[1] H.A. Abass, A.A. Mebawondu and O.T. Mewomo, Some results for a new three iteration scheme in Banach spaces, Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys., 11 (2), pp. 1-18.
[2] M. Abass and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vesn., 66 (2) (2014), pp. 223-234.
[3] M. Abbas, Z. Kadelburg and D.R. Sahu, Fixed point theorems for Lipschitzian type mappings in CAT(0) spaces, Math. Comput. Modelling, 55 (3-4) (2012), pp. 1418-1427.
[4] R.P. Agarwal, D. O'Regan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Convex Anal., 8 (1) (2007), pp. 61-79.
[5] V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., 19 (2003), pp. 7-22.
[6] V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasicontractive operators, Fixed Point Theory Appl., 2 (2004), pp. 97-105.
[7] F.E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. USA., 54 (1965), pp. 1041-1044.
[8] C. Byrne , Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., 18 (2) (2002), pp. 441–453.
[9] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (2) (1994), pp. 221-239.
[10] Y. Censor, X.A. Motova and A. Segal, Perturbed projections and subgradient projections for the multiple-set split feasibility problem, J Math. Anal. Appl., 327 (2007), pp. 1224-1256.
[11] Y. Censor, T. Elfving, N. Kopt and T. Bortfeld, The multiple-sets split feasibility problem and its applications, Inverse Probl., 21 (2005), pp. 2071-2084.
[12] P. Cholamijak and S. Suantai, Iterative variational inequalities and fixed point problem of nonexpansive semigroups, J. Glob. Optim., 57 (2013), pp. 1277-1297.
[13] M. Ertürk, F. Gürsoy, and N. Şimşek, S-iterative algorithm for solving variational inequalities, Int. J. Comput. Math., 98 (3) (2021), pp. 435-448.
[14] M. Ertürk, F. Gürsoy, Q. Ansari and V. Karakaya, Picard type iterative method with application to minimization problems and split feasibility problems, J. Nonlinear Convex Anal., 21 (4) (2020), pp. 1-20.
[15] P. Chuadchawna, A. Farajzadeh and A. Kaewcharoen, Fixed-point approximation of generalized nonexpansive mappings via generalized $M$-iteration in hyperbolic spaces, International Journal of Mathematical Science, (2020), ID 6435043, pp. 1-8.
[16] M. Feng, L. Shi and R. Chen, A new three-step iterative algorithm for solving the split feasibility problem, Univ. Politeh. Buch. Ser. A., 81 (1) (2019), pp. 93-102.
[17] F. Gianness, Vector variational inequalities and vector equilibria, Mathematical Theories, 38, Kluwer Academic publisher, Dordrecht, (2000).
[18] F. Gursou and V. Karakaya, A Picard-S hybrid type iteration method for solving a differential equation with retarded argument, arXiv:1403.2546v2, (2014), pp 1-20.
[19] F. Gursou, M. Ertürk, and M. Abbas Picard-type iterative algorithm for general variational inequalities and nonexpansive mappings, Numer. Algorithms, 83 (2020), pp. 867-883.
[20] S. Ishikawa, Fixed points by new iteration method, Proc. Am.
Math. Soc., 149 (1974), pp. 147-150.
[21] N. Kadioglu and I. Yildirim, Approximating fixed points of nonexpansive mappings by faster iteration process, arXiv:1402. 6530v1 [math.FA], (2014), pp. 1-20.
[22] V. Karakaya, K. Dogan, F. Gursoy and M. Erturk Fixed point of a new three step iteration algorithm under contractive like operators over normed space, Abstr. Appl. Anal., 2013, Article ID 560258, pp. 1-25.
[23] V. Karakaya, Y. Atalan and K. Dogan, On fixed point result for a three steps iteration process in Banach space, Fixed Point Theory, 18 (2) (2017), pp. 625-640.
[24] T. Kawasaki and W. Takahashi, A strong convergence theorem for countable families of nonlinear nonself mappings in Hilbert spaces and applications, J. Nonlinear Convex Anal., 19 (2008), pp. 543-560.
[25] M.A. Krasnosel'skii, Two remarks on the method of successive approximations, Usp. Mat. Nauk., 10 (1955), pp. 123-127.
[26] W.R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc., 4 (1953), pp. 506-510.
[27] P.E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899-912.
[28] A.A. Mebawondu and O.T. Mewomo Fixed point results for a new three steps iteration process, Annals of the University of Craiova-Mathematics and Computer Science Series, 46 (2) (2019), pp. 298-319.
[29] A.A. Mebawondu L.O. Jolaoso, H.A. Abass, and O.K. Narain Generalized relaxed inertial method with regularization for solving split feasibility problems in real Hilbert spaces, Asian-Eur. J. Math., 15 (06) (2022), pp. 1-25.
[30] M.A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), pp. 217-229.
[31] Z. Opial, Weak convergence of the sequence of the successive approximation for nonexapansive mapping, Bull. Am. Math. Soc., 73 (4) (1967), pp. 591-597.
[32] O. K. Oyewole, H. A. Abass, A. A. Mebawondu, and K. O. Aremu, A Tseng extragradient method for solving variational inequality problems in Banach spaces, Numer. Algorithms, 89 (2) (2022), pp. 769-789
[33] R. Pant and R. Shukla, Approximating fixed point of generalized $\alpha$-nonexpansive mapping in Banach space, Numer. Funct. Anal. Optim., 38 (2) (2017), pp. 248-266.
[34] W. Phuengrattana, and S. Suantai, On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval J. Comput. Appl. Math., 235 (2011), pp. 3006-3014.
[35] D. R. Sahu, Application of the S-iteration process to constrained minimization problem and split feasibility problems, Fixed Point Theory, 12 (2011), pp. 187-204.
[36] G. Stampacchia, Formes bilinearies coercivities sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), pp. 4413-4416.
[37] S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 311 (2) (2005), pp. 506-517.
[38] B. S. Thakur, D. Thakur and M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings, App. Math. Comp., 275 (2016), pp. 147–155
[39] K. Ullah and M. Arshad, Numerical reckoning fixed points for Suzuki generalized nonexpansive mappings via new iteration process, Filomat 32 (1) (2018), pp. 187-196.
[40] X. L. Weng, Fixed point iteration for local strictly pseudocontractive mappings, Proc. Amer. Math. Soc., 113 (1991), pp. 727-731.
[41] N. C. Wong, D. R. Sahu and J. C. Yao, Solving variational inequalities involving nonexpansive type mapping, Nonlinear Anal., 69 (2008), pp. 4732-4753.