Document Type : Research Paper


Department of Mathematics, Micheal Okpara University of Agriculture, Umudike, Umuahia, Abia State Nigeria.


ln this paper, we introduce a new class of mapping called asymptotically demicontractive multivalued mapping in the setting of a real Hilbert space. Furthermore, a new iteration scheme was constructed, and it was proved that our algorithm converges strongly to the common element of solutions of an equilibrium problem and the set of common fixed points of two finite families of type-one asymptotically demicontractive multivalued mappings without any sum conditions imposed on the finite family of the control sequences. Also, we provided a numerical example to demonstrate
the implementablity of our proposed iteration technique.  Our results improve, extend and generalize many recently announced results in the current


[1] K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35(1972), pp.171-174.
[2] I.K. Agwu and D.I. Igbokwe, Approximation of common fixed points of finite family of mixed-type total asymptotically quasi-pseudocontractive-type mappings in uniformly convex Banach spaces, Advances in Inequalities and Applications, 2020(2020), pp.4-16.
[3] F.E. Browder, Convergence theorem for sequence of nonlinear operators in Banach space, Math. Z., 74(1967), pp.201-225 . doi.10.1007/BF01109805.
[4] F.E. Browder W.V. and Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20(1967), pp.197-228.
[5] C.E. Chidume, Geometric properties of Banach space and nonlinear iterations, Springer Verlag, Califoria, (2009).
[6] G. Marino and H.K. Xu, A general iterative method for nonexpansive mappings in Hilbert space, J. Math. Anal. Appl., 318(2006), pp.143-152.
[7] A. Moudafi, Viscosity approximation methods for fixed point problems, J. Math. Anal. Appl., 241(2000), pp.46-55.
[8] H.K. Xu, Iterative algorithm for nonlinear operators, J. London. Math. Soc., 66(2)(2002), pp.240-256.
[9] H.K. Xu, Viscosity approximation method for nonexpansive mappings, J. Math. Anal. Appl., 298(2004), pp.279-291.
[10] S. Kitahara and W. Takahashi, Image recovery by convex combination of sunny nonexpansive retractions, Topol. Mathods Nonlinear Anal., 2(2)(1993), pp.333-342.
[11] X. Qin and Y.C. Cho, Iterative methods for generalized equilibrium problems and fixed point problems with applications, Nonlinear Anal. Real World Appl., (2010), pp.2963-2972.
[12] G.S. Saluja, Convergence to common fixed point of two asymptotically quasi-nonexpansive mappings in the intermediate sense in Banch spaces, Mathematica Morvica, 19(2015), pp.33-48.
[13] A.N. Iusem and A.R. De Pierro, On the convergence of Hans method for convex programming quadratic objective, Math. Program., 52(1991), pp.265-284.
[14] P. Kumama, N. Petrot and R. Wangkeeree, A hybrid iterative scheme for equilibrium problems and fixed point problems for asymptotically $k$-strictly pseudocontractions, J. Comput. Math. Appl., 233(2010), pp.2013-2026.
[15] T.M.M. Sow, et al, Algorithms for a system of variational inequality problems and fixed point problems with demicontractive mappings, J. Nig. Math. Soc., 38(2019), pp.341-361.
[16] F.O. Isiogugu, Demiclosedness principle and approximation theorem for certain class of multivalued mappings in Hilbert spaces, Fixed Point Theory Appl., (2013), Airticle ID 61(2013).
[17] F.O. Isiogugu, On the approximation of fixed points for multivalued pseudocontractive mappings in Hilbert spaces,Fixed Point Theory Appl., 2016(2016), 59 pages.
[18] S.H. Khan and W. Takahashi, Approximating common fixed points of two asymptotically nonexpansive mappings, Sci. Math. Jpn, 53(1)(2001), pp.143-148.
[19] S.H. Khan and L. Yildifim, Fixed points of multivalued nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., 73(2012), pp.1687-1812.
[20] W.A. Kirk and A. Massa, Remarks on asymptotic and Chybeshev centers, Houston. J. Math., 16(3)(1990), pp.179-182.
[21] T.C. Lim, A fixed point theorem for weakly inward multivalued contractions, J. Math. Anal. Appl., 249(2000), pp.323-327.
[22] J.T. Markin, Continuous dependence of fixed point sets, Proc. Amer. Math. Soc., 38(1973), pp.547-547.
[23] J.T. Markin, A fixed point theorem for set valued mappings, Bull. Amer. Math. Soc., 74(1968), pp.639-640.
[24] S.B. Nadler, Multivalued mappings, Pac. J. Math., 30(1969), pp.475-488. 
[25] P.L. Combettes and S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6(2005), pp.117-136.
[26] S. Takahashi and W. Takahashi, Viscosity approximation method for equilibrium problem and fixed problem in Hilbert spaces, J. Math. Anal. Appl.,331(2007), pp.505-515.
[27] S. Plubtieng and R. Punpaeng, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 336(2007), pp.455-469.
[28] A. Tada and W. Takahashi, Weak and strong convergence theorems for nonexpansive mappings and an equilibrium problem, J. Optim. Theory. Appl., 113(2007), pp.359-370.
