Document Type : Research Paper


1 School of Mathematics Shri Mata Vaishno Devi University, Katra-182320, J & K, India

2 Department of Medical Research, China Medical University Hospital, China Medical University (Taiwan), Taichung, Taiwan.

3 Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India


In this paper, we determine the upper and lower bounds for the norm of lower triangular matrix operators on Ces\`{a}ro weighted $(p,v)-$fractional difference sequence spaces of modulus functions. We consider the matrix operators acting between $\ell_{p}(w)$ and $C_{p}(v,\omega,\\\Delta^{(\eta,\ell)},\mathcal{F})$ and identify their bounds and vice-versa. We also investigate the same characteristics for N\"{o}rlund and weighted mean matrix operators.


[1] A. Alotaibi, K. Raj and S.A. Mohiuddine, Some generalized difference sequence spaces defined by a sequence of moduli in n-normed spaces, J. Funct. Spaces, 2015 (2015), Article ID 413850, pp. 1-8.
[2] Y. Altin, Properties of some sets of sequences defined by a modulus function, Acta Math. Sci. Ser. B, 29(2) (2009), pp. 427-434.
[3] P. Baliarsingh, U. Kadak and M. Mursaleen, On statistical convergence of difference sequences of fractional order and related Korovkin type approximation theorems, Quaest. Math., 41(8) (2018), pp. 1117-1133.
[4] P. Baliarsingh, On difference double sequence spaces of fractional order, Indian J. Math., 58(3) (2016), pp. 287-310.
[5] A. Choudhary and K. Raj, Applications of double difference fractional order operators, J. Comput. Anal. Appl., 28 (2020), pp. 94-103.
[6] P. Debnath, Some Results on Cesaro summability in Intuitionistic Fuzzy $ n $-normed linear Spaces, Sahand Commun. Math. Anal., 19(1) (2022), pp. 77-87.
[7] S. Dutta and P. Baliarsingh, A note on paranormed difference sequence spaces of fractional order and their matrix
transformations, J. Egyptian Math. Soc., 22(2) (2014), pp. 249-253.
[8] D. Foroutannia and H. Roopaei, The norms and the lower bounds for matrix operators on weighted difference sequence spaces, U.P.B. Sci. Bull., Series A, 79(2) (2017), pp. 151-160.
[9] A.A. Jagers, A note on Cesaro sequence spaces, Nieuw Arch. Wiskd., 22(3) (1974), pp. 113-124.
[10] G.J.O. Jameson and R. Lashkaripour, Norms of certain operators on weighted $L$ spaces and Lorentz sequence spaces, J. Inequal. Pure Appl. Math., 3(1) (2002), pp. 1-17.
[11] R. Lashkaripour and D. Foroutannia, Extension of Hardy inequality on weighted sequence spaces, J. Sci. Islam. Repub. Iran, 20(2) (2009), pp. 159-166.
[12] P.N. Ng and P.Y. Lee, Cesaro sequence spaces of non-absolute type, Comment. Math., 20(2) (1978), pp. 429-433.
[13] P.N. Ng and P.Y. Lee, On the associate spaces of Cesaro sequence spaces, Nanta Math., 9(2) (1976), pp. 168-170.
[14] J. Meng and L. Mei, Binomial difference sequence spaces of fractional order, J. Inequal. Appl. 2018(1) (2018), pp. 1-8.
[15] H. Nakano, Modular sequence spaces, Proc. Japan Acad. Ser. A Math. Sci., 27(9) (1951), 508-512.
[16] H. Roopaei and D. Foroutannia, A new sequence space and norm of certain matrix operators on this space, Sahand Commun. Math. Anal., 3(1) (2016) pp. 1-12.
[17] K. Raj and A. Choudhary, Applications of Tauberian theorems for Cesaro Orlicz double sequences, U.P.B. Sci. Bull., Series A, 81(3) (2019), pp. 127-138.
[18] K. Raj and C. Sharma, Applications of strongly convergent sequences to Fourier series by means of modulus functions, Acta Math. Hungar., 150(2) (2016), pp. 396-411.
[19] S. Shahraki and A.A. Ledari, A class of hereditarily $\ell_p(c_0)$ Banach space, Sahand Commun. Math. Anal., 14(1) (2019), pp. 107-116.
[20] J.S. Shiue, On the Cesaro sequence spaces, Tamkang J. Math., 1(1) (1970), pp. 19-25.
[21] T. Yaying, B. Hazarika and S.A. Mohiuddine, On difference sequence spaces of fractional-order involving Padovan numbers, Asian-Eur. J. Math., 14(6) (2021), pp. 1-24.
[22] T. Yaying, B. Hazarika and M. Mursaleen, On sequence space derived by the domain of q-Cesaro matrix in $\ell_p$ space and the associated operator ideal, J. Math. Anal. Appl., 14(1) (2021), pp.1-22.
[23] T. Yaying, B. Hazarika and S.A. Mohiuddine, Domain of Padovan $q$-difference matrix in sequence spaces $\ell_p$ and $\ell_\infty$, Filomat 36(3) (2022) pp. 905-919.