Document Type : Research Paper


Department of Mathematics, Faculty of Science, Sahand University of Technology, Tabriz, Iran.


Let $X$ be a  Banach  space, $C\subset X$  be  a  closed  convex  set  included  in  a well-based cone $K$, and also let $\sigma_C$ be the support function which is defined on $C$. In this note, we first study the existence of a  bounded base for the cone $K$, then using the obtained results, we find some geometric conditions for the set  $C$,  so that ${\mathop{\rm int}}(\mathrm{dom} \sigma_C) \neq\emptyset$.  The latter is a primary condition for subdifferentiability of the support function $\sigma_C$. Eventually, we study Gateaux differentiability of support  function $\sigma_C$ on two sets, the  polar cone of $K$ and ${\mathop{\rm int}}(\mathrm{dom}  \sigma_C)$.


Main Subjects

[1] C.D. Aliprantis and K.C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, 3rd Edition, Springer-Verlag, Berlin, 2006.
[2] J.M. Borwein and J.D. Vanderwerff, Convex functions: constructions, characterizations and counterexamples, Encyclopedia of Mathematics and its Applications, 109. Cambridge. Univ. Press, Cambridge, 2010.
[3] E. Casini and E. Miglierina, Cones with bounded and unbounded bases and reflexivity, Nonlinear Anal., 72 (2010), pp. 2356-2366.
[4] M. Fabian, P. Habala, P. Hajek, V. Montesinos, and V. Zizler, Banach space theory, the basis for linear and unlinear analysis, CMS Books in Math, Springer, Canada, 2011.
[5] Z.Q . Han, Relationship between solid cones and cones with bases, Optim. Theory Appl., 90 (1996), pp. 457-463.
[6] Z.Q. Han, Remarks on the angle poperty and solid cones, J. Optim. Theory Appl. 82 (1994), pp. 149-157.
[7] G. Isac, Pareto optimization in infinite-dimensional spaces, the importance of nuclear cones, J. Math. Anal. Appl., 182 (1994), pp. 393-404.
[8] J. Jahn, Vector optimization theorem, theory, application and existence, Springer, Verlag Berlin Heidelberg, 2011.
[9] A. Khan, Ch. Christiane, and C. Zalinescu, Set-valued Optimization, An introduction with application, Springer, Verlag Berlin Heidelberg, 2015.
[10] I.A . Polyrakis, Demand functions and reflexivity, J. Math. Anal. Appl., 338 (2008), pp. 695-704.
[11] J.H. Qiu, On Solidness of Polar Cones, J. Optim. Theory Appl., 109 (2001), pp. 199–214.