[1] K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35(1972), pp.171-174.

[2] I.K. Agwu and D.I. Igbokwe, Approximation of common fixed points of finite family of mixed-type total asymptotically quasi-pseudocontractive-type mappings in uniformly convex Banach spaces, Advances in Inequalities and Applications, 2020(2020), pp.4-16.

[3] F.E. Browder, Convergence theorem for sequence of nonlinear operators in Banach space, Math. Z., 74(1967), pp.201-225 . doi.10.1007/BF01109805.

[4] F.E. Browder W.V. and Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20(1967), pp.197-228.

[5] C.E. Chidume, Geometric properties of Banach space and nonlinear iterations, Springer Verlag, Califoria, (2009).

[6] G. Marino and H.K. Xu, A general iterative method for nonexpansive mappings in Hilbert space, J. Math. Anal. Appl., 318(2006), pp.143-152.

[7] A. Moudafi, Viscosity approximation methods for fixed point problems, J. Math. Anal. Appl., 241(2000), pp.46-55.

[8] H.K. Xu, Iterative algorithm for nonlinear operators, J. London. Math. Soc., 66(2)(2002), pp.240-256.

[9] H.K. Xu, Viscosity approximation method for nonexpansive mappings, J. Math. Anal. Appl., 298(2004), pp.279-291.

[10] S. Kitahara and W. Takahashi, Image recovery by convex combination of sunny nonexpansive retractions, Topol. Mathods Nonlinear Anal., 2(2)(1993), pp.333-342.

[11] X. Qin and Y.C. Cho, Iterative methods for generalized equilibrium problems and fixed point problems with applications, Nonlinear Anal. Real World Appl., (2010), pp.2963-2972.

[12] G.S. Saluja, Convergence to common fixed point of two asymptotically quasi-nonexpansive mappings in the intermediate sense in Banch spaces, Mathematica Morvica, 19(2015), pp.33-48.

[13] A.N. Iusem and A.R. De Pierro, On the convergence of Hans method for convex programming quadratic objective, Math. Program., 52(1991), pp.265-284.

[14] P. Kumama, N. Petrot and R. Wangkeeree, A hybrid iterative scheme for equilibrium problems and fixed point problems for asymptotically $k$-strictly pseudocontractions, J. Comput. Math. Appl., 233(2010), pp.2013-2026.

[15] T.M.M. Sow, et al, Algorithms for a system of variational inequality problems and fixed point problems with demicontractive mappings, J. Nig. Math. Soc., 38(2019), pp.341-361.

[16] F.O. Isiogugu, Demiclosedness principle and approximation theorem for certain class of multivalued mappings in Hilbert spaces, Fixed Point Theory Appl., (2013), Airticle ID 61(2013).

[17] F.O. Isiogugu, On the approximation of fixed points for multivalued pseudocontractive mappings in Hilbert spaces,Fixed Point Theory Appl., 2016(2016), 59 pages.

[18] S.H. Khan and W. Takahashi, Approximating common fixed points of two asymptotically nonexpansive mappings, Sci. Math. Jpn, 53(1)(2001), pp.143-148.

[19] S.H. Khan and L. Yildifim, Fixed points of multivalued nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., 73(2012), pp.1687-1812.

[20] W.A. Kirk and A. Massa, Remarks on asymptotic and Chybeshev centers, Houston. J. Math., 16(3)(1990), pp.179-182.

[21] T.C. Lim, A fixed point theorem for weakly inward multivalued contractions, J. Math. Anal. Appl., 249(2000), pp.323-327.

[22] J.T. Markin, Continuous dependence of fixed point sets, Proc. Amer. Math. Soc., 38(1973), pp.547-547.

[23] J.T. Markin, A fixed point theorem for set valued mappings, Bull. Amer. Math. Soc., 74(1968), pp.639-640.

[24] S.B. Nadler, Multivalued mappings, Pac. J. Math., 30(1969), pp.475-488.

[25] P.L. Combettes and S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6(2005), pp.117-136.

[26] S. Takahashi and W. Takahashi, Viscosity approximation method for equilibrium problem and fixed problem in Hilbert spaces, J. Math. Anal. Appl.,331(2007), pp.505-515.

[27] S. Plubtieng and R. Punpaeng, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 336(2007), pp.455-469.

[28] A. Tada and W. Takahashi, Weak and strong convergence theorems for nonexpansive mappings and an equilibrium problem, J. Optim. Theory. Appl., 113(2007), pp.359-370.

[29] H.K. Xu, An iterative approach to quadratic optimisation, J. Optim. Theory. Appl., 116(2003), pp.659-678.

[30] H. Zegeye and N. Shahzad, Convergence of Mann's type iteration for generalised asymptotically nonexpansive mappings, Comput. Math. Appl., 62 (2011), pp.4007-4014.

[31] P.E. Mainge, Strong convergent of projected subgradient for nonsmooth and nonstrictly convex minimization, Set~-~Valued Anal. , 16(2008), pp.899-912.

