Document Type : Research Paper
Author
Department of Mathematics, Larestan Branch, Islamic Azad University, Larestan, Iran.
Abstract
Let $\varphi:A\to B$ be an isomorphism of $C^*$-algebras and $I$ be an ideal of $A.$ Introducing the concepts of unitary equivalent and the implemented Finsler modules, we show that the $\frac{A}{I}$-module $\frac{E}{E_{I}}$ and the implemented $\frac{B}{\varphi(I)}$-module $\frac{F}{F_{\varphi(I)}}$ are unitary equivalent. We also, establish a one to one correspondence between the groups $U(E)$ and $U(F)$ of unitaries on full Finsler modules $E$ and $F,$ respectively. Finally, we explain regularized dynamical systems and apply the aforementioned one to one correspondenec to prove that each regularized dynamical system in $U(E)$ implements a regularized dynamical system in $U(F).$
Keywords
[6] D. Bakic and B. Guljas, On a class of module maps of Hilbert $C^*$-modules, Math. Commun., 7 (2002), pp. 177-192.
[10] K.J. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, 2000.
[11] R. Hassanniah, M. Amyari and M. Hassani, Imprimitivity Finsler $C^*$-bimodules, Nonlinear Funct. Anal. Appl.,
19 (2014), pp. 479-487.
[12] A. Hossein, M. Hassani and A. Niknam, Generalized $\sigma$-derivation on Banach algebras, Bull. Iranian Math. Soc., 37 (2011), pp. 81-94.
[13] I. Kaplansky, Modules over operator algebras, Amer. J. Math., 75 (1953), pp. 839-858.
[16] M. Mirzavaziri and M.S. Moslehian, Automatic continuity of $\sigma$-derivations in $C^*$-algebras, Proc. Amer. Math. Soc., 134 (2006), pp. 3319-3327.
Theor., 9 (2011), pp. 171-184.
[23] A. Niknam, Infinitesimal generators of $C^*$-algebras, Potential Anal., 6 (1997), pp. 1-9.
[24] W.L. Paschke, Inner product modules over $B^*$-algebras, Trans. Amer. Math. Soc.,
182 (1973), pp. 443-468.
[27] N. Phillips and N. Weaver, Modules with norms which take values in a $C^*$-algebra,
Pacific J. Math., 185 (1998) 163-181.
Press, 2010.