Document Type : Research Paper


1 Department of Mathematics, Kerman Branch, Islamic Azad University, Kerman, Iran.

2 Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran.


In this paper, by using the sequence of adjointable operators from pro-C*-algebra $ \mathcal{A} $ into a Hilbert $ \mathcal{A} $-module $ E $. We introduce frames with bounds in pro-C*-algebra $ \mathcal{A} $. New frames in Hilbert modules over pro-C*-algebras are called standard $ \ast $-frames of multipliers. Meanwhile, we study several useful properties of standard $ \ast $-frames in Hilbert modules over pro-C*-algebras and investigate conditions that under which the sequence ${ \{ {h_i} \}_{i \in I} }$ is a standard $ \ast $-frame of multipliers for Hilbert modules over pro-C*-algebras. Also the effect of operators on standard $ \ast $-frames of multipliers for $ E $ is examined. Finally, compositions of standard $ \ast $-frames in Hilbert modules over pro-C*-algebras are studied.


[1] M. Azhini and N. Haddadzadeh, Fusion frames in Hilbert modules over pro-C*-algebras, Int. J. Industrial Math., 5 (2013), pp. 109-118.
[2] P.G. Casazza and G. Kutyniok, Frames of subspaces, Contemp. Math., Amer. Math. Soc., 345 (2004), pp. 87-113.
[3] I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27 (1986), pp. 1271-1283.
[4] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), pp. 341-366.
[5] M. Frank and D.R. Larson, Frames in Hilbert C*-modules and C*-algebras, J. Operator Theory., 48 (2002), pp. 273-314.
[6] N. Haddadzadeh, G-frames in Hilbert pro-C*-modules, Int. Electron. J. Pure Appl. Math., 105 (2015), pp. 727-743.
[7] M. Joita, Hilbert Modules Over Locally C*-Algebras, University of Bucharest Press, ISBN 973737128-3, 2006.
[8] M. Joita, On frames in Hilbert modules over pro-C*-algebras, Topology and its Applications., 156 (2008), pp. 83-92.
[9] A. Khosravi and B. Khosravi, Fusion frames and g-frames in Hilbert C*-modules, Int. J. Wavelets Multiresolution. Inf., 6 (2008), pp. 433-466.
[10] W.L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc., 182 (1973), pp. 443-468.
[11] I. Raeburn and S.J. Thompson, Countably generated Hilbert modules, the Kasparov stabilisation theorem, and frames with Hilbert modules, Proc. Amer. Math. Soc., 131 (2003), pp. 1557-1564.
[12] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl., 322 (2006), pp. 437-452.