Document Type : Research Paper


Faculty of Engineering, Ardakan University, P.O. Box 184, Ardakan, Iran.


Let $ \mathcal{H}(\mathbb{D}) $ denote the space of analytic functions on the open unit disc $\mathbb{D}$. For a weight $\mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ \mathcal{W}_\mu ^{(n)} $ is the space of all $f\in \mathcal{H}(\mathbb{D}) $ such that $\sup_{z\in \mathbb{D}}\mu(z)\left|f^{(n)}(z)\right|<\infty.$ Endowed  with the norm
\left\|f \right\|_{\mathcal{W}_\mu ^{(n)}}=\sum_{j=0}^{n-1}\left|f^{(j)}(0)\right|+\sup_{z\in \mathbb{D}}\mu(z)\left|f^{(n)}(z)\right|,
the $n$'th weighted type space is a Banach space.  In this paper, we characterize the boundedness of  generalized weighted composition operators $\mathcal{D}_{\varphi ,u}^m$  from logarithmic Bloch type spaces $\mathcal{B}_{{{\log }^\beta }}^\alpha $ to $n$'th weighted type spaces $ \mathcal{W}_\mu ^{(n)} $, where $u$ and $\varphi$ are analytic functions on  $\mathbb{D}$ and $\varphi(\mathbb{D})\subseteq\mathbb{D}$. We also provide an estimation for the essential norm of these operators.


Main Subjects

[1] K. Attele, Toeplitz and Hankel operators on Bergman one space, Hokkaido Math. J., 21 (1992), pp. 279-293.
[2] K.D. Bierstedt, J. Bonet, and J. Taskinen, Associated weights and spaces of holomorphic functions, Stud. Math., 127 (1998), pp. 137-168.
[3] J. Bonet, P. Domanski, and M. Lindstrom, Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, Canad. Math. Bull., 42 (1999), pp. 139-148.
[4] L. Brown and A.L. Shields, Multipliers and cyclic vectors in the Bloch space, Michigan Math. J., 38 (1991), pp. 141-146.
[5] K. Esmaeili and M. Lindstrom, Weighted composition operators between Zygmund type spaces and their essential norms, Integr. Equ. Oper. Theory, 75 (2013), pp. 473-490.
[6] O. Hyvarinen, M. Kemppainen, M. Lindstrom, A. Rautio, and E. Saukko, The essential norms of weighted composition operators on weighted Banach spaces of analytic function, Integr. Equ. Oper. Theory, 72 (2012), pp. 151-157.
[7] B. MacCluer and R. Zhao, Essential norms of weighted composition operators between Bloch-type spaces, Rocky Mount. J. Math., 33 (2003), pp. 1437-1458.
[8] A. Montes-Rodriguez, Weighted composition operators on weighted Banach spaces of analytic functions, J. London Math. Soc. (3), 61 (2000), pp. 872-884.
[9] S. Ohno, K. Stroethoff, and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mount. J. Math., 33 (2003), pp. 191-215.
[10] H. Qu, Y. Liu, and S. Cheng, Weighted differentiation composition operator from logarithmic Bloch spaces to Zygmund-type spaces, Abstr. Appl. Anal., 2014, Art. ID 832713, 14 pp.
[11] J.C. Ramos-Fernandez, Logarithmic Bloch spaces and their weighted composition operators, Rend. Circ. Mat. Palermo (2), 65 (2016), pp. 159-174.
[12] S. Stevic, On new Bloch-type spaces, Appl. Math. Comput., 215 (2009), pp. 841-849.
[13] S. Stevic, Weighted differentiation composition operators from H and Bloch spaces to nth weighted-type spaces on the unit disk, Appl. Math. Comput., 216 (2010), pp. 3634-3641.
[14] S. Stevic and A.K. Sharma, Iterated differentiation followed by composition from Bloch-type spaces to weighted BMOA spaces, Appl. Math. Comput., 218 (2011), pp. 3574-3580.
[15] M. Tjani, Compact composition operators on some Mobius invariant Banach spaces [Ph.D. thesis], Michigan State University, 1996.
[16] R. Yoneda, The composition operators on weighted Bloch space, Arch. Math. (Basel), 78 (2002), pp. 310-317.
[17] K. Zhu, Bloch type spaces of analytic functions, Rocky Mount. J. Math., 23 (1993), pp. 1143-1177.
[18] X. Zhu, Generalized weighted composition operators from Bers- type spaces into Bloch-type spaces, Math. Inequal. Appl., 17 (2014), pp. 187-195.
[19] X. Zhu, Products of differentiation, composition and multiplication from Bergman type spaces to bers type space, Integ. Tran. Spec. Funct., 18 (2007), pp. 223-231.