Document Type : Research Paper


1 Department of Mathematics & Statistics, Manipal University Jaipur, Jaipur, India.

2 Department of Mathematics, IIS (deemed to be university), Jaipur, India.


The aim of the present investigation is to deal with integrals, which are connected with the extended generalized Mittag-Leffler function, Jacobi polynomial, and Bessel-Maitland function. Further, we are also considering the integral formulae, which involve various special functions. Interesting special cases of the main results are also considered. The results obtained here are general in nature and can presume numerous new integral formulae connecting the several types of polynomials.


Main Subjects

1. A. Chouhan and S. Saraswat, Some remarks on generalized Mittag- Leffler function and fractional operators, Adv. Appl. Math. Anal., 6 (2) (2011), pp. 131-139.
2. A.K. Shukla and J.C. Prajapati, On a generalization of Mittag- Leffler function and its properties, J. Math. Anal. Appl., 2 (2007), pp. 797-811.
3. A. Padma, M.G. Rao, and B. Shimelis, Generalized extended Mittag-Leffler function and its properties pertaining to integral transforms and fractional calculus, Res. Math., 10 (1) (2023), 2220205.
4. A. Wiman, On the fundamental theorem in the theory of the functions Ea (x), Acta Math., 29 (1) (1905), pp. 191-201.
5. D.L. Suthar, B. Shimelis, F. Ucar and S.D. Purohit, Caputo type fractional differentiation for the extended generalized Mittag-Leffler function, Progr.Fract. Differ. Appl., 9 (1) (2023), pp. 135-143.
6. E.D. Rainville, Special functions, reprint of 1960 first edition, Chelsea Publishing Co., Bronx, New York, 1971.
7. E. Mittal, R.M. Pandey and S. Joshi, On extension of Mittag-Leffler function, Appl. Appl. Math., 11 (1) (2016), pp. 307-316.
8. G. Mittag-Leffler, Sur la Nouvelle Fonction E (x), C.R. Acad. Sci. Paris, 137 (1903), pp. 554-558.
9. G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, 1962.
10. H.M. Srivastava and H.L. Manocha, A treatise on generating function, John Wiley and Sons/Ellis Horwood, New York/Chichester, 1984.
11. K.S. Nisar, D.L. Suthar, R. Agarwal and S.D. Purohit, Fractional calculus operators with appell function kernels applied to Srivastava polynomials and extended Mittag-Leffler function, Adv. Differ. Equ., 148 (2020).
12. M.A. Chaudhary, A. Qadir, M. Rafique and S.M. Zubair, Extension of Eulers beta function, J. Comput. Appl. Math., 78 (1997), pp. 19-32.
13. M.A. Khan and S. Ahmed, On some properties of the generalized Mittag-Leffler function, Springerplus, 337 (2) (2013).
14. M.A. Özarslan and B. Yilmaz, The extended Mittag-Leffler function and its properties, J. Inequal. Appl., 85 (2014).
15. N. Menaria, S.D. Purohit and R.K. Parmar, On a new class of integrals involving generalized Mittag-Leffler function, Surv. Math. Appl., 11 (2016), pp. 1-9.
16. O.I. Marichev, Handbook of integral transform and higher transcendental functions, Theory and algorithm tables, Ellis Horwood Chichester, John Wiley and Sons, New York, 1983.
17. S. Joshi, R.M.Pandey and E. Mittal, On Euler type integral involving extended Mittag-leffler function, Bol. Soc. Paran. Mat., 38 2 (2020), pp. 123–132.
18. S. Haq, A. H. Khan, & K. S. Nisar, A study of new class of integrals associated with generalized Struve function and polynomials, Commun. Korean Math. Soc., 34 (1) (2019), pp. 169-183.
19. T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), pp. 7-15.
20. V. Kiryakova, Generalized fractional calculus and applications, Pitman Research Notes in Mathematics Series, 301, Longman Scientific and Technical, Harlow, 1994.
21. V.P. Saxena, The I-function, Anamaya publisher, New Delhi,2008.