[1] G.A. Anastassiou, General fractional Hermite--Hadamard inequalities using $m$-convexity and $(s,m)$-convexity, Front. Time Scal. Ineq., 1 (2016), pp. 237-255.
[2] M.A. Ardıc, A.O. Akdemir and E. Set, On New Integral Inequalities via Geometric-Arithmetic Convex Functions with Applications, Sahand Commun. Math. Anal. 19(2) (2022), pp. 1-14.
[3] H. Budak and M.Z. Sarikaya, Hermite-Hadamard type inequalities for s-convex mappings via fractional integrals of a function with respect to another function, Fasc. Math., 27 (2016) pp.25-36, 2016.
[4] H. Budak, On Fejer type inequalities for convex mappings utilizing fractional integrals of a function with respect to another function, Result. Math., 74(1) (2019), 29.
[5] H. Budak, New Hermite-Hadamard type inequalities for convex mappings utilizing generalized fractional integrals, Filomat, 33(8) (2019), pp. 2329-2344.
[6] H. Budak, H. Kara, R Kapucu, New midpoint type inequalities for generalized fractional integral, Comput. Methods Differ. Equ., 10(1) (2022), pp. 93-108.
[7] H. Budak, C.C. Bilişik, M.Z. Sarikaya, On Some New Extensions of Inequalities of Hermite-Hadamard Type for Generalized Fractional Integrals, Sahand Commun. Math. Anal., 19(2) (2022), pp. 65-79.
[8] S.I. Butt, M. Umar, S. Rashid, A. O. Akdemir and Y. M. Chu, New Hermite--Jensen--Mercer-type inequalities via $k$ -fractional integrals, Adv. Difference Equ., 1 (2020), pp. 1-24.
[9] B. Celik, M.E. Ozdemir, A.O. Akdemir and E. Set, Integral Inequalities for Some Convexity Classes via Atangana-Baleanu Integral Operators, TJOI, 5(2) (2021), 82-92.
[10] H. Chen and U.N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals,J. Math. Anal. Appl. 446 (2017), pp. 1274-1291
[11] Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal. 1 (2010), pp. 51-58.
[12] B. Daraby, . Generalizations of Some Inequalities for Sugino Integrals, Sahand Commun. Math. Anal., 19(3) (2022), pp. 141-168.
[13] J. Deng and J. Wang, Fractional Hermite-Hadamard inequalities for ($\alpha ,m$)-logarithmically convex functions. J. Inequal. Appl. 2013 (2013), art. 364.
[14] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monog., Vic. Univ., 2000.
[15] S.S. Dragomir, R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. lett., 11(5) (1998), pp. 91-95.
[16] S.S. Dragomir, Some inequalities of Hermite-Hadamard type for symmetrized convex functions and Riemann-Liouville fractional integrals, RGMIA Res. Rep. Coll., 20 (2017), 15.
[17] S. Erden, Weighted inequalities involving conformable integrals and its applications for random variable and numerical integration, Filomat 34(8) 2020, pp. 2785-2796.
[18] A. Ekinci, M. Ozdemir, Some new integral inequalities via Riemann-Liouville integral operators, Appl. Comput. Math., 18(3) (2019), pp. 288-295.
[19] G. Farid, A. ur Rehman and M. Zahra, On Hadamard type inequalities for $k$-fractional integrals, Konuralp J. Math., 4(2) 2016, 79-86.
[20] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Springer Verlag, Wien (1997), 223-276.
[21] J. Hadamard, Etude sur les proprietes des fonctions entieres en particulier d'une fonction consideree par Riemann, J. Math. Pures Appl. 58 (1893), pp. 171-215.
[22] M. Iqbal, M.I. Bhatti and K. Nazeer, Generalization of inequalities analogous to Hermite-Hadamard inequality via fractional integrals, Bull. Korean Math. Soc., 52(3) (2015), pp. 707-716.
[23] I. Iscan and S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Compt., 238 (2014), pp. 237-244.
[24] I. Iscan, Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals, Stud. Univ. Babeș-Bolyai, Math., 60(3) (2015), pp. 355-366
[25] M. Jleli and B. Samet, On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function, J. Nonlinear Sci. Appl., 9 (2016), pp. 1252-1260.
[26] U.N. Katugampola, New approach to a generalized fractional integrals, Appl. Math. Comput., 218(4) (2011), pp. 860-865.
[27] M.A. Khan, T.U. Khan, Parameterized Hermite-Hadamard Type Inequalities For Fractional Integrals, TJOI, 1(1), 2017, 26–37.