[32] M. De la sen, On some convergence properties of the modified lshikawa scheme for asymptotically demicontractive mappings with metricial parameterizing sequences, Hindawi J. Math., 2018(2018), 13 pages.

[33] Y. Shehu, Strong convergence theorems for fixed point problems, varietional inequality problems and systems of generalised equilibrium problems, Math. Comput. Model., 54(2011), pp.1510-1522.

[34] A. Abkar and M. Tavakkoli, Anew algorithm for two finite families of demicontractive mappings and equilibrium problems, Appl. Math. Comput., 266(2015), pp.491-500.

[35] B. Ali and L. Umar, Approximation of solutions of generalised mixed equilibrium problems and fixed points of multivalued asymptotically

quasi-nonexpansive mappings, J. Nig. Math. Soc., 38(2019), pp.569-592.

[36] N. Djitte and M. Sene, Convegence theorems for fixed points of multivalued

mappings in Hilbert space, lnt. J. Anal. ,2014(2014), pp.7-17.

[37] A. Banyawat and S. Suantai, Common fixed points of a countable family of multivalued quasi-nonexpansive mappings in uniformly convex Banach spaces,

[38] T. Hu, J. Huang andE. Rhoades, A general principle for lshikawa iteration for for multivalued mappings, Indian J. Pure Appl. Math., 28(1997), pp. 1691-1098.

[39] M.O. Osilike and S.C. Aniagbosor, Fixed points of asymptotically demicontractive mappings in certain Banach spaces, Indian J. Pure Math. Appl., 32(10)(2001), pp.1519-1537.

[40] F. O. lsogugu, C. Izuchukwu and C.C. Okeke, New iteration scheme for approximating a common fixed point od finite family of mappings, Hindawi J. Math., 2020(2020), 4 pages.

[41] G.C. Ugwunnadi, O.T. Mewomo and C. lzuchukwu, Convergence theorem for finite family of asymptotically demicontractive multivalued mappings in CAT(0) spaces, J. Math. Anal. Appl., 26(2020), pp.117-130.

[42] F. Zhang, H. Zhang and Y. Zhang, New iterative algoritm for two infinite families of multivalued quasi-nonexpansive mappings in uniformly convex Banach spaces, J. Appl. Math., 2013(2013), 7 pages.

[43] l.K. Agwu, D.I. Igbokwe and A. E. Ofem, Approximation of common solutions of fixed point problem for $\alpha$-hemicontractive mapping, split equilibrium problem and variational inequality problem, Advances. Fixed Point Theory, (2021),11 pages.

[44] E. Blum and W. Oetti, From optimization and variational inequality to equilibrium problems, Math. Student, 63(1994), pp.123-145.

[45] M. Eslamian, Hybrid method for equilibrium problems of finite families of nonexpansive semigroups, Revista de la Real Academia de Ciecias Exactas Fisicas aturales , 2012(2012), pp.30-45.

[46] M. Zhaoli and L. Wang, Demiclosedness principle and convergence theorems for asymptotically strictly pseudononspreading mappings and mixed equilibrium problems, Fixed Point Theory Appl., 2014(2014), pp.104-145.

[47] L. Qihou, Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings, Nonlinear Anal., 26(1996), pp.1835-1842.

[48] M.O. Osilike and E.E. Chima, Mixed equilibrium and multipleset split feasiblity problems for asymptotically pseudonospreading mappings, Commun. Optimiz. Theory, 2020 (2020), pp.113-140.

[49] M.O. Osilike, et al, Demiclosedness principle and convergence theorems for $k$-strictly asymptotically pseudocontractive maps, J. Math. Anal. Appl.,326(2007), pp.1334-1345.

[50] U. Singthong, and S. Suantai, Equilibrium problems and fixed point problems for nonspreading-type mappings in Hilbert spaces, Int. J. Nonliear. Anal. Appl. ,2(2011), pp.51-61.

[51] M.E. Samei, Some Fixed point results on intuitionistic fuzzy metric spaces with a graph, Sahand Commun. Math. Anal., 13(2019), pp.141-152.

[52] Z. Baitiche, et al, Monotone iterative method for $\Psi$-Caputo fractional differential equation with nonlinear boundary conditions, Fractal and Fract., 5(2021), pp. 123-143.

[53] M.E. Samei, Convergence of an iterative scheme for multifunctions on fuzzy metric spaces, Sahand Commun. Math. Anal., 15(2019), pp.91-106.

[54] J. Alzabut et al, Asymptotic stability of nonlinear discrete fractional pantograph equations with non-Local initial conditions, Symmetry, 13(2021), pp.473.

[55] I.K. Agwu and D.I. Igbokwe, A Modified proximal point algorithm for finite families of minimization problems and fixed point problems of asymptotically quasi-nonexpansive multivalued mappings Punjab University Journal of Mathematics ,54(8)(2022), pp.495-522.