Document Type : Research Paper


1 Department of Mathematics, Jagannath Barooah College, Jorhat 785001, Assam, India.

2 Department of Mathematics, Tripura University, Suryamaninagar, Agartala799022, Tripura, India.


In this article we have introduced the sequence space $m(\phi,d)$ and $m(M,\phi,d)$ of W. L. C. Sargent type in a metric space $(X, d)$ on generalising the sequence space $m(\phi)$ and we have defined these sequence spaces using the Orlicz function $M$. We have investigated their different properties like solidness, symmetricity, monotone, sequence algebra, completeness etc. We have established some inclusion results involving the space $m(M,\phi,d)$ and some of the existing sequence spaces. We have provided suitable examples and discussed in detail, in order to justify the failure cases and the definitions we have introduced. The results established in this article generalized and unifies several existing results.


[1] T. Bilgin, The sequence space $\ell(p,f,q,s)$ on seminormed spaces, Bull. Calcutta Math. Soc., 86(1994), pp. 295-304.
[2] A. Esi and M. Et, Some new sequence spaces defined by a sequence of Orlicz functions, Indian J. Pure Appl. Math., 31(8)(2000), pp. 967-972.
[3] M. Et, P. Y. Lee and B. C. Tripathy, Strongly almost $(V,\lambda)(\Delta^r)$-summable sequences defined by Orlicz function, Hokkaido Math. J., 35(2006), pp. 197-213.
[4] S. Ercan, On the spaces of $\lambda_r$-almost convergent and $\lambda_r$-almost bounded sequences, Sahand Commun. Math. Anal., 17(3) (2019), pp. 117-130.
[5] A.C. Guler, $I$-convergence in fuzzy cone normed spaces, Sahand Commun. Math. Anal., 18(4) (2021), pp. 57.
[6] B. Hazarika, Strongly almost ideal convergent sequences in a locally convex space defined by Musielak-Orlicz function, Iran. J. Math. Sci. . Inform., 9(2)(2014), pp. 15-35. 
[7] B. Hazarika and A. Esi, On $\phi$-ideal ward continuity, Facta Univ. Ser. Math. Inform., 31(3)(2016), pp. 681-690. 
[8] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), pp. 379-390.
[9] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc., 100 (1986), pp. 161-166.
[10] H. Nakano, Modular sequence spaces, Proc. Japan Acad., 27(9) (1951), pp. 508-512.
[11] P. K. Nath and B. C. Tripathy, Convergent complex uncertain sequences defined by Orlicz function, Ann. Univ. Craiova Math. Comput. Sci. Ser., 46(1) (2019), pp. 139-149.
[12] S. D. Parashar and B. Choudhary, Sequence spaces defined by Orlicz function, Indian J. Pure Appl. Math., 25 (1994), pp. 419-428.
[13] D. Rath and B. C. Tripathy, Characterization of certain matrix operators, J. Orissa Math. Soc., 8 (1989), pp. 121-134.
[14] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25 (1973), pp. 973-978 .
[15] W. L. C. Sargent, Some sequence spaces related to $\ell^p$ spaces, J. Lond. Math. Soc., 35 (1960), pp. 161-171. 
[16] S. Shahraki and A. A. Ledari, A Class of Hereditarily $\ell_p(c_0)$ Banach spaces, Sahand Commun. Math. Anal., 14(1) (2019), pp. 107-116.
[17] B. C. Tripathy, On a class of difference sequences related to the $p$-normed space $\ell^p$, Demonstr. Math., 36(4)(2003), pp. 867-872.
[18] B. C. Tripathy, R. Dey and N. R. Das, Ordered vector valued statistically convergent sequence space, Afr. Mat., 26(2015), pp. 433-441.
[19] B. C. Tripathy and A. J. Dutta, Statistically pre-Cauchy fuzzy real-valued sequences defined by Orlicz function, Proyecciones J. Math., 33(3)(2014), pp. 235-243.
[20] B. C. Tripathy and R. Goswami, Vector valued multiple sequences defined by Orlicz functions, Bol. Soc. Parana. Mat., 33(1)(2015), pp. 67-79.
[21] B. C. Tripathy and B. Hazarika, Some $I$-convergent sequence spaces defined by Orlicz functions, Acta Math. Appl. Sin. Engl. Ser., 27(1)(2011), pp. 149-154. 
[22] B. C. Tripathy and S. Mahanta, On a class of difference sequences related to the $\ell^p$ space defined by Orlicz functions, Math. Slovaca, 57(2)(2007), pp. 171-178.