[1] L.J. Alias and N. Gurbuz, An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Dedicata, 121 (2006), pp. 113-127.

[2] R. Caddeo, S. Montaldo, C. Oniciuc and P. Piu, Surfaces in three-dimensional space forms with divergence-free stress-bienergy tensor, Ann. Mat. Pura Appl., 193(2) (2014), pp. 529-550.

[3] I. Dimitri\'c, Submanifolds of $E^n$ with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sin., 20 (1992), pp. 53-65.

[4] J. Eells and J. Sampson, Harmonic mappings of Riemannian manifolds. Am. J. Math. 86 (1964), pp. 109160.

[5] D. Fetcu, C. Oniciuc and A.L. Pinheiro, CMC biconservative surfaces in $\S^n \times \R$ and $\H^n \times \R$, J. Math. Anal. Appl. 425 (2015), pp. 588-609.

[6] D. Fetcu and C. Oniciuc, Biharmonic and biconservative hypersurfaces in space forms, arXiv:2012.12476v2

[7] R.S. Gupta and A. Sharfuddin, Biconservative Lorentz hypersurfaces in $E^{n+1}_1$ with complex eigenvalues, Rev. Uni´on Mat. Arg. 60(2) (2019), pp. 595-610.

[8] T. Hasanis and T. Vlachos, Hypersurfaces in $E^4$ with harmonic mean curvature vector field, Math. Nachr., 172(1995), pp. 145-169.%

[9] D. Hilbert, Die Grundlagen der Physik, Math. Ann., 92 (1924), pp. 132.

[10] G.Y. Jiang, The conservation law for 2-harmonic maps between Riemannian manifolds, Acta Math. Sin., 30 (1987), pp. 220-225.

[11] P. Lucas and H.F. Ramirez-Ospina, Hypersurfaces in the Lorentz-Minkowski space satisfying $L_k\psi = A \psi + b$, Geom. Dedicata, 153 (2011), pp. 151-175.

[12] M.A. Magid, Lorentzian isoparametric hypersurfaces, Pacific J. of Math., 118:1 (1985), pp. 165-197.

[13] F. Pashaie and A. Mohammadpouri, $L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $E_1^4$, Sahand Comm.Math.Anal., 5:1 (2017), pp. 21-30.

[14] B. O'Neill, Semi-Riemannian Geometry with Applicatins to Relativity, Acad. Press Inc., 1983.

[15] F. Pashaie and S.M.B. Kashani, Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying $L_kx=Ax+b$, Bull. Iran. Math. Soc. 39:1 (2013), pp. 195-213.

[16] F. Pashaie and S.M.B. Kashani, Timelike hypersurfaces in the Lorentzian standard space forms satisfying $L_kx=Ax+b$, Mediterr. J. Math., 11:2 (2014), pp. 755-773.

[17] A.Z. Petrov, Einstein Spaces, Pergamon Press, Hungary, Oxford and New York, 1969.

[18] R.C. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J.Differential Geom., 8:3 (1973), pp. 465-477.

[19] N.C. Turgay, H-hypersurfaces with three distinct principal curvatures in the Euclidean spaces, Ann. Mat. Pura Appl., 194:6 (2015), pp. 1795-1807.

[20] N.C. Turgay and A. Upadhyay, On biconservative hypersurfaces in 4-dimensional Riemannian space forms, Math. Nachr. 292:4 (2019), pp. 905-921.

[21] A. Upadhyay and N.C. Turgay, A classiffication of biconservative hypersurfaces in a pseudo-Euclidean space, J. Math. Anal. Appl. 444 (2016), pp. 1703-1720.