[29] H.K. Xu, An iterative approach to quadratic optimisation, J. Optim. Theory. Appl., 116(2003), pp.659-678.
[30] H. Zegeye and N. Shahzad, Convergence of Mann's type iteration for generalised asymptotically nonexpansive mappings, Comput. Math. Appl., 62 (2011), pp.4007-4014.
[31] P.E. Mainge, Strong convergent of projected subgradient for nonsmooth and nonstrictly convex minimization, Set~-~Valued Anal. , 16(2008), pp.899-912.
[32] M. De la sen, On some convergence properties of the modified lshikawa scheme for asymptotically demicontractive mappings with metricial parameterizing sequences, Hindawi J. Math., 2018(2018), 13 pages.
[33] Y. Shehu, Strong convergence theorems for fixed point problems, varietional inequality problems and systems of generalised equilibrium problems, Math. Comput. Model., 54(2011), pp.1510-1522.
[34] A. Abkar and M. Tavakkoli, Anew algorithm for two finite families of demicontractive mappings and equilibrium problems, Appl. Math. Comput., 266(2015), pp.491-500.
[35] B. Ali and L. Umar, Approximation of solutions of generalised mixed equilibrium problems and fixed points of multivalued asymptotically 
quasi-nonexpansive mappings, J. Nig. Math. Soc., 38(2019), pp.569-592.
[36] N. Djitte and M. Sene, Convegence theorems for fixed points of multivalued 
mappings in Hilbert space, lnt. J. Anal. ,2014(2014), pp.7-17.
[37] A. Banyawat and S. Suantai, Common fixed points of a countable family of multivalued quasi-nonexpansive mappings in uniformly convex Banach spaces, 
[38] T. Hu, J. Huang andE. Rhoades, A general principle for lshikawa iteration for for multivalued mappings, Indian J. Pure Appl. Math., 28(1997), pp. 1691-1098.
[39] M.O. Osilike and S.C. Aniagbosor, Fixed points of asymptotically demicontractive mappings in certain Banach spaces, Indian J. Pure Math. Appl., 32(10)(2001), pp.1519-1537.
[40] F. O. lsogugu, C. Izuchukwu and C.C. Okeke, New iteration scheme for approximating a common fixed point od finite family of mappings, Hindawi J. Math., 2020(2020), 4 pages.
[41] G.C. Ugwunnadi, O.T. Mewomo and C. lzuchukwu, Convergence theorem for finite family of asymptotically demicontractive multivalued mappings in CAT(0) spaces, J. Math. Anal. Appl., 26(2020), pp.117-130.
[42] F. Zhang, H. Zhang and Y. Zhang, New iterative algoritm for two infinite families of multivalued quasi-nonexpansive mappings in uniformly convex Banach spaces, J. Appl. Math., 2013(2013), 7 pages.
[43] l.K. Agwu, D.I. Igbokwe and A. E. Ofem, Approximation of common solutions of fixed point problem for $\alpha$-hemicontractive mapping, split equilibrium problem and variational inequality problem, Advances. Fixed Point Theory, (2021),11 pages.
[44] E. Blum and W. Oetti, From optimization and variational inequality to equilibrium problems, Math. Student, 63(1994), pp.123-145.
[45] M. Eslamian, Hybrid method for equilibrium problems of finite families of nonexpansive semigroups, Revista de la Real Academia de Ciecias Exactas Fisicas aturales , 2012(2012), pp.30-45.
[46] M. Zhaoli and L. Wang, Demiclosedness principle and convergence theorems for asymptotically strictly pseudononspreading mappings and mixed equilibrium problems, Fixed Point Theory Appl., 2014(2014), pp.104-145.
[47] L. Qihou, Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings, Nonlinear Anal., 26(1996), pp.1835-1842.
[48] M.O. Osilike and E.E. Chima, Mixed equilibrium and multipleset split feasiblity problems for asymptotically pseudonospreading mappings, Commun. Optimiz. Theory, 2020 (2020), pp.113-140.
[49] M.O. Osilike, et al, Demiclosedness principle and convergence theorems for $k$-strictly asymptotically pseudocontractive maps, J. Math. Anal. Appl.,326(2007), pp.1334-1345.
[50] U. Singthong, and S. Suantai, Equilibrium problems and fixed point problems for nonspreading-type mappings in Hilbert spaces, Int. J. Nonliear. Anal. Appl. ,2(2011), pp.51-61.
[51] M.E. Samei, Some Fixed point results on intuitionistic fuzzy metric spaces with a graph, Sahand Commun. Math. Anal., 13(2019), pp.141-152.
[52] Z. Baitiche, et al, Monotone iterative method for $\Psi$-Caputo fractional differential equation with nonlinear boundary conditions, Fractal and Fract., 5(2021), pp. 123-143.
[53] M.E. Samei, Convergence of an iterative scheme for multifunctions on fuzzy metric spaces, Sahand Commun. Math. Anal., 15(2019), pp.91-106.
[54] J. Alzabut et al, Asymptotic stability of nonlinear discrete fractional pantograph equations with non-Local initial conditions, Symmetry, 13(2021), pp.473.
[55] I.K. Agwu and D.I. Igbokwe, A Modified proximal point algorithm for finite families of minimization problems and fixed point problems of asymptotically quasi-nonexpansive multivalued mappings Punjab University Journal of Mathematics ,54(8)(2022), pp.495-522.