[28] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.
[29] U.S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147(5) (2004), pp. 137-146.
[30] A.R. Khan, H. Nasir and S.S. Shirazi, Weighted Cebysev Type Inequalities for Double Integrals and Application, Sahand Commun. Math. Anal., 18(4) (2021), pp. 59-72.
[31] M. Kunt, İ. İşcan, Fractional Hermite–Hadamard–Fejer type inequalities for GA-convex functions, TJOI, 2(1), 1–20, 2018.
[32] S. Miller and B. Ross, An introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, USA, 1993, pp.2.
[33] S. Mubeen, S. Iqbal and M. Tomar, On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function and $k$-parameter, J. Inequal. Math. Appl., 1 (2016), pp. 1-9.
[34] M.A. Noor and M.U. Awan, Some integral inequalities for two kinds of convexities via fractional integrals, TJMM, 5(2) (2013), pp. 129-136.
[35] M.E. Ozdemir, New Refinements of Hadamard Integral inequlaity via k-Fractional Integrals for p-convex function, Turkish J. Science, 6(1) (2021), pp. 1-5.
[36] M.E. Ozdemir, M. Avci-Ardinc and H. Kavurmaci-Onalan, Hermite-Hadamard type inequalities fors-convex ands-concave functions via fractional integrals, Turkish J. Science, 1 (2016), pp. 28-40.
[37] J.E. Pecaric, F. Proschan and Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
[38] I. Podlubni, Fractional Differential Equations, Academic Press, San Diego, 1999.
[39] S. Peng, W. Wei and J-R. Wang, On the Hermite-Hadamard inequalities for convex functions via Hadamard fractional integrals, Facta Univ., Ser. Math. Inf., 29(1) (2014), pp. 55-75.
[40] M.Z. Sarikaya and H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 7(2) (2016), pp. 1049-1059.
[41] M.Z. Sarikaya, E. Set, H. Yaldiz and N. Basak, Hermite -Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, 57 (2013), pp. 2403-2407.
[42] M.Z. Sarikaya and H. Budak, Generalized Hermite-Hadamard type integral inequalities for fractional integrals, Filomat, 30(5) (2016), pp. 1315-1326.
[43] M.Z. Sarikaya, A. Akkurt , H. Budak, M.E. Yildirim and H. Yildirim, Hermite-hadamard's inequalities for conformable fractional integrals. RGMIA Res. Rep. Col., 19(83), (2016).
[44] E. Set, M.Z. Sarikaya, M.E. Ozdemir and H. Yildirim, The Hermite-Hadamard's inequality for some convex functions via fractional integrals and related results, JAMSI, 10(2) (2014), pp. 69-83.
[45] E. Set, M.Z. Sarikaya, M.E. Ozdemir and H. Yildirim, The Hermite-Hadamard's inequality for some convex functions via fractional integrals and related results, JAMSI, 10(2) (2014).
[46] E. Set, J. Choi and B. Celik, New Hermite-Hadamard type inequalities for product of different convex functions involving certain fractional integral operators, J. Math. and Comp. Sci., 18(1) (2018), pp. 29-36
[47] E. Set, A. Gozpnar, A. Ekinci, Hermite-Hadamard type inequalities via confortable fractional integrals, Acta Math. Univ. Comen., 86 (2017), art. 309320.
[48] J. Wang, X. Li, M. Feckan, Y. Zhou, Hermite--Hadamard-type inequalities for Riemann--Liouville fractional integrals via two kinds of convexity, Appl. Anal., 92(11) (2012), pp. 2241--2253.
[49] J.R. Wang, X. Li, C. Zhu, Refinements of Hermite-Hadamard type inequalities involving fractional integrals, Bull. Belg. Math. Soc. Simon Stevin, 20 (2013), pp. 655-666.
[50] J.R. Wang, C. Zhu, Y. Zhou, New generalized Hermite--Hadamard type inequalities and applications to special means, J. Inequal. Appl. 2013 (2013), art. 325.
[51] Y. Zhang and J. Wang, On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals, J. Inequal. Appl. 2013 (2013), art. 220.
[52] Z. Zhang, W. Wei, J. Wang, Generalization of Hermite-Hadamard inequalities involving Hadamard fractional integrals, Filomat, 29(7) (2015), pp. 1515-1524.
[53] Z. Zhang, J.R. Wang and J.H. Deng, Applying GG-convex function to Hermite-Hadamard inequalities involving Hadamard fractional integrals, Int. J. Math. Comput. Sci., 2014 (2014), art. 136035.