015), pp. 1-12.
[7] B. Alqahtani, H. Aydi, E. Karapınar and V. Rakocevic, A Solution for Volterra Fractional Integral Equations by Hybrid Contractions, Mathematics, 7 (2019).
[8] E. Karapinar, A. Fulga, M. Rashid, L. Shahid and H. Aydi, Large Contractions on QuasiMetric Spaces with an Application to Nonlinear Fractional Differential-Equations, Mathematics, 7 (2019).
[9] E. Karapinar, H.D. Binh, N.H. Luc and N.H. Can, On continuity of the fractional derivative of the time-fractional semilinear pseudo-parabolic systems, Adv. Difference Equ., 70 (2021), pp.1-24. 
[10] K. Aissani and M. Benchohra, Global existence results for fractional integro-differential equations with state-dependent delay, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.)., 62 (2016), pp. 411-422.
[11] K. Aissani and M. Benchohra, Existence results for fractional integro-differential equations with state-dependent delay, Adv. Dyn. Syst. Appl., 9 (2014), pp. 17-30.
[12] R.P. Agarwal, B. De Andrade and G. Siracusa, On fractional integro-difierential equations with state-dependent delay, Comput. Math. Appl., 62 (2011), pp. 1143-1149.
[13] J. M. Appell, A.S. Kalitvin, and P.P. Zabrejko, Partial Integral Operators and Integrodifferential Equations, 230, Marcel and Dekker, Inc., New York, 2000.
[14] D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific Publishing, New York, 2012.
[15] M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, 2, New York, 2006.
[16] K.M. Case and P.F. Zweifel, Linear Transport Theory, Addison-Wesley, Reading, MA 1967.
[17] S. Chandrasekher, Radiative Transfer, Dover Publications, New York, 1960.
[18] M.A. Darwish and S.K. Ntouyas, Semilinear functional differential equations of fractional order with state-dependent delay, Electron. J. Differential Equations, 2009 (2009), pp. 1-10.
[19] L. Debnath and D. Bhatta, Integral Transforms and Their Applications(Second Edition), CRC Press, 2007.
[20] K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, 2010.
[21] J.K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funk. Ekvacioj, 21 (1978), pp. 11-41.
[22] E. Hernandez and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), pp. 1641-1649.
[23] E. Hernandez, A. Prokopczyk and L. Ladeira, A note on partial functional differential equations with state-dependent delay, Nonlinear Anal. RWA, 7 (2006), pp. 510-519.
[24] R. Hilfer, Applications of fractional calculus in physics, Singapore, World Scientific, 2000.
[25] Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Unbounded Delay, Springer-Verlag, Berlin, 1991.
[26] V. Kavitha, P-Z. Wang and R. Murugesu, Existence results for neutral functional fractional differential equations with state dependent-delay, Malaya J. Math., 1 (2012), pp. 50-61.
[27] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, NJ, 1989.
[28] J. E. Lazreg, S. Abbas, M. Benchohra, and E. Karapinar, Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces, Open Math., 19 (2021), pp. 363-372.
[29] P. Li and C.J. Xu , Mild solution of fractional order differential equations with not instantaneous impulses, Open Math., 13 (2015), pp. 436-443.
[30] F. Mainardi, P. Paradisi and R. Gorenflo, Probability distributions generated by fractional diffusion equations, Dordrecht, The Netherlands, 2000.
[31] M. Meghnafi, M. Benchohra and K. Aissani, Impulsive fractional evolution equations with state-dependent delay, Nonlinear Stud., 22 (2015), pp. 659-671.
[32] D.N. Pandey, S. Das and N. Sukavanam, Existence of solution for a second-order neutral differential equation with state dependent delay and non-instantaneous impulses, Int. J. Nonlin. Sci., 18 (2014), pp. 145-155.
[33] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[34] A. Salim, M. Benchohra, J.R. Graef and J.E. Lazreg, Boundary value problem for fractional generalized Hilfer-type fractional derivative with non-instantaneous impulses, Fractal Fract., 5 (2021), pp. 1-21. 
[35] A. Salim, M. Benchohra, E. Karapinar and J.E. Lazreg, Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential equations, Adv. Differ. Equ., 2020 (2020), pp. 1-21. 
[36] A. Salim, M. Benchohra, J.E. Lazreg and J. Henderson, Nonlinear implicit generalized Hilfer-type fractional differential equations with non-instantaneous impulses in Banach spaces, Advances in the Theory of Nonlinear Analysis and its Application, 4 (2020), pp. 332-348.
[37] A. Salim, M. Benchohra, J.E. Lazreg and G. N'Guerekata, Boundary value problem for nonlinear implicit generalized Hilfer-type fractional differential equations with impulses, Abstr. Appl. Anal., 2021 (2021), pp. 1-17. 
[38] A. Salim, M. Benchohra, J.E. Lazreg, J.J. Nieto and Y. Zhou, Nonlocal initial value problem for hybrid generalized Hilfer-type fractional implicit differential equations, Nonauton. Dyn. Syst., 8 (2021), pp. 87-100. 
[39] S.G. Samko, A A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.
[40] Y. Zhou, Fractional Evolution Equations and Inclusions : Analysis and Control, Elsevier Science, 2016.