Document Type : Research Paper


Department of Mathematics, College of Natural Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia.


In this paper, we derive Saigo fractional $q$-integrals of the general class of $q$-polynomials and demonstrate their application by investigating $q$-Konhouser biorthogonal polynomial,  $q$-Jacobi polynomials and basic analogue of the Kamp$\acute{e}$ de F$\acute{e}$riet function. We have also derived polynomials as a specific example of our significant findings.


Main Subjects

1. M.H. Annaby and Z.S. Mansour, $q$-Fractional Calculus and Equations,Springer, Berlin, 2012.
2. G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
3. T. Ernst, The History of $q$-Calculus and a New Method, Department of Mathematics, Uppsala University, Sweden, 2000.
4. T. Ernst, A method for $q$-calculus, J. Nonlinear Math. Phys., 10 (4)(2003), pp. 487-525.
5. M. Garg and L. Chanchlani, $q$-analogues of Saigo’s fractional calculus operators, Bull. Math. Anal. Appl., 3 (4) (2011), pp. 169-179.
6. W. Hahu, Beitruge zur theorie der heineschen reihen, Math. Nachr., 2 (1949), pp. 340-379.
7. V.K. Jain, Some expansions involving basic hypergeometric function of two variables, Pacific J. Math., 91 (2) (1980), pp. 349-362.
8. V. Kac and P. Cheung, Quantum Calculus, Springer, New York, 2002.
9. D. Kumar, F. Ayant, K.S. Nisar and D.L. Suthar, On fractional qintegral operators involving the basic analogue of multivariable Alephfunction, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., (2022).
10. D. Kumar, F. Ayant, F. Ucar and S.D. Purohit, Certain fractional $q$-integral formulas for the basic I-function of two variables, Math. Eng. Sci. Aerosp., 13 (2) (2022), pp. 315-321.
11. K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons Inc., New York, USA, 1993.
12. R. Nadeem, T. Usman, K.S. Nisar and T. Abdeljawad, A new generalization of Mittag-Leffler function via $q$-calculus. Adv. Differ. Equ., 695 (2020), 1-10.
13. S. Al-Omari, D.L. Suthar and S. Araci, A fractional $q$-integral operator associated with a certain class of $q$-Bessel functions and qgenerating series, Adv. Differ. Equ., 441 (2021).
14. A.M. Obad, A. Khan, K.S. Nisar and A. Morsy, $q$-Binomial convolution and transformations of $q$-Appell polynomials, Axioms, 10 (2) (2021), 1-13.
15. S.D. Purohit, M.M. Gour and S. Joshi, On some classes of analytic functions connected with Kober integral operator in fractional $q$-calculus, Math. Eng. Sci. Aerosp., 12 (3) (2021), pp. 759-769.
16. S.D. Purohit, M.M. Gour, S. Joshi and D.L. Suthar, Certain classes of analytic functions bound with Kober operators in $q$-calculus, J. Math., Article ID 3161275, (2021), pp. 1-8.
17. S.D. Purohit, G. Murugusundaramoorthy, V. Kaliappan, D.L. Suthar and K. Jangid, A unified class of spiral-like functions including Kober fractional operators in quantum calculus, Palest. J. Math., 12 (2), (2023), 487-498.
18. S.D. Purohit and R.K. Yadav, On generalized fractional $q$-integral operators Involving the $q$-Gauss hypergeometric function, Bull. Math. Anal. Appl., 2 (4) (2010), pp. 35-44.
19. N. Raza, M. Fadel, K.S. Nisar and M. Zakarya, On 2-variable $q$-Hermite polynomials, AIMS Mathematics, 6 (8) (2021), pp. 8705-8727.
20. P.M. Rajkovi´c, S.D. Marinkovr´c, M.S. Stankovi´c, Fractional integrals and derivatives in $q$-calculus, Appl. Anal. Discret., 1 (2007), pp. 311-323.
21. H.M. Srivastava and A.K. Agarwal, Generating functions for a class of $q$-polynomials, Ann. di Mat. Pura ed Appl., 154 (4), (1989), pp. 99-109.
22. V.K. Vyas, Ali A. Al-Jarrah and S.D. Purohit, $q$-Sumudu transforms of product of generalized basic hypergeometric functions and their applications, Appl. Appl. Math., 14 (2) (2019), pp. 1099-1111.
23. V.K. Vyas, A. Al-Jarrah, S.D. Purohit, S. Araci and K.S. Nisar, $q$-Laplace transform for product of general class of $q$-polynomials and $q$-analogue of I-function, J. Inequal. Spec. Funct., 11 (3) (2020), pp. 21-28.
24. V.K. Vyas, Ali A. Al-Jarrah, D.L. Suthar and N. Abeye, Fractional $q$-integral operators for the product of a $q$-polynomial and $q$-analogue of the $q$-functions and their applications, Math. Probl. Eng., (2021), Article ID 7858331.
25. R.K. Yadav and B. Singh, On a set of basic polynomials $Z_{n}^{\varepsilon } \left (x;k,q \right)$ suggested by basic Laguerre polynomials $L_{n}^{\varepsilon } \left (x,q \right)$, The Mathematics Student, 73 (1-4) (2004), pp. 183-189.
26. A. Younus, M. Asif and K. Farhad, Interval-valued fractional $q$-calculus and applications, Information Sciences, 569 (2021), pp. 241-